
Simon Monk

Raspberry Pi
Cookbook
SOFTWARE AND HARDWARE PROBLEMS AND SOLUTIONS

2nd Edition

Dr. Simon Monk

Raspberry Pi Cookbook
SECOND EDITION

978-1-491-93910-9

[LSI]

Raspberry Pi Cookbook
by Simon Monk

Copyright © 2016 Simon Monk. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Susan Conant and Jeff Bleiel
Production Editor: Kristen Brown
Copyeditor: Nan Reinhardt
Proofreader: Gillian McGarvey

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2014: First Edition
June 2016: Second Edition

Revision History for the Second Edition
2016-05-17 First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491939109 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Raspberry Pi Cookbook, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface to the Second Edition. xi

1. Setup and Management. 1
1.0 Introduction 1
1.1 Selecting a Model of Raspberry Pi 1
1.2 Enclosing a Raspberry Pi 3
1.3 Selecting a Power Supply 5
1.4 Selecting an Operating System Distribution 7
1.5 Writing a MicroSD Card with NOOBS 7
1.6 Connecting the System 10
1.7 Connecting a DVI or VGA Monitor 12
1.8 Using a Composite Video Monitor/TV 12
1.9 Adjusting the Picture Size on Your Monitor 13
1.10 Maximizing Performance 15
1.11 Changing Your Password 18
1.12 Setting the Pi to Boot Straight into a Windowing System 19
1.13 Shutting Down Your Raspberry Pi 20
1.14 Installing the Raspberry Pi Camera Module 22
1.15 Using Bluetooth 25

2. Networking. 27
2.0 Introduction 27
2.1 Connecting to a Wired Network 27
2.2 Finding Your IP Address 29
2.3 Setting a Static IP Address 31
2.4 Setting the Network Name of a Raspberry Pi 33
2.5 Setting Up a Wireless Connection 34
2.6 Connecting with a Console Lead 36

iii

2.7 Controlling the Pi Remotely with SSH 39
2.8 Controlling the Pi Remotely with VNC 41
2.9 Controlling the Pi Remotely with RDP 43
2.10 File Sharing on a Mac Network 44
2.11 Sharing the Pi Screen on a Mac 46
2.12 Using a Raspberry Pi for Network Attached Storage 48
2.13 Network Printing 51

3. Operating System. 55
3.0 Introduction 55
3.1 Moving Files Around Graphically 55
3.2 Starting a Terminal Session 57
3.3 Navigating the Filesystem Using a Terminal 58
3.4 Copying a File or Folder 62
3.5 Renaming a File or Folder 63
3.6 Editing a File 63
3.7 Viewing the Contents of a File 66
3.8 Creating a File Without Using an Editor 66
3.9 Creating a Directory 67
3.10 Deleting a File or Directory 68
3.11 Performing Tasks with Superuser Privileges 69
3.12 Understanding File Permissions 70
3.13 Changing File Permissions 71
3.14 Changing File Ownership 72
3.15 Making a Screen Capture 73
3.16 Installing Software with apt-get 74
3.17 Removing Software Installed with apt-get 75
3.18 Installing Python Packages with Pip 76
3.19 Fetching Files from the Command Line 77
3.20 Fetching Source Code with Git 78
3.21 Running a Program or Script Automatically on Startup 78
3.22 Running a Program or Script Automatically as a Service 79
3.23 Running a Program or Script Automatically at Regular Intervals 81
3.24 Finding Things 82
3.25 Using the Command-Line History 83
3.26 Monitoring Processor Activity 84
3.27 Working with File Archives 87
3.28 Listing Connected USB Devices 87
3.29 Redirecting Output from the Command Line to a File 88
3.30 Concatenating Files 89
3.31 Using Pipes 89
3.32 Hiding Output to the Terminal 90

iv | Table of Contents

3.33 Running Programs in the Background 90
3.34 Creating Command Aliases 91
3.35 Setting the Date and Time 92
3.36 Finding Out How Much Room You Have on the SD Card 93

4. Software. 95
4.0 Introduction 95
4.1 Making a Media Center 95
4.2 Installing Office Software 97
4.3 Installing other Browsers 98
4.4 Using the Pi Store 100
4.5 Making a Webcam Server 101
4.6 Running a Vintage Game Console Emulator 104
4.7 Running Minecraft Pi Edition 105
4.8 Running a Minecraft Server 107
4.9 Running Open Arena 110
4.10 Raspberry Pi Radio Transmitter 111
4.11 Running GIMP 113
4.12 Internet Radio 114

5. Python Basics. 117
5.0 Introduction 117
5.1 Deciding Between Python 2 and Python 3 117
5.2 Editing Python Programs with IDLE 118
5.3 Using the Python Console 121
5.4 Running Python Programs from the Terminal 122
5.5 Variables 123
5.6 Displaying Output 123
5.7 Reading User Input 124
5.8 Arithmetic 125
5.9 Creating Strings 125
5.10 Concatenating (Joining) Strings 126
5.11 Converting Numbers to Strings 127
5.12 Converting Strings to Numbers 128
5.13 Finding the Length of a String 129
5.14 Finding the Position of One String Inside Another 129
5.15 Extracting Part of a String 130
5.16 Replacing One String of Characters with Another Inside a String 131
5.17 Converting a String to Upper- or Lowercase 131
5.18 Running Commands Conditionally 132
5.19 Comparing Values 133
5.20 Logical Operators 135

Table of Contents | v

5.21 Repeating Instructions an Exact Number of Times 135
5.22 Repeating Instructions Until Some Condition Changes 136
5.23 Breaking Out of a Loop 137
5.24 Defining a Function in Python 138

6. Python Lists and Dictionaries. 141
6.0 Introduction 141
6.1 Creating a List 141
6.2 Accessing Elements of a List 142
6.3 Finding the Length of a List 143
6.4 Adding Elements to a List 143
6.5 Removing Elements from a List 144
6.6 Creating a List by Parsing a String 145
6.7 Iterating Over a List 146
6.8 Enumerating a List 146
6.9 Sorting a List 147
6.10 Cutting Up a List 148
6.11 Applying a Function to a List 149
6.12 Creating a Dictionary 150
6.13 Accessing a Dictionary 151
6.14 Removing Things from a Dictionary 152
6.15 Iterating Over Dictionaries 153

7. Advanced Python. 155
7.0 Introduction 155
7.1 Formatting Numbers 155
7.2 Formatting Dates and Times 156
7.3 Returning More Than One Value 157
7.4 Defining a Class 158
7.5 Defining a Method 159
7.6 Inheritance 160
7.7 Writing to a File 161
7.8 Reading from a File 162
7.9 Pickling 163
7.10 Handling Exceptions 164
7.11 Using Modules 166
7.12 Random Numbers 167
7.13 Making Web Requests from Python 168
7.14 Command-Line Arguments in Python 169
7.15 Running Linux Commands from Python 170
7.16 Sending Email from Python 170
7.17 Writing a Simple Web Server in Python 172

vi | Table of Contents

7.18 Doing More Than One Thing at a Time 173
7.19 Doing Nothing in Python 175
7.20 Using Python with Minecraft Pi Edition 176

8. Computer Vision. 179
8.0 Introduction 179
8.1 Installing SimpleCV 179
8.2 Setting Up a USB Camera for Computer Vision 180
8.3 Using a Raspberry Pi Camera Module for Computer Vision 182
8.4 Counting Coins 183
8.5 Face Detection 188
8.6 Motion Detection 189
8.7 Optical Character Recognition 193

9. Hardware Basics. 195
9.0 Introduction 195
9.1 Finding Your Way Around the GPIO Connector 195
9.2 Keeping Your Raspberry Pi Safe When Using the GPIO Connector 199
9.3 Setting Up I2C 200
9.4 Using I2C Tools 202
9.5 Setting Up SPI 203
9.6 Installing PySerial for Access to the Serial Port from Python 204
9.7 Installing Minicom to Test the Serial Port 205
9.8 Using a Breadboard with Jumper Leads 206
9.9 Using a Breadboard with a Pi Cobbler 208
9.10 Using a Raspberry Squid 210
9.11 Using a Raspberry Squid Button 212
9.12 Converting 5V Signals to 3.3V with Two Resistors 214
9.13 Converting 5V Signals to 3.3V with a Level Converter Module 215
9.14 Powering a Raspberry Pi with Batteries 216
9.15 Powering a Raspberry Pi with a LiPo Battery 219
9.16 Getting Started with the Sense HAT 220
9.17 Getting Started with the Explorer HAT Pro 222
9.18 Getting Started with a RaspiRobot Board 224
9.19 Using a Pi Plate Prototyping Board 226
9.20 Making a Hardware At Top (HAT) 231
9.21 The Pi Compute Module 234
9.22 The Pi Zero 236

10. Controlling Hardware. 239
10.0 Introduction 239
10.1 Connecting an LED 239

Table of Contents | vii

10.2 Leaving the GPIO Pins in a Safe State 242
10.3 Controlling the Brightness of an LED 243
10.4 Make a Buzzing Sound 245
10.5 Switching a High-Power DC Device Using a Transistor 247
10.6 Switching a High-Power Device Using a Relay 249
10.7 Controlling High-Voltage AC Devices 252
10.8 Making a User Interface to Turn Things On and Off 253
10.9 Making a User Interface to Control PWM Power for LEDs and Motors 255
10.10 Changing the Color of an RGB LED 256
10.11 Using Lots of LEDs (Charlieplexing) 260
10.12 Using an Analog Meter as a Display 263
10.13 Programming with Interrupts 265

11. Motors. 269
11.0 Introduction 269
11.1 Controlling Servo Motors 269
11.2 Controlling Servo Motors Precisely 273
11.3 Controlling Many Servo Motors 276
11.4 Controlling the Speed of a DC Motor 279
11.5 Controlling the Direction of a DC Motor 281
11.6 Using a Unipolar Stepper Motor 287
11.7 Using a Bipolar Stepper Motor 291
11.8 Using a Stepper Motor HAT to Drive a Bipolar Stepper Motor 293
11.9 Using a RaspiRobot Board to Drive a Bipolar Stepper Motor 295
11.10 Building a Simple Robot Rover 297

12. Digital Inputs. 303
12.0 Introduction 303
12.1 Connecting a Push Switch 303
12.2 Toggling with a Push Switch 306
12.3 Using a Two-Position Toggle or Slide Switch 308
12.4 Using a Center-Off Toggle or Slide Switch 309
12.5 Debouncing a Button Press 313
12.6 Using an External Pull-up Resistor 315
12.7 Using a Rotary (Quadrature) Encoder 316
12.8 Using a Keypad 320
12.9 Detecting Movement 323
12.10 Adding GPS to the Raspberry Pi 325
12.11 Intercepting Keypresses 329
12.12 Intercepting Mouse Movements 331
12.13 Using a Real-Time Clock Module 332

viii | Table of Contents

13. Sensors. 337
13.0 Introduction 337
13.1 Using Resistive Sensors 337
13.2 Measuring Light 342
13.3 Measuring Temperature with a Thermistor 345
13.4 Detecting Methane 349
13.5 Measuring a Voltage 353
13.6 Reducing Voltages for Measurement 355
13.7 Using Resistive Sensors with an ADC 358
13.8 Measuring Temperature with an ADC 359
13.9 Measuring the Raspberry Pi CPU Temperature 362
13.10 Measuring Temperature, Humidity, and Pressure with a Sense HAT 363
13.11 Measuring Temperature Using a Digital Sensor 365
13.12 Measuring Acceleration with an MCP3008 Module 368
13.13 Using the Inertial Management Unit (IMU) of the Sense HAT 371
13.14 Finding Magnetic North with the Sense HAT 373
13.15 Sensing a Magnet with a Reed Switch 374
13.16 Sensing a Magnet with the Sense HAT 375
13.17 Measuring Distance 376
13.18 Capacitative Touch Sensing 379
13.19 Displaying Sensor Values 382
13.20 Logging to a USB Flash Drive 383

14. Displays. 387
14.0 Introduction 387
14.1 Using a Four-Digit LED Display 387
14.2 Displaying Messages on an I2C LED Matrix 389
14.3 Using the Sense HAT LED Matrix Display 392
14.4 Displaying Messages on an Alphanumeric LCD HAT 394
14.5 Displaying Messages on an Alphanumeric LCD Module 396
14.6 Using an OLED Graphical Display 400
14.7 Using Addressable RGB LED Strips 403

15. The Internet of Things. 409
15.0 Introduction 409
15.1 Controlling GPIO Outputs Using a Web Interface 409
15.2 Displaying Sensor Readings on a Web Page 415
15.3 Sending Email and Other Notifications with IFTTT 418
15.4 Sending Tweets Using ThingSpeak 423
15.5 CheerLights 425
15.6 Sending Sensor Data to ThingSpeak 427
15.7 Responding to Tweets Using Dweet and IFTTT 430

Table of Contents | ix

16. Arduino and Raspberry Pi. 435
16.0 Introduction 435
16.1 Programming an Arduino from Raspberry Pi 436
16.2 Communicating with the Arduino by Using the Serial Monitor 439
16.3 Setting Up PyFirmata to Control an Arduino from a Raspberry Pi 441
16.4 Writing Digital Outputs on an Arduino from a Raspberry Pi 443
16.5 Using PyFirmata with TTL Serial 445
16.6 Reading Arduino Digital Inputs Using PyFirmata 448
16.7 Reading Arduino Analog Inputs Using PyFirmata 450
16.8 Analog Outputs (PWM) with PyFirmata 452
16.9 Controlling a Servo Using PyFirmata 454
16.10 Custom Communication with an Arduino over TTL Serial 456
16.11 Custom Communication with an Arduino over I2C 461
16.12 Using Small Arduinos with a Raspberry Pi 465
16.13 Getting Started with an aLaMode Board and a Raspberry Pi 466
16.14 Using an Arduino Shield with an aLaMode Board and a Raspberry Pi 470

A. Parts and Suppliers. 473

B. Raspberry Pi Pinouts. 479

Index. 481

x | Table of Contents

Preface to the Second Edition

Launched in 2011, the Raspberry Pi has found a role both as a very low-cost Linux-
based computer and as a platform for embedded computing. It has proven popular
with educators and hobbyists alike.

Since the first edition of this book, several million more Raspberry Pis have been sold
and a number of new models of Raspberry Pi have been produced. Some models—
like the models B+, A+, and Pi 2 model B+—improve the specification of this device,
culminating in the Raspberry Pi 2 with quad-core processor and the Raspberry Pi
Compute model, which provide the Raspberry Pi as a plugin board that can become
part of a larger system.

This edition has been thoroughly updated to encompass the new models of Rasp‐
berry Pi, as well as the many changes and improvements to its Raspbian operating
system.

This edition contains a new chapter on computer vision and a chapter of recipes on
making Internet of Things projects with your Raspberry Pi.

This book is designed in such a way that you can read it linearly as you would a regu‐
lar book, or access recipes at random. You can search the table of contents or index
for the recipe that you want and then jump right to it. If the recipe requires you to
know about other things, it will refer you to other recipes, rather like a cookbook
might refer you to base sauces before showing you how to cook something fancier.

The world of Raspberry Pi moves quickly. With a large, active community, new inter‐
face boards and software libraries are being developed all the time. In addition to
examples that use specific interface boards or software, the book also covers basic
principles so that you can have a better understanding of how to use new technolo‐
gies that come along as the Raspberry Pi ecosystem develops.

As you would expect, a large body of code (mostly Python programs) accompanies
the book. These programs are all open source and available on GitHub. You’ll find a
link to them at the Raspberry Pi Cookbook website.

xi

For most of the software-based recipes, all you need is a Raspberry Pi. I recommend a
Raspberry Pi 2 or 3. When it comes to recipes that involve making your own hard‐
ware to interface with the Raspberry Pi, I have tried to make good use of ready-made
modules, as well as solderless breadboard and jumper wires to avoid the need for
soldering.

For those wishing to make breadboard-based projects more durable, I suggest using
prototyping boards with the same layout as a half-sized breadboard, such as those
sold by Adafruit, so that the design can easily be transferred to a soldered solution.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

This icon points you to the related video for that section.

xii | Preface to the Second Edition

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://www.raspberrypicookbook.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Raspberry Pi Cookbook, Second Edi‐
tion, by Simon Monk (O’Reilly). Copyright 2016 Simon Monk, 978-1-491-93910-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

Preface to the Second Edition | xiii

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/rasp-pi-ckbk_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
As always, I thank my wife Linda for her patience and support.

I also thank the technical reviewer Duncan Amos for his keen eye, good humor, and
excellent suggestions that have without a doubt contributed greatly to this book.

Thanks also to all the O’Reilly team, especially those I met at the Cambridge office,
who were very welcoming when I visited, and of course Nan Reinhardt for her dili‐
gent copyediting.

xiv | Preface to the Second Edition

CHAPTER 1

Setup and Management

1.0 Introduction
When you buy a Raspberry Pi, you are essentially buying an assembled printed cir‐
cuit board. It does not even include a power supply or operating system.

The recipes in this chapter are concerned with getting your Raspberry Pi set up and
ready for use.

Because the Raspberry Pi just uses standard USB keyboards and mice, most of the
setup is pretty straightforward, so you will concentrate only on those tasks that are
specific to the Raspberry Pi.

1.1 Selecting a Model of Raspberry Pi
Problem
There are many models of Raspberry Pi and you are not sure which to use.

Solution
If you want a Raspberry Pi for general use, then you should buy a Raspberry Pi 3 or 2
model B. With four times as much memory and a quad-core processor, it will cope
with most tasks much better than the Pi Zero or model A+ with their single process‐
ors. The Raspberry Pi 3 model B has the great advantage of having WiFi built in, so
there’s no need for an extra USB WiFi adapter.

If, on the other hand, you are embedding a Raspberry Pi in a project for a single pur‐
pose, then using a model A+ or Pi Zero and saving a few dollars may well be an
option.

1

Discussion
Figure 1-1 shows the Pi Zero, model A+, and Raspberry Pi 2 B.

Figure 1-1. Raspberry Pi Zero (left), model A+ (center), and Raspberry Pi 2 model B
(right)

As you can see from Figure 1-1, the model A+ is smaller than the Pi 2 and has a single
USB socket and no RJ45 Ethernet socket. The Pi Zero is even smaller, saving space by
using a mini HDMI socket and micro USB on-the-go socket. If you want to connect a
keyboard monitor and mouse to a Pi Zero, you will need adapters for both the USB
and HDMI ports before you can connect standard peripherals.

The differences between all the Raspberry Pi models to date are summarized in
Table 1-1.

Table 1-1. Raspberry Pi models
Model RAM USB sockets Ethernet port Notes
3 B 1 GB 4 yes Includes WiFi
Zero 512 MB 1 (micro) no Low cost
2 B 1 GB 4 yes Quad-core
A+ 256 MB 1 no
B+ 512 MB 4 yes Discontinued

A 256 MB 1 no Discontinued

B rev2 512 MB 2 yes Discontinued

B rev1 256 MB 2 yes Discontinued

2 | Chapter 1: Setup and Management

If you have one of the older discontinued Raspberry Pi models, it is still useful. They
do not have quite the performance of the latest Raspberry Pi 3 model B, but for many
situations, that does not matter.

In Recipe 9.21, the Raspberry Pi Compute module will be introduced. This is
designed specifically to allow a Raspberry Pi to be built into a product.

See Also
For more information on the Raspberry Pi models, see http://en.wikipedia.org/wiki/
Raspberry_Pi.

The low cost of the Pi Zero makes it ideal for embedding in electronics projects
without worrying about the cost. See Recipe 9.22.

1.2 Enclosing a Raspberry Pi
Problem
You need an enclosure for your Raspberry Pi.

Solution
The Raspberry Pi does not come with an enclosure unless you buy one as part of a
kit. This makes it a little vulnerable, as there are bare connections on the underside of
the circuit board that could easily be short-circuited if the Raspberry Pi is placed on
something metal.

It is a good idea to buy some protection for your Raspberry Pi in the form of a case. If
you intend to use the Raspberry Pi’s GPIO pins, then the PiBow Coupé shown in
Figure 1-2 is a beautiful and practical design.

Discussion
There is a vast array of case styles to choose from, including:

• Simple, two-part, click-together plastic boxes
• VESA mountable boxes (for attaching to the back of a monitor or TV)
• Lego-style boxes
• 3D-printed box designs
• Laser-cut, snap-together acrylic designs

1.2 Enclosing a Raspberry Pi | 3

Figure 1-2. A Raspberry Pi 2 in a PiBow Coupé

The case you buy is very much a matter of personal taste. However, some of the
things you need to consider are:

• Do you need to have access to the GPIO connector? This is important if you plan
to attach external electronics to your Raspberry Pi.

• Is the case well-ventilated? This is important if you plan to overclock your Rasp‐
berry Pi (Recipe 1.10) or run it hard playing videos or games, as these will all
generate more heat.

You will also find heatsink kits that have tiny self-adhesive heatsinks to attach to the
chips on the Raspberry Pi. These may be of some use if you are demanding a lot of
your Raspberry Pi, say by playing a lot of videos, but generally they are the equivalent
of “go-faster” stripes on a car.

See Also
Adafruit has a nice range of Raspberry Pi enclosures.

You will also find many styles of cases at other Raspberry Pi suppliers and on eBay.

4 | Chapter 1: Setup and Management

1.3 Selecting a Power Supply
Problem
You need to select a power supply for your Raspberry Pi.

Solution
The basic electrical specification for a power supply suitable for a Raspberry Pi is that
it supplies a regulated 5V DC (direct current).

The amount of current that the power supply must be capable of providing depends
both on the model of Raspberry Pi and the peripherals attached to it. It is worth get‐
ting a power supply that can easily cope with the Raspberry Pi and you should con‐
sider 700mA to be a minimum.

If you buy your power supply from the same place that you buy the Raspberry Pi,
then the seller should be able to tell you if it will work with the Raspberry Pi.

If you are going to be using a WiFi dongle or other USB peripherals that use signifi‐
cant amounts of power, then I would get a power supply capable of 1.5A or even 2A.
Also beware of very low-cost power supplies that may not provide an accurate or reli‐
able 5V.

Discussion
The power supply and connector are actually the same as those found in many smart‐
phone chargers. If they are terminated in a micro USB plug, then they are almost cer‐
tainly 5V (but check). The only question, then, is if they can supply enough current.

If they can’t, then a few bad things can happen:

• They may get hot and be a potential fire risk.
• They may just fail.
• At times of high load (say, when the Pi is using a WiFi dongle), the voltage may

dip and the Raspberry Pi may reset itself.

In general, look for a power supply that says it can supply 700mA or more. If it speci‐
fies a number of watts (W) rather than mA, divide the number of watts by 5 to get the
mA figure. So, a 5V 10W power supply can supply 2A (2000mA).

Using a power supply with, say, a maximum current of 2A will not use any more elec‐
tricity than a 700mA power supply. The Raspberry Pi will just take as much current
as it needs.

1.3 Selecting a Power Supply | 5

In Figure 1-3, I measure the current taken by a Raspberry Pi model B and compare it
with a Raspberry Pi 2 model B.

Figure 1-3. Raspberry Pi current consumption during booting

The newer Raspberry Pis (the A+, B+, or Raspberry Pi 2) are far more power-efficient
than the older models, but when the processor is fully occupied and has a lot of
peripherals attached, they can still reach similar current requirements.

In Figure 1-3, you can see that the current rarely gets above 500mA. However, the
processor isn’t really doing very much here. Were you to start playing HD video, the
current would increase considerably. When it comes to power supplies, it’s usually
better to have something in reserve.

See Also
You can buy a module that will turn off the power when the Raspberry Pi shuts down
at http://www.pi-supply.com/.

6 | Chapter 1: Setup and Management

1.4 Selecting an Operating System Distribution
Problem
There are a number of different Raspberry Pi distributions. You are not sure which
one to use.

Solution
The answer to this question depends on what you intend to do with your Raspberry
Pi.

For general use as a computer or for using in electronic projects, you should use
Raspbian, the standard and official distribution for the Raspberry Pi.

If you plan to use your Raspberry Pi as a media center, there are a number of distri‐
butions specifically for that purpose (see Recipe 4.1).

In this book, we use the Raspbian distribution almost exclusively, although most of
the recipes will work with any Debian-based distribution.

Discussion
MicroSD cards are not expensive, so get a few and try out a few distributions. If you
do this, it is a good idea to keep your own files on a USB flash drive so that you don’t
have to keep copying them onto each microSD card.

Note that if you are using one of the upcoming recipes to write your own SD card,
then you need to have a computer that has an SD card slot (many laptops do), or you
can buy an inexpensive USB SD card reader.

See Also
The official list of Raspberry Pi distributions

1.5 Writing a MicroSD Card with NOOBS
Problem
You want to write a microSD card using NOOBS (New Out of the Box Software).

Solution
NOOBS is by far the easiest way to get an operating system onto your Raspberry Pi.

1.4 Selecting an Operating System Distribution | 7

Download the NOOBS archive file from http://www.raspberrypi.org/downloads,
extract it, and place it on a microSD card. To do this, you will need a computer with
an SD card slot or a USB adapter and a SD-to-microSD adapter.

Once you have downloaded the NOOBS archive file, extract it and copy the folder
contents onto the SD card. Note that if the archive extracts to a folder called
NOOBS_v1_3_12 or similar, it is the contents of the folder that should be copied to
the root of the microSD card, not the folder itself.

Put the microSD card containing the extracted NOOBS files into your Raspberry Pi
and then power up your Raspberry Pi. When it boots, the window shown in
Figure 1-4 will appear. From this screen, select Raspbian and then click the Install
button.

If you are using NOOBS on an A+, you will see a shorter list of options because only
the distributions for that simplified platform will be shown.

Figure 1-4. NOOBS first screen

8 | Chapter 1: Setup and Management

You will get a warning message that the SD card will be overwritten (which is fine)
and then as the distribution is installed onto the SD card, you will see a progress
screen accompanied by helpful information about the distribution (Figure 1-5).

Figure 1-5. NOOBS overwriting the SD card

Once the file copying is complete, you will get the message Image applied successfully.
When you hit return, the Raspberry Pi will reboot and then raspi_config will auto‐
matically run so that you can configure the new installation.

Once you are up and running, the first thing you should do is connect your Rasp‐
berry Pi to the Internet (Recipes 2.1 and 2.5), open a command line by using LXTer‐
minal (Recipe 3.2), and enter the following command to update your system to the
latest version.

$ sudo apt-get update
$ sudo apt-get upgrade

1.5 Writing a MicroSD Card with NOOBS | 9

This will take some time.

Discussion
For NOOBS to install correctly onto a microSD card, the card must be formatted as
FAT32. Most SD and microSD cards are supplied already formatted in FAT32. If you
are reusing an old card and need to format it as FAT32, then use your operating sys‐
tem’s tool for formatting removable media.

The type of microSD card that you get will also affect how fast your Raspberry Pi
runs once the operating system is installed. Look for a microSD card described as
“class 10.”

See Also
You can find further information on installing an operating system with NOOBS,
including information about the different distributions available at https://www.rasp‐
berrypi.org/help/noobs-setup/.

1.6 Connecting the System
Problem
You have everything that you need for your Raspberry Pi, and you want to connect it
all together.

Solution
Unless you are embedding your Raspberry Pi in a project or using it as a media cen‐
ter, you need to attach a keyboard, mouse, monitor, and probably a WiFi dongle,
unless you have a Raspberry Pi 3.

Figure 1-6 shows a typical Raspberry Pi system.

10 | Chapter 1: Setup and Management

Figure 1-6. A typical Raspberry Pi system

Discussion
The Raspberry Pi is perfectly happy with pretty much any keyboard or mouse, wired
or wireless. The exception to this is Bluetooth wireless keyboards and mice, which
will not work with the Raspberry Pi.

If you have an older Raspberry Pi or a model A or A+ and run out of USB sockets,
then you will also need a USB hub.

See Also
The official Raspberry Pi Quick Start Guide

1.6 Connecting the System | 11

1.7 Connecting a DVI or VGA Monitor
Problem
Your monitor does not have an HDMI connector but you want to use it with your
Raspberry Pi.

Solution
Many people have been caught out by this problem. Fortunately, it is possible to buy
adapters for monitors with a DVI or VGA input but no HDMI connectors.

DVI adapters are the simplest and cheapest. They can be found for less than $5 if you
search for “HDMI male to DVI female converter.”

Discussion
Using VGA adapters is more complex because they require some electronics to con‐
vert the signal from digital to analog, so beware of leads that do not contain these.
The official converter is called Pi-View and is available wherever the Raspberry Pi is
sold. Pi-View has the advantage of having been tested and found to work with Rasp‐
berry Pi. You may find cheaper alternatives on the Internet, but often these won’t
work.

See Also
eLinux has tips on what to look for in an converter.

1.8 Using a Composite Video Monitor/TV
Problem
The text on your low-resolution composite monitor is illegible. You need to adjust the
resolution of the Raspberry Pi for a small screen.

Solution
The Raspberry Pi has two types of video output: HDMI and composite video from
the audio jack, for which you need a special cord. Of these, the HDMI is much better
quality. If you’re intending to use a composite video as your main screen, you may
want to think again.

If you are using such a screen—say, because you need a really small screen—then you
need to make a few adjustments to fit the video output to the screen. You need to

12 | Chapter 1: Setup and Management

make some changes to the file /boot/config.txt. You can edit it on the Raspberry Pi by
issuing the following command in a Terminal session:

$ sudo nano /boot/config.txt

If the text is too small to read and you do not have an HDMI monitor, then you can
also edit the file by removing the SD card from the Raspberry Pi and inserting it into
your computer. The file will then be in the top-level directory on the SD card, so you
can use a text editor on your PC to modify it.

You need to know the resolution of your screen. For a lot of small screens, this will be
320 by 240 pixels. Find the two lines in the file that read:

#framebuffer_width=1280
#framebuffer_height=720

Remove the # from the front of each line and change the two numbers to the width
and height of your screen. In the following example, these lines have been modified
to be 320 by 240:

framebuffer_width=320
framebuffer_height=240

Save the file and restart your Raspberry Pi. You should find that everything has
become a lot easier to read. You will probably also find that there is a big, thick border
around the screen. To adjust this, see Recipe 1.9.

Discussion
There are many low-cost CCTV monitors that can make a great companion for the
Raspberry Pi when you’re making something like a retro games console (Recipe 4.6).
However, these monitors are often very low resolution.

See Also
For another tutorial on using composite monitors, see this Adafruit tutorial.

Also, see Recipes 1.7 and 1.9 to adjust your picture when you’re using the HDMI
video output.

1.9 Adjusting the Picture Size on Your Monitor
Problem
When you first connect a Raspberry Pi to a monitor, you may find that some of the
text cannot be read because it extends off the screen, or the picture isn’t using all the
space available on the screen.

1.9 Adjusting the Picture Size on Your Monitor | 13

Solution
If your text extends off the screen, use the raspi-config tool to turn overscan off.

To do this, run raspi-config by opening a Terminal session and issuing the com‐
mand:

$ sudo raspi-config

Then use the cursor keys to scroll down to Advanced Options and then Overscan,
and turn overscan off (Figure 1-7).

Figure 1-7. Selecting the Overscan option

If your problem is that there is a large black border around the picture, then you can
reduce this (and possibly eliminate it entirely) by editing the file /boot/config.txt using
the command:

$ sudo nano /boot/config.txt

Look for the section dealing with overscan. The four lines you need to change are
shown in the middle of Figure 1-8.

14 | Chapter 1: Setup and Management

Figure 1-8. Adjusting overscan

For the lines to take effect, you first need to uncomment them by removing the #
character from the start of each line.

Then, using trial and error, change the settings until the screen fills as much of the
monitor as possible. Note that the four numbers should be negative. Try setting them
all to –20 to start with. This will increase the area of the screen that is used.

Discussion
Having to repeatedly restart the Raspberry Pi to see the effects of the changes in reso‐
lution is a little tedious. Fortunately, you will only have to do this procedure once.
Many monitors and TVs work just fine without any adjustments.

See Also
You can find much more information about the raspi-config tool at http://
elinux.org/RPi_raspi-config.

1.10 Maximizing Performance
Problem
Your Raspberry Pi seems to be very slow, so you want to overclock it to make it run
faster.

1.10 Maximizing Performance | 15

Solution
If you have a Raspberry Pi 2 with its quad-core processor, you are unlikely to find it
to be too slow. However, the older single-core Raspberry Pis can be pretty sluggish.

You can increase the clock frequency of a Raspberry Pi to make it run a little faster.
This will make it use a bit more power and run a little hotter (see the Discussion
next).

The method of overclocking described here is called dynamic overclocking because it
automatically monitors the temperature of the Raspberry Pi and drops the clock
speed back down if things start to get too hot.

To make your Pi overclock, run the raspi_config utility by issuing the following
command in a Terminal:

$ sudo raspi-config

Select the Overclock option in the menu, and you are presented with the options in
Figure 1-9.

Figure 1-9. Overclocking options

Select an option. If you find that your Raspberry Pi starts to become unstable and
hangs unexpectedly, then you may need to choose a more conservative option or turn
overclocking off by setting it back to None.

16 | Chapter 1: Setup and Management

Discussion
The performance improvements from overclocking can be quite dramatic. To meas‐
ure these, I used a Raspberry Pi model B, revision 2, without a case at an ambient
room temperature of 15 degrees C.

The test program was the following Python script. This just hammers the processor
and is not really representative of the other things that go on in a computer, such as
writing to the SD card, graphics, and so on. But it does give a good indication of raw
CPU performance if you want to test the effect of overclocking on your Raspberry Pi.

import time

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

before_time = time.clock()
for i in range(1, 10000):
 factorial(200)
after_time = time.clock()

print(after_time - before_time)

Check out the results of the test in Table 1-2.

Table 1-2. Overclocking
 Speed test Current Temperature (degrees C)
700 MHz 15.8 seconds 360mA 27
1 GHz 10.5 seconds 420mA 30

As you can see, the performance has increased by 33% but at a cost of drawing more
current and a slightly higher temperature.

A well-ventilated enclosure will help to keep your Raspberry Pi running at full speed.
There have also been some efforts to add water-cooling to the Raspberry Pi. Frankly,
this is just silly.

See Also
You can find much more information about the raspi-config tool at http://
elinux.org/RPi_raspi-config.

1.10 Maximizing Performance | 17

1.11 Changing Your Password
Problem
By default, the password for a Raspberry Pi will be raspberry. You want to change this.

Solution
You can use the raspi-config tool to change your password. Run the raspi_config
utility by issuing the following command in a Terminal (see Recipe 3.2):

$ sudo raspi-config

Then select the change_pass option in the menu and follow the prompts shown in
Figure 1-10.

Figure 1-10. Changing the password

Changing your password is one occasion where you do not have to restart your Rasp‐
berry Pi for the changes to take effect.

18 | Chapter 1: Setup and Management

Discussion
You can also change the password from a Terminal session simply by using the
passwd command as follows:

$ passwd
Changing password for pi.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

See Also
You can find much more information about the raspi-config tool at http://
elinux.org/RPi_raspi-config.

1.12 Setting the Pi to Boot Straight into a Windowing
System
Problem
Every time you reboot your Raspberry Pi, you have to log in and then start the desk‐
top manually. You want to make this automatic.

Solution
You can use the raspi-config tool to change the boot behavior so that the Raspberry
Pi automatically logs you in and starts the desktop. Run the raspi_config utility by
issuing the following command in a Terminal:

$ sudo raspi-config

Then select the Enable Boot to Desktop/Scratch option and then “Desktop Log in as
user pi”(Figure 1-11).

After you change the boot option, you are prompted to restart your Raspberry Pi for
the changes to take effect.

1.12 Setting the Pi to Boot Straight into a Windowing System | 19

Figure 1-11. Automatic boot into a desktop

Discussion
Clearly there are security implications in allowing the Raspberry Pi to log you in to
the windowing environment automatically. But because the Raspberry Pi will gener‐
ally be used as a personal computer, rather than being shared, the convenience usu‐
ally outweighs any such disadvantages.

See Also
You can find much more information about the raspi-config tool at http://
elinux.org/RPi_raspi-config.

1.13 Shutting Down Your Raspberry Pi
Problem
You want to shut down your Raspberry Pi.

Solution
Click on the Raspberry menu in the top-left corner of the desktop. This will display a
number of options (Figure 1-12).

20 | Chapter 1: Setup and Management

Shutdown
Shuts down the Raspberry Pi. You will need to unplug the power and plug it in
again to get the Raspberry Pi to boot up again.

Reboot
Reboots the Raspberry Pi.

Logout
Logs you out and displays a prompt to enter your login credentials so that you
can log back in.

Figure 1-12. Shutting down your Raspberry Pi

You can also reboot from the command line by issuing the command:

sudo reboot

You may have to do this after installing some software. When you do reboot, you see
the message shown in Figure 1-13, which illustrates the multiuser nature of Linux and
warns all users connected to the Pi.

Figure 1-13. Shutting down your Raspberry Pi from the Terminal

1.13 Shutting Down Your Raspberry Pi | 21

Discussion
It is better to shut your Raspberry Pi down as described above than to simply pull out
the power plug, because the Raspberry Pi may be in the middle of writing to the
microSD card as you power it down. This could lead to file corruption.

Unlike shutting down most computers, shutting down a Raspberry Pi does not
actually turn off the power. It goes into a low-power mode—and it is a pretty low-
power device anyway (but the Raspberry Pi hardware has no control over its power
supply).

See Also
You can buy a module that will turn off the power when the Raspberry Pi shuts down
at http://www.pi-supply.com/.

1.14 Installing the Raspberry Pi Camera Module
Problem
You want to use the Raspberry Pi camera module (see Figure 1-14).

Solution
The Raspberry Pi camera module (Figure 1-14) is attached to a Raspberry Pi by a rib‐
bon cable.

Figure 1-14. The Raspberry Pi camera module

22 | Chapter 1: Setup and Management

This cable attaches to a special connector between the audio and HDMI sockets on a
Raspberry Pi 2. On an original Raspberry Pi model B, the connector is just behind
the Ethernet socket. To fit it, pull up the levers on either side of the connector so that
they unlock, and then press the cable into the slot with the connector pads of the
cable facing away from the Ethernet socket. Press the two levers of the connector back
down to lock the cable in place (Figure 1-15).

Figure 1-15. Fitting a Raspberry Pi camera module attached to a Raspberry Pi model B

The camera module packaging states that it is sensitive to static.
Before handling it, ground yourself by touching something groun‐
ded like the metal case of a PC.

The camera module requires some software configuration. The easiest way to config‐
ure it is to use raspi_config. To run raspi-config, enter the following command
into a Terminal session:

$ sudo raspi-config

You will see the Enable Camera option (Figure 1-16).

Two commands are available for capturing still images and videos: raspiStill and
raspivid.

1.14 Installing the Raspberry Pi Camera Module | 23

Figure 1-16. The updated raspi-config configuration tool

To capture a single still image, use the raspiStill command as shown here:

$ raspistill -o image1.jpg

A preview screen displays for about five seconds and then takes a photograph and
stores it in the file image1.jpg in the current directory.

To capture video, use the command raspivid:

$ raspivid -o video.h264 -t 10000

The number on the end is the recording duration in milliseconds—in this case, 10
seconds.

Discussion
Both raspstill and raspivid have a large number of options. If you type either
command without any parameters, help text displays options that are available.

The camera module is capable of high-resolution stills and video recording.

Here are some of the key features of the camera:

• 5-megapixel sensor
• Fixed focus f/2 lens
• Still resolution 1920×1080
• Video 1080p, 30fps

An alternative to the camera module is to use a USB webcam (see Recipe 8.2).

24 | Chapter 1: Setup and Management

See Also
The RaspiCam documentation includes raspstill and raspivid.

1.15 Using Bluetooth
Problem
I want to use Bluetooth with my Raspberry Pi.

Solution
Attach a USB Bluetooth adapter to the Raspberry Pi and install the supporting Blue‐
tooth software.

Not all Bluetooth adapters are compatible with the Raspberry Pi. Most are, but to be
sure, buy one that is advertised as working with the Raspberry Pi. Figure 1-17 shows
a Raspberry Pi 2 equipped with both a USB Bluetooth adapter (nearest to the camera)
and a USB WiFi adapter.

Figure 1-17. Raspberry Pi 2 with USB Bluetooth and WiFi adapters

To install the software needed to support Bluetooth, enter the following commands:

1.15 Using Bluetooth | 25

$ sudo apt-get update
$ sudo apt-get install bluetooth bluez-utils blueman bluez
$ sudo usermod -G bluetooth -a pi

These commands should work for all Bluetooth adapters supported by the Raspberry
Pi.

Plug your Bluetooth adapter in and then reboot your Raspberry Pi (Recipe 1.13).

You will now find a new entry on the Raspbian Start menu under the Preferences sec‐
tion called Bluetooth Manager. Open this utility and click Search to look for nearby
Bluetooth devices (Figure 1-18). Make sure that there are some Bluetooth devices set
to be discoverable.

Figure 1-18. The Bluetooth Manager

Discussion
From the Bluetooth Manager, you can pair with other Bluetooth devices, send them
files, and configure the visibility of your Raspberry Pi to other Bluetooth devices.

See Also
For a list of Bluetooth adapters that are compatible with the Raspberry Pi, see http://
elinux.org/RPi_USB_Bluetooth_adapters.

26 | Chapter 1: Setup and Management

CHAPTER 2

Networking

2.0 Introduction
The Raspberry Pi is designed to be connected to the Internet. Its ability to communi‐
cate on the Internet is one of its key features and opens up all sorts of possible uses,
including home automation, web serving, network monitoring, and so on.

The connection can be wired through an Ethernet cable (at least in the case of the
model B), or the Pi can use a USB WiFi module to provide a network connection.

Having a connected Raspberry Pi also means that you can connect to it remotely
from another computer. This is very useful in situations where the Raspberry Pi itself
is inaccessible and does not have a keyboard, mouse, and monitor attached to it.

This chapter gives you recipes for connecting your Raspberry Pi to the Internet and
controlling it remotely over a network.

2.1 Connecting to a Wired Network
Problem
You want to connect your Raspberry Pi to the Internet using a wired network
connection.

Solution
First, if you have a Raspberry Pi model A, A+, or Zero, there is no RJ45 connector for
Ethernet. In this case, your best option for Internet access is to use a wireless USB
adaptor (see Recipe 2.5).

27

If you have a Raspberry Pi model B, plug an Ethernet patch cable into its RJ45 socket
and then connect the other end to a spare socket on the back of your home
router. Figure 2-1 shows an original Raspberry Pi 1 where the Network LEDs are next
to the audio socket. On a Raspberry Pi 2, the LEDs are built into the Ethernet socket
itself.

Figure 2-1. Connecting Raspberry Pi to a home hub

The network LEDs on your Raspberry Pi should immediately start to flicker as the
Raspberry Pi connects to your network.

Discussion
Raspbian is preconfigured to connect to any network using Dynamic Host Configu‐
ration Protocol (DHCP). It will automatically be assigned an IP address as long as
DHCP is enabled on your network.

If the network LEDs on your Raspberry Pi do not light up when you plug it into the
home router, check that you have not used the Uplink RJ45 socket on the hub or try a
different cable.

28 | Chapter 2: Networking

If the LEDs blink but you cannot connect to the Internet on your Raspberry Pi using
a browser, check that DHCP is enabled on your network management console. Look
for an option like that shown in Figure 2-2.

Figure 2-2. Enabling DHCP on your home hub

See Also
To connect to a wireless network, see Recipe 2.5.

2.2 Finding Your IP Address
Problem
You want to know the IP address of your Raspberry Pi so that you can communicate
with it, whether connecting to it as a web server, exchanging files, or controlling it
remotely with SSH (Recipe 2.7) or VNC (Recipe 2.8).

An IP address is a four-part number uniquely identifying a computer’s network inter‐
face within a network. Each part is separated by a dot.

Solution
To find the IP address of your Raspberry Pi, you need to issue this command in a
Terminal window:

2.2 Finding Your IP Address | 29

$ hostname -I
192.168.1.16

This is the local IP address of your Raspberry Pi on your home network.

Discussion
A Raspberry Pi can have more than one IP address (i.e., one for each network con‐
nection). So if you have both a wired connection and a wireless connection to your
Pi, it would have two IP addresses. Normally, however, you would only connect it by
one method or the other, not both. To see all the network connections, use the
ifconfig command:

$ sudo ifconfig

eth0 Link encap:Ethernet HWaddr b8:27:eb:d5:f4:8f
 inet addr:192.168.1.16 Bcast:192.168.255.255 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1114 errors:0 dropped:1 overruns:0 frame:0
 TX packets:1173 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:76957 (75.1 KiB) TX bytes:479753 (468.5 KiB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

wlan0 Link encap:Ethernet HWaddr 00:0f:53:a0:04:57
 inet addr:192.168.1.13 Bcast:192.168.255.255 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:38 errors:0 dropped:0 overruns:0 frame:0
 TX packets:28 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:6661 (6.5 KiB) TX bytes:6377 (6.2 KiB)

Looking at the results of running this ifconfig, you can see that the Pi in question is
connected by both a wired connection (eth0) with an IP address of 192.168.1.16, and
a wireless one (wlan0) with an IP address of 192.168.1.13. The lo network interface is
a virtual interface that allows the computer to communicate with itself.

Another way to find your IP address is to connect to the management console of your
home hub and find the LAN page and then the IP table. There should be a device
listed called raspberrypi with its IP address next to it.

30 | Chapter 2: Networking

See Also
Wikipedia has everything you want to know about IP addresses.

2.3 Setting a Static IP Address
Problem
You want to set the IP address of your Raspberry Pi so that it does not change.

Solution
To set the IP address of your Raspberry Pi, whether using a wired or wireless net‐
work, you need to edit the configuration file /etc/network/interfaces.

If you view your /etc/network/interfaces file using the following command:

$ more /etc/network/interfaces

it should look something like this:

auto lo

iface lo inet loopback
iface eth0 inet dhcp

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

This is telling you that Raspbian is aware of three network interfaces on your Rasp‐
berry Pi, each starting with the word iface.

lo

Loopback. You can ignore this.

eth0

A network connection using the Ethernet socket.

wlan0

A network interface using a USB WiFi adapter or the built-in WiFi hardware of
the Raspberry Pi 3.

Your Raspberry Pi will have a different IP address for each network connection. In
this example, you will just make the IP address for the Ethernet interface static. If you
want to do the same for the WiFi interface, just edit that entry in the interfaces file
instead.

To edit this file, type the following command:

2.3 Setting a Static IP Address | 31

$ sudo nano /etc/network/interfaces

First, decide on an IP address to use. You need to pick one that is both unused by any
other machine on the network and within the allowed range of IP addresses for your
home hub. In this case, I will use 192.168.1.116.

Modify the contents of the file, changing the word dhcp to static and adding the fol‐
lowing lines:

 address 192.168.1.116
 netmask 255.255.255.0
 gateway 192.168.1.1

With the file changed as shown here, the static IP address of 192.168.1.116 has been
assigned to the eth0 interface.

auto lo

iface lo inet loopback
iface eth0 inet static
 address 192.168.1.116
 netmask 255.255.255.0
 gateway 192.168.1.1

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

For most networks, the netmask setting should be set to 255.255.255.0 and the gate‐
way should be the IP address of your home router itself. This will be the same as the
IP address you use to connect to the admin console of your router.

After you edit and save the file, run the following commands to clear out all the exist‐
ing DHCP leases, and restart your Pi so that the changes will take effect.

$ sudo rm /var/lib/dhcp/*
$ sudo reboot

Discussion
Internal IP addresses are typically something like 192.168.1.116, where just the last
number is changed for each of the different computers. Another common format for
internal IP addresses is 10.0.0.16.

See Also
Wikipedia has everything you want to know about IP addresses.

32 | Chapter 2: Networking

2.4 Setting the Network Name of a Raspberry Pi
Problem
You want to change the network name of your Raspberry Pi so that it’s not just called
“raspberrypi.”

Solution
Changing the name of your Pi is pretty straightforward. There are just two files that
need to be changed.

First, edit the file /etc/hostname. You can do this by opening a Terminal window and
typing the command:

$ sudo nano /etc/hostname

Replace “raspberrypi” with a name of your choice. This should remain one word,
without any punctuation or unusual characters (including the _ character.)

Second, open the file /etc/hosts in an editor using the command:

$ sudo nano /etc/hosts

The file will look something like this:

127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

127.0.1.1 raspberrypi

Change the text at the end that uses the old name (“raspberrypi”) to the new name.

Restart the Pi, and you should find that the name has changed when you view it on
the network from another computer.

Discussion
Changing the name of your Pi can be very useful, especially if you have more than
one Pi connected to your network.

See Also
See also Recipe 2.3 to change the IP address of your Raspberry Pi.

2.4 Setting the Network Name of a Raspberry Pi | 33

2.5 Setting Up a Wireless Connection
Problem
You want to connect your Raspberry Pi to the Internet using a USB wireless adapter.

Solution
If you have the latest version of Raspbian, then setting up WiFi is really easy. Just plug
in a USB WiFi adapter and then click on the Network icon at the top right of your
screen (Figure 2-3). You will then be presented with a list of WiFi networks. Select
your network and you will be prompted to enter your Pre Shared Key (password).
Enter your password, and after a while, the Network Icon will switch to show the
standard WiFi symbol and you will be connected.

Figure 2-3. Connecting to a WiFi network

If you have an older distribution of Raspbian, you will have to use the WiFi Config
utility with a shortcut on the desktop. If you are not using a recent distribution, then
you should update to one anyway (see Recipe 1.4).

If you have a Raspberry Pi 3, then the the board already has WiFi hardware built-in.
If you have an older Raspberry Pi, plug a compatible USB wireless adapter (most are
compatable) into one of the USB sockets on your Raspberry Pi, and launch the WiFi
Config utility (Figure 2-4). You will find the WiFi Configuration tool under the Pref‐
erences section of the Raspberry start menu. Then click the Scan button to search for
access points. Double-click on the access point (for your home hub) that you want to
join and then enter the password in the PSK field.

Finally, click Connect to join the network.

34 | Chapter 2: Networking

Figure 2-4. WiFi Config—scanning for networks

Discussion
USB WiFi adapters can use quite a lot of power, so if you find your Pi rebooting
unexpectedly or not booting properly, then you may need to use a larger power sup‐
ply for it. Look for a supply that is 1.5A or more.

If you’re using a keyboard and mouse as well, you may find you’ve run out of USB
sockets. In that case, a USB hub is the answer. Choosing a hub with its own power
supply will also help with the power problem.

If you are using your Raspberry Pi as a media center (see Recipe 4.1), then there will
be a settings page to allow you to connect the media center to your network using
WiFi.

You can also set up a wireless connection by using just the command line. To do so,
first edit the file /etc/network/interfaces by using the command:

$ sudo nano /etc/network/interfaces

Then find the section of the file relating to the wlan0 interface and change it to be:

allow-hotplug wlan0
iface wlan0 inet dhcp
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

The first line specifies that the WiFi connection should automatically start when a
USB WiFi dongle is inserted. The second specifies that the Raspberry Pi should allo‐
cate the IP address using DHCP. If you want to use a static IP address, replace the

2.5 Setting Up a Wireless Connection | 35

word dhcp with static and add in the extra lines described in Recipe 2.3 to allocate a
static IP address.

The final line specifies the location of a supplicant file. This is the file that actually
contains the SSID (network name) and PSK (password) for your wireless network.
So, next you will edit this file using the command:

$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Modify the file, setting the values of ssid and pskfoobar for your wireless network.

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={
 ssid="My-Network-Name"
 psk="My-password"
 proto=RSN
 key_mgmt=WPA-PSK
 pairwise=TKIP
 auth_alg=OPEN
}

For the changes to the file to take effect, reboot your Raspberry Pi.

See Also
For wired connections, see also Recipe 2.1. For a list of WiFi adapters that are com‐
patible with the Raspberry Pi, go to http://elinux.org/RPi_VerifiedPeripherals.

For more information on setting up a wired network, see Recipe 2.1.

2.6 Connecting with a Console Lead
Problem
No network connection is available, but you still want to be able to remotely control
your Raspberry Pi from another computer.

Solution
Use a console cable to connect to a Raspberry Pi.

Console cables are great for a Pi that is going to be used headless—that is, without
keyboard, mouse, or monitor. The console cable shown in Figure 2-5 is available
from Adafruit.

36 | Chapter 2: Networking

Figure 2-5. A console cable

Connect the lead as follows:

1. Connect the red (5V) lead to the 5V pin one pin to the left of the edge of the
GPIO header.

2. Connect the black (GND) lead to GND on the next pin to the left on the Rasp‐
berry Pi.

3. Connect the white lead (RX) to Raspberry Pi GPIO 14 (TXD) to the left of the
black lead.

4. Connect the green lead (RX) to 15 (RXD) to the left of the white lead on the
Raspberry Pi.

If you use a different lead, the wire colors may well be different, so always check the
documentation for the lead else or you may damage your Raspberry Pi.

Note that the USB lead also provides 5V on the red wire, with enough power for the
Pi on its own but not with a lot of devices attached.

If you are a Windows or Mac OS X user, you will need to install drivers for the USB
lead, which are available for Windows and for Mac OS X. Linux users usually don’t
need to install any drivers for these leads.

To connect to the Pi from Mac OS X, you will need to run the Terminal and enter the
command:

$ sudo cu -l /dev/cu.NoZAP-PL2303-00001004 -s 115200

2.6 Connecting with a Console Lead | 37

The exact device name will be different, but if you press Tab after cu.P, it will auto‐
complete. After connecting, press Enter, and the Raspberry Pi login prompt should
appear (Figure 2-6). The default username and password are pi and raspberry,
respectively.

Figure 2-6. Logging in with the console cable

If you are trying to connect to your Raspberry Pi from a Windows computer, you
need to download the terminal software called Putty.

When you run Putty, change the “Connection type” to Serial and set the speed to
115200. You also need to set the “Serial line” to be the COM port in use by the cable.
This may be COM7, but if that does not work, check into using the Windows Device
manager.

When you click Open and press Enter, the Terminal session should start with a login
prompt.

Discussion
The console cable can be a very convenient way of using your Pi if you are traveling
light, as it provides both power and a way to control the Pi remotely.

The console lead has a chip in the USB end that provides a USB-to-serial interface.
This sometimes (depending on your operating system) requires the installation of
drivers on your PC. The lead used here is one supplied by Adafruit (product code

38 | Chapter 2: Networking

954). You should be able to use any USB-to-serial converter as long as it has the nec‐
essary drivers for your PC.

Plugging the sockets of the lead into the right places is made easier if you carefully
glue the four sockets together in the right order so that they fit over the GPIO header
in a block.

Finding the right position on the GPIO header is made easier if you use a GPIO tem‐
plate like the Raspberry Leaf (see Recipe 9.1).

See Also
You can find out more about using the serial console at this Adafruit tutorial. Ada‐
fruit also sells console cables.

2.7 Controlling the Pi Remotely with SSH
Problem
You want to connect to a remote Pi from another computer by using Secure Shell
(SSH).

Solution
Before you can connect to your Raspberry Pi using SSH, you must enable SSH. On
newer versions of Raspbian, you can use the Raspberry Pi Configuration tool
(Figure 2-7) that you will find on the main menu under Preferences. Just check the
box for SSH and click OK. You will be prompted to restart.

If you have an older version of Raspbian, use the raspi_config application. Start this
at any time by entering the following command in Terminal:

$ sudo raspi-config

Scroll down to the SSH option and enable it.

On newer versions of Raspbian, SSH is automatically enabled and
there is no setting to change.

2.7 Controlling the Pi Remotely with SSH | 39

Figure 2-7. Enabling SSH using the Pi Configuration tool

If you are using Mac OS X or have Linux installed on the computer from which you
want to connect your Pi, then all you need to do to connect is open a Terminal win‐
dow and enter the command:

$ ssh 192.168.1.16 -l pi

where the IP address (192.168.1.16) is the IP address of your Pi (see Recipe 2.2). You
will be prompted for your password and then logged in to the Pi (Figure 2-8).

40 | Chapter 2: Networking

Figure 2-8. Logging in with SSH

To connect from a Windows computer, you will need to use Putty (Recipe 2.6) to
start an SSH session.

Discussion
SSH is a very common way of connecting to remote computers; any commands that
you could issue on the Pi itself, you can use from the secure shell. It is also, as the
name suggests, secure because the communication is encrypted.

Perhaps the only drawback is that it is a command-line rather than graphical environ‐
ment. If you need access to the full Raspberry Pi desktop environment remotely, then
you need to use VNC (Recipe 2.8) or RDP (Recipe 2.9).

See Also
See also this Adafruit tutorial.

2.8 Controlling the Pi Remotely with VNC
Problem
You want access to the full Raspbian graphical desktop of your Pi from a PC (Win‐
dows or Linux) or from Mac OS X, using VNC.

2.8 Controlling the Pi Remotely with VNC | 41

Solution
Install a Virtual Network Connection (VNC) server.

Open a Terminal session (or SSH session) on the Pi and run the following com‐
mands:

$ sudo apt-get update
$ sudo apt-get install tightvncserver

Having installed the VNC server, run it using the command:

$ vncserver :1

The first time you run this, you will be prompted to create a new password so that
anyone connecting remotely has to enter the password before being granted access to
the Pi.

To connect to the Pi from a remote computer, you need to install a VNC client.
RealVNC is a popular choice and connects well with tightvnc and is available for
Windows, Linux, and Mac OS X.

When you run the client program on Mac OS X or a PC, you will be asked to enter
the IP address of the VNC server you want to connect to (the IP address of your Pi).
Enter “:1” after the IP address to indicate that you wish to connect to display number
1.

You will then be prompted for the password. Remember, this is the password you set
previously after installing tightvncserver and is not necessarily the same as your nor‐
mal Raspberry Pi password.

Figure 2-9. Logging in with VNC

Discussion
Although you can do most things with SSH, sometimes it is useful to have access to
the graphical environment of the Pi.

If you want the VNC server to automatically start whenever you restart your Rasp‐
berry Pi, follow these steps:

42 | Chapter 2: Networking

$ cd /home/pi
$ cd .config
$ mkdir autostart
$ cd autostart
$ nano tightvnc.desktop

Paste the following into the editor window:

[Desktop Entry]
Type=Application
Name=TightVNC
Exec=vncserver :1
StartupNotify=false

As long as your Raspberry Pi is set to automatically log in and boot into the window‐
ing environment, the VNC server will automatically start when you reboot.

See Also
See also this Adafruit tutorial.

See also Recipe 2.9.

2.9 Controlling the Pi Remotely with RDP
Problem
You want access to the full Raspbian graphical desktop of your Pi from a PC or Mac
OS X using RDP.

Solution
Install the XRDP software on your Raspberry Pi by entering the following com‐
mands:

$ sudo apt-get update
$ sudo apt-get install xrdp

Once the software is installed, it will automatically start the xrdp service, which
means the service will automatically start when the Raspberry Pi is rebooted.

If you have Windows 7 or later, then it already includes an RPD client for connecting
to your Raspberry Pi. You will find it on your Start menu under All Programs/Acces‐
sories/Remote Desktop Connection. For older versions of Windows, you can download
the client from: ModMyPi.

Mac OS X users can download the Microsoft RDP client for OS X from Microsoft’s
website.

A client for Linux machines is available from http://www.rdesktop.org/.

2.9 Controlling the Pi Remotely with RDP | 43

When you start your RDP client, you will be prompted for the computer you want to
connect to. Enter the IP address of your Raspberry Pi. You will then be prompted for
the username and password (Figure 2-10), which are the same as your usual Rasp‐
berry Pi login—that is, a username of pi and a password of raspberry unless you have
changed it.

Figure 2-10. Logging in with RDP

Discussion
RDP does the same job as VNC but works more efficiently and therefore refreshes
the contents of the screen more smoothly. The only downside is that for Mac OS X
users, it does not integrate with the Share Screen feature of OS X.

See Also
See also Recipe 2.8.

2.10 File Sharing on a Mac Network
Problem
You want your Raspberry Pi to appear on the list of computers in the Mac OS X
Finder so that you can connect to it and browse the filesystem using Finder.

44 | Chapter 2: Networking

Solution
The Mac OS X operating system includes built-in support for file viewing in Finder
over the network (Figure 2-11). However, you must make some configuration
changes on your Raspberry Pi for OS X to pick these up.

Figure 2-11. Raspberry Pi in the Mac OS X Finder

You will need to know the IP address of your Raspberry Pi (Recipe 2.2).

Now, on the Raspberry Pi, install netatalk by using the command:

$ sudo apt-get install netatalk

Then, back on your Mac, in the Finder menu, select Go→Connect to Server and enter
afp://192.168.1.16 as the server address (but use the IP address for your Raspberry
Pi instead of the one shown here). Then click Connect. You will be prompted to log
in. I had to reboot my Raspberry Pi before I got the login prompt.

Log in using the name pi and your password, which will be raspberry by default. The
Finder should then show you the contents of your home directory on the Raspberry
Pi.

There are a few more configuration changes to make on the Raspberry Pi.

$ sudo apt-get install avahi-daemon
$ sudo update-rc.d avahi-daemon defaults

Next, type the command:

$ sudo nano /etc/avahi/services/afpd.service

Paste the following code into the file:

2.10 File Sharing on a Mac Network | 45

<?xml version="1.0" standalone='no'?><!--*-nxml-*-->
<!DOCTYPE service-group SYSTEM "avahi-service.dtd">
<service-group>
 <name replace-wildcards="yes">%h</name>
 <service>
 <type>_afpovertcp._tcp</type>
 <port>548</port>
 </service>
</service-group>

To set the daemon running, type the command:

$ sudo /etc/init.d/avahi-daemon restart

Switch back to your Mac, and you should now see your Raspberry Pi in the Finder.

Discussion
Being able to move files easily between your Mac and your Raspberry Pi is very use‐
ful. It means that you can use files on your Pi without having to hook up a separate
keyboard, mouse, and monitor.

You can also open files on the Raspberry Pi as if they were on your Mac. This has the
advantage that you can edit them with TextMate or your favorite OS X text editor.

If you’re using Windows or Linux, you can also share files by configuring your Rasp‐
berry Pi to work as Network Attached Storage (NAS); see Recipe 2.12.

See Also
The instructions here were adapted from this tutorial, which credits Matt Richardson
and Shawn Wallace’s book Getting Started with Raspberry Pi (O’Reilly) as the original
source.

2.11 Sharing the Pi Screen on a Mac
Problem
You set up VNC, but would like to share the screen on your Raspberry Pi as if it were
another Mac OS X device on your network.

Solution
First, follow Recipe 2.8 to install VNC. You will also need to complete Recipe 2.10.

Then enter the command:

$ sudo nano /etc/avahi/services/rfb.service

and paste the following into the editor:

46 | Chapter 2: Networking

<?xml version="1.0" standalone='no'?>
<!DOCTYPE service-group SYSTEM "avahi-service.dtd">
<service-group>
 <name replace-wildcards="yes">%h</name>
 <service>
 <type>_rfb._tcp</type>
 <port>5901</port>
 </service>
</service-group>

Now enter the command:

$ sudo /etc/init.d/avahi-daemon restart

You should now be able to see the Share Screen option shown in Figure 2-12. When
prompted for a password, use the password you set up for VNC, not your general
Raspberry Pi password.

Figure 2-12. Raspberry Pi screen sharing with the Mac OS X Finder

Discussion
This recipe just adds a little convenience to the process of sharing the screen of your
Raspberry Pi.

If you have more than one Raspberry Pi on your network, you need to give them dif‐
ferent names so that you can identify them on the network (Recipe 2.4).

If you are a Windows or Linux user, you can still connect to a Raspberry Pi using
VNC (Recipe 2.8).

2.11 Sharing the Pi Screen on a Mac | 47

See Also
The instructions here were adapted from this tutorial, which credits Matt Richardson
and Shawn Wallace’s book Getting Started with Raspberry Pi (O’Reilly) as the original
source.

2.12 Using a Raspberry Pi for Network Attached Storage
Problem
You want to use your Raspberry Pi as Network Attached Storage (NAS) by accessing a
large USB drive attached to your Raspberry Pi from computers on your network.

Solution
The solution to this problem is to install and configure Samba. To do this, issue the
commands:

$ sudo apt-get install samba
$ sudo apt-get install samba-common-bin

Now, attach the USB hard drive to the Raspberry Pi. It will automatically mount in
your /media folder. To check that it’s there, use the command:

$ cd /media
$ ls

The drive should be listed with whatever name you gave it when you formatted it. It
will automatically mount itself whenever the Raspberry Pi reboots.

You now need to configure Samba so the drive can be shared on the network. To do
this, you first need to add a Samba user (pi). Enter the following command and type
in a password:

$ sudo smbpasswd -a pi
New SMB password:
Retype new SMB password:
Added user pi.

You now need to make some changes to the file /etc/samba/smb.conf, so enter the
command:

$ sudo nano /etc/samba/smb.conf

The first line you’re looking for is near the top of the file:

workgroup = WORKGROUP

You only need to change this if you plan to connect from a Windows machine. This
should be the name of your Windows workgroup. For Windows XP, the default is

48 | Chapter 2: Networking

MSHOME; for newer versions of Windows, it is HOME. (But check on your Win‐
dows network.)

The next change to be made is further down the file in the Authentication section.
Find the line:

security = user

Remove the # from the front to turn security on.

Finally, scroll right to the end of the file and add the following lines:

[USB]
path = /media/NAS
comment = NAS Drive
valid users = pi
writeable = yes
browseable = yes
create mask = 0777
public = yes

Save the file and then restart Samba by entering the command:

$ sudo /etc/init.d/samba restart

If all is well, your USB drive should now be shared on your network.

Discussion
To connect to the drive on a Mac OS X, just select Go→Connect to Server from the
Finder menu. Then enter smb://raspberrypi/USB in the Server Address field. You
will see a login dialog box, where you need to change the username to pi
(Figure 2-13).

Figure 2-13. Connecting to NAS with the Mac OS X Finder

2.12 Using a Raspberry Pi for Network Attached Storage | 49

If you are connecting to the NAS from a Windows machine, the exact procedure will
vary depending on your version of Windows. However, the basic principle is
that at some point you will need to enter the network address, which should be
\\raspberrypi\USB (Figure 2-14).

Figure 2-14. Connecting to NAS from Windows

You will then be prompted for the username and password before you can use the
NAS disk (Figure 2-15).

50 | Chapter 2: Networking

Figure 2-15. Browsing NAS on Windows

If you are a Linux user, this command should mount the NAS drive for you:

$ sudo mkdir /pishare
$ sudo smbmount -o username=pi,password=raspberry //192.168.1.16/USB /pishare

See Also
You may wish to change your Raspberry Pi’s network name to something inappropri‐
ate like piNAS (see Recipe 2.4).

2.13 Network Printing
Problem
You want to print to a network printer using your Raspberry Pi.

Solution
Use Common Unix Printing System (CUPS).

2.13 Network Printing | 51

Start by entering the following command into a Terminal to install CUPS. This may
take some time.

$ sudo apt-get install cups

Give yourself admin privileges for CUPS by entering the following command:

$ sudo usermod -a -G lpadmin pi

CUPS is configured via a web interface. Neither the Midori or Dillo web browsers
work very well with the CUPS administration pages, but Iceweasel works just fine.
You can install the Iceweasel browser by entering the following command:

$ sudo apt-get install iceweasel

Start Iceweasel from the Internet group of your Start menu and navigate to the
address http://localhost:631.

Go to the Administration tab and choose the Add Printer option. This will display a
list of printers that are on the network or connected directly to the Raspberry Pi’s
USB port (Figure 2-16).

Figure 2-16. Discovering printers with CUPS

Follow the series of dialog boxes to set up the printer.

Discussion
When you’re finished, you can test out the printer by firing up AbiWord (see Recipe
4.2). Type some text, and when you’re ready to print it, you should see your newly
added printer available for printing (Figure 2-17).

52 | Chapter 2: Networking

Figure 2-17. Printing from AbiWord

See Also
See also the official CUPS website.

2.13 Network Printing | 53

CHAPTER 3

Operating System

3.0 Introduction
This chapter explores many aspects of the Linux operating system used by the Rasp‐
berry Pi. A lot of this involves the use of the command line.

3.1 Moving Files Around Graphically
Problem
You want to move files around using a graphical interface like you can on a Mac OS X
or PC.

Solution
Use the File Manager.

You can find this program on your Start menu in the Accessories group (Figure 3-1).

Using the File Manager, you can drag a file or directory from one directory to another
or use the Edit menu to copy a file from one location and paste it to a second. This
operates in much the same way as the Windows File Manager or Mac OS X Finder.

55

Figure 3-1. The File Manager

Discussion
The lefthand side of the File Manager shows the volumes that are mounted, so if you
connect a USB flash drive or external USB drive, it will appear here.

The central area displays the files in the current folder, which you can navigate using
the buttons in the toolbar or by typing a location in the file path area at the top.

Right-click a file to reveal options that can be used on that file (Figure 3-2).

56 | Chapter 3: Operating System

Figure 3-2. The File Manager options

See Also
See also Recipe 3.4.

3.2 Starting a Terminal Session
Problem
When using a Raspberry Pi, you need to issue text commands in a Terminal.

Solution
Select the LX Terminal icon (looks like a black computer monitor) at the top of the
Raspberry Pi Desktop, or select the Terminal menu option on the Start menu in the
Accessories group (Figure 3-3).

3.2 Starting a Terminal Session | 57

Figure 3-3. Opening LX Terminal

Discussion
When the LX Terminal starts, it is set to your home directory (/home/pi).

You can open as many Terminal sessions as you want. It is often useful to have a cou‐
ple of sessions open in different directories so that you don’t have to constantly switch
directories using cd (Recipe 3.3).

See Also
In the next section (Recipe 3.3), you will look at navigating the directory structure
using the Terminal.

3.3 Navigating the Filesystem Using a Terminal
Problem
You need to know how to change directory and move about the fileystem using the
Terminal.

58 | Chapter 3: Operating System

Solution
The main command used for navigating the filesystem is cd (change directory). After
cd, you have to specify the directory that you want to change to. This can either be a
relative path to a directory inside your current directory, or an absolute path to some‐
where else on the filesystem.

To see what the current directory is, you can use the command pwd (print working
directory).

Discussion
Try out a few examples. Open a Terminal session, and you should see a prompt like
this:

pi@raspberrypi ~ $

The prompt that you will see after each command (pi@raspberrypi ~ $) is a
reminder of your username (pi) and your computer name (raspberrypi). The ~
character is shorthand for your home directory (/home/pi). So, at any point, you can
change your current directory to your home directory as follows:

$ cd ~

Throughout the book, I use a $ at the start of each line where you
are expected to type a command. The response from the command
line will not be prefixed by anything; it will appear just as it does on
the Raspberry Pi’s screen.

You can confirm that the command did indeed set the directory to the home direc‐
tory by using the pwd command:

$ pwd
/home/pi

If you want to move up one level in the directory structure, you can use the special
value .. (two dots) after the cd command, as shown here:

$ cd ..
$ pwd
/home

As you may have deduced by now, the path to a particular file or directory is made up
of words separated by a /. So the very root of the whole filesystem is /, and to access
the home directory within / you would refer to /home/. Then, to find the pi directory
within that, you would use /home/pi/. The final / can be omitted from a path.

3.3 Navigating the Filesystem Using a Terminal | 59

Paths can also be absolute (starting with a / and specifying the full path from the
root), or they can be relative to the current working directory, in which case they
must not start with a /.

You will have full read and write access to the files in your home directory, but once
you move into the places where system files and applications are kept, your access to
some files will be restricted to read only. You can override this (Recipe 3.11), but
some care is required.

Check out the root of the directory structure by entering the following commands:

$ cd /
$ ls
bin dev home lost+found mnt proc run selinux sys usr
boot etc lib media opt root sbin srv tmp var

The ls command (list) shows us all the files and directories underneath / the root
directory. You will see that there is a home directory listed, which is the directory you
have just come from.

Now change into one of those directories by using the command:

$ cd etc
$ ls
adduser.conf hosts.deny polkit-1
alternatives hp profile
apm iceweasel profile.d
apparmor.d idmapd.conf protocols
apt ifplugd pulse
asound.conf init python

You will notice a couple of things. First, there are a lot of files and folders listed, more
than can fit on the screen at once. Use the scroll bar on the side of the Terminal win‐
dow to move up and down.

Second, you will see that the files and folders have some color-coding. Files are dis‐
played in white, whereas directories are blue.

Unless you particularly like typing, the Tab key offers a convenient shortcut. If you
start typing the name of a file, pressing the Tab key allows the autocomplete feature to
attempt to complete the filename. For example, if you’re going to change directory to
network, type the command cd netw and then press the Tab key. Because netw is
enough to uniquely identify the file or directory, pressing the Tab key will autocom‐
plete it.

If what you have typed is not enough to uniquely identify the file or directory name,
then pressing the Tab key another time will display a list of possible options that
match what you have typed so far. So, if you had stopped at net and pressed the Tab
key, you would see the following:

60 | Chapter 3: Operating System

$ cd net
netatalk/ network/

You can provide an extra argument after ls to narrow down the things you want to
list. Change directory to /etc and then run the following:

$ ls f*
fake-hwclock.data fb.modes fstab fuse.conf

fonts:
conf.avail conf.d fonts.conf fonts.dtd

foomatic:
defaultspooler direct filter.conf

fstab.d:
pi@raspberrypi /etc $

The * character is called a wildcard. In specifying f* after ls, we are saying that we
want to list everything that starts with an f.

Helpfully, the results first list all the files within /etc that start with f, and then the
contents of all the directories in that folder starting with f.

A common use of wildcards is to list all files with a certain extension (e.g.,
ls *.docx).

A convention in Linux (and many other operating systems) is to prefix files that
should be hidden from the user by starting their name with a period. Any so-named
files or folders will not appear when you type ls unless you also supply ls with the
option -a. For example:

$ cd ~
$ ls -a
. Desktop .pulse
.. .dillo .pulse-cookie
Adafruit-Raspberry-Pi-Python-Code .dmrc python_games
.advance .emulationstation sales_log
.AppleDB .fltk servo.py
.AppleDesktop .fontconfig .stella
.AppleDouble .gstreamer-0.10 stepper.py.save
Asteroids.zip .gvfs switches.txt.save
atari_roms indiecity Temporary Items
.bash_history .local thermometer.py
.bash_logout motor.py .thumbnails
.bashrc .mozilla .vnc
.cache mydocument.doc .Xauthority
.config Network Trash Folder .xsession-errors
.dbus .profile .xsession-errors.old

As you can see, most of the files and folders in your home directory are hidden.

3.3 Navigating the Filesystem Using a Terminal | 61

See Also
See also Recipe 3.13.

3.4 Copying a File or Folder
Problem
You want to copy a file using a Terminal session.

Solution
Use the cp command to copy files and directories.

Discussion
You can, of course, copy files by using the File Manager and its copy and paste menu
options (Recipe 3.1).

The simplest example of copying in a Terminal session is to make a copy of a file
within your working directory. The cp command is followed first by the file to copy,
and then by the name to be given to the new file.

For example, the following example creates a file called myfile.txt and then makes a
copy of it with the name myfile2.txt. You can find out more about the trick of creating
a file using the > command in Recipe 3.8.

$ echo "hello" > myfile.txt
$ ls
myfile.txt
$ cp myfile.txt myfile2.txt
$ ls
myfile.txt myfile2.txt

Although in this example, both file paths are local to the current working directory,
the file paths can be to anywhere in the filesystem where you have write access. The
following example copies the original file to an area /tmp, which is a location for tem‐
porary files. Do not put anything important in that folder.

$ cp myfile.txt /tmp

Note that in this case, the name to be given to the new file is not specified, just the
directory where it is to go. This will create a copy of myfile.txt in /tmp with the same
name of myfile.tmp.

Sometimes, rather than copying just one file, you may want to copy a whole directory
full of files and possibly other directories. To copy such a directory, you need to use
the -r option (for recursive). This will copy the directory and all its contents.

62 | Chapter 3: Operating System

$ cp -r mydirectory mydirectory2

Whenever you are copying files or folders, if you do not have permission, the result
of the command will tell you that. You will need to either change the permissions of
the folder into which you are copying (Recipe 3.13) or copy the files with superuser
privileges (Recipe 3.11).

See Also
See also Recipes 3.5 and 3.10.

3.5 Renaming a File or Folder
Problem
You need to rename a file by using a Terminal session.

Solution
Use the mv command to rename files and directories.

Discussion
The mv (move) command is used in a similar way to the cp command, except that the
file or folder being moved is simply renamed rather than a duplicate being made.

For example, to simply rename a file from my_file.txt to my_file.rtf, you use the com‐
mand:

$ mv my_file.txt my_file.rtf

Changing a directory name is just as straightforward, and you don’t need the recur‐
sive -r option you used when copying because changing a directory’s name implicitly
means that everything within it is contained in a renamed directory.

See Also
See also Recipes 3.4 and 3.10.

3.6 Editing a File
Problem
You want to run an editor from the command line to change a config file.

3.5 Renaming a File or Folder | 63

Solution
Use the editor nano included with most Raspberry Pi distributions.

Discussion
To use nano, simply type the command nano followed by the name or path to the file
that you want to edit. If the file does not exist, it will be created when you save it from
the editor. However, this will only happen if you have write permissions in the direc‐
tory where you are trying to write the file.

From your home directory, type the command nano my_file.txt to edit or create
the file nano my_file.txt. Figure 3-4 shows nano in action.

Figure 3-4. Editing a file with nano

You cannot use the mouse to position the cursor; use the arrow keys instead.

The area at the bottom of the screen lists a number of commands that you access by
holding down the Ctrl key and pressing the letter indicated. Most of these are not that
useful. The ones that you are likely to use most of the time are:

Ctrl-X
Exit. You will be prompted to save the file before nano exits.

64 | Chapter 3: Operating System

Ctrl-V
Next page. Think of it as an arrow pointing downward. This allows you to move
through a large file one screen at a time.

Ctrl-Y
Previous page.

Ctrl-W
Where is. This allows you to search for a piece of text.

There are also some fairly crude cut-and-paste type options there, but in practice, it’s
easier to use the normal clipboard from the menu that you access with a right-click.

Figure 3-5. Using the clipboard in nano

Using this clipboard also allows you to copy and paste text between other windows
such as your browser.

When you’re ready to save your changes to the file and exit nano, use the command
Ctrl-X. Type Y to confirm that you want to save the file. nano then displays the file‐
name as the default name to save the file under. Press Enter to save and exit.

If you want to abandon changes you have made, enter N in place of Y.

3.6 Editing a File | 65

See Also
Editors are very much a matter of personal taste. Many other editors that are available
for Linux will work just fine on Raspberry Pi. The vim (vi improved) editor has many
fans in the Linux world. This is also included in the popular Raspberry Pi distribu‐
tions. It is not, however, an easy editor for the beginner. You can run it in the same
way as nano, but using the command vi instead of nano. There are more details on
using vim at http://newbiedoc.sourceforge.net/text_editing/vim.html.en.

3.7 Viewing the Contents of a File
Problem
You want to view the contents of a small file without editing it.

Solution
Use the cat or more commands to view the file.

For example:

$ more myfile.txt
This file contains
some text

Discussion
The cat command displays the whole contents of the file, even if it is longer than will
fit on the screen.

The more command just displays one screen of text at a time. Press the space bar to
display the next screen.

See Also
You can also use cat to concatenate (join together) a number of files (Recipe 3.30).

Another popular command related to more is less. less is like more except it allows
you to move backward in the file as well as forward.

3.8 Creating a File Without Using an Editor
Problem
You want to create a one-line file without having to use an editor.

66 | Chapter 3: Operating System

Solution
Use the > and echo commands to redirect what you type on the command line to a
file.

For example:

$ echo "file contents here" > test.txt
$ more test.txt
file contents here

The > command overwrites any existing file, so use it with caution.

Discussion
This can be useful for quickly creating a file.

See Also
To use the more command to view files without using an editor, see Recipe 3.7.

To use > to capture other kinds of system output, see Recipe 3.29.

3.9 Creating a Directory
Problem
You want to create a new directory by using the Terminal.

Solution
The mkdir command will create a new directory.

Discussion
To create a directory, use the mkdir command. Try out the following example:

$ cd ~
$ mkdir my_directory
$ cd my_directory
$ ls

You need to have write permission in the directory within which you are trying to
create the new directory.

3.9 Creating a Directory | 67

See Also
For general information on using the Terminal to navigate the filesystem, see Recipe
3.3.

3.10 Deleting a File or Directory
Problem
You want to delete a file or directory using the Terminal.

Solution
The rm (remove) command will delete a file or directory and its contents. It should be
used with extreme caution.

Discussion
Deleting a single file is simple and safe. The following example will delete the file
my_file.txt from the home directory:

$ cd ~
$ rm my_file.txt
$ ls

You need to have write permission in the directory within which you are trying to
carry out the deletion.

You can also use the * wildcard when deleting files. This example will delete all the
files starting with my_file. in the current directory:

$ rm my_file.*

You could also delete all the files in the directory by typing:

$ rm *

If you want to recursively delete a directory and all its contents, including any direc‐
tories that it contains, you can use the -r option:

$ rm -r mydir

When deleting files from a Terminal window, remember that you
do not have the safety net of a recycle bin from which files can be
undeleted. Also, generally speaking, you won’t be given the option
to confirm; the files will just be immediately deleted. This can be
totally devastating if you combine it with the command sudo
(Recipe 3.11).

68 | Chapter 3: Operating System

See Also
See also Recipe 3.3.

If you are concerned about accidentally deleting files or folders, you can force the rm
command to confirm by setting up a command alias (Recipe 3.34).

3.11 Performing Tasks with Superuser Privileges
Problem
Some commands don’t work because you have insufficient privileges. You need to
issue commands with superuser privileges.

Solution
The sudo (substitute user do) command allows you to perform actions with super‐
user privileges. Just prefix the command with sudo.

Discussion
Most tasks that you want to perform on the command line can usually be performed
without superuser privileges. The most common exceptions to this are when you’re
installing new software and editing configuration files.

For example, if you try to use the command apt-get update, you will receive a num‐
ber of permission denied messages:

$ apt-get update
E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)
E: Unable to lock directory /var/lib/apt/lists/
E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission denied)
E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?

The message at the end—are you root?—gives the game away. If you issue the same
command prefixed with sudo, the command will work just fine:

$ sudo apt-get update
Get:1 http://mirrordirector.raspbian.org wheezy InRelease [12.5 kB]
Hit http://archive.raspberrypi.org wheezy InRelease
Get:2 http://mirrordirector.raspbian.org wheezy/main Sources [6,241 kB]
Hit http://archive.raspberrypi.org wheezy/main armhf Packages
Ign http://archive.raspberrypi.org wheezy/main Translation-en_GB
Ign http://archive.raspberrypi.org wheezy/main Translation-en
40% [2 Sources 2,504 kB/6,241 kB 40%]

If you have a whole load of commands to run as superuser and don’t want to have to
prefix each command with sudo, you can use the following command:

3.11 Performing Tasks with Superuser Privileges | 69

$ sudo sh

Note how the prompt changes from $ to #. All subsequent commands will be run as
superuser. When you want to revert to being a regular user, enter the command:

exit
$

See Also
To understand more about file permissions, see Recipe 3.12.

To install software using apt-get, see Recipe 3.16.

3.12 Understanding File Permissions
Problem
You have seen the strange characters that accompany a filename when it is listed. You
would like to know what they all mean.

Solution
To see the permissions and ownership information relating to files and directories,
use the ls command with the option -l.

Discussion
Run the command ls -l, and you will see a result like this:

$ ls -l
total 16
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file1.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file2.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file3.txt
drwxr-xr-x 2 pi pi 4096 Apr 23 15:23 mydir

Figure 3-6 shows the different sections of the listing information. The first section
contains the permissions. In the second column, the number 1 (labeled “Files”) indi‐
cates how many files are involved. This field only makes sense if the listing entry is for
a directory; if it is a file, it will mostly be just 1. The next two entries (both pi) are the
owner and group of the file. The size entry (the fifth column) indicates the size of the
file in bytes. The modified date will change every time the file is edited or changed
and the final entry is the actual name of the file or directory.

70 | Chapter 3: Operating System

Figure 3-6. File permissions

The permissions string is split into four sections (Type, Owner, Group, and Other).
The first section is the type of the file. If this is a directory, it will be the character d; if
it is just a file, the entry will be just a -.

The next section of three characters specifies the owner permissions for that file. Each
character is a flag that is either on or off. So if the owner has read permissions, there
will be a r in the first character position. If he has write permissions, there will be a w
in the second slot. The third position, which is - in this example, can be x if the file is
executable (a program or script) for the owner.

The third section has the same three flags but for any users in the group. Users can be
organized into groups. So, in this case, the file has a user pi and a group ownership of
pi. If there were any other users in the group pi, they would have the permissions
specified here.

The final section specifies the permissions for any other users who are neither pi nor
in the group pi.

Since most people will only ever use the Raspberry Pi as the user pi, the permissions
of most interest are in the first section.

See Also
To change file permissions, see Recipe 3.13.

3.13 Changing File Permissions
Problem
You need to change the permissions on a file.

Solution
The command chmod is used to modify file permissions.

3.13 Changing File Permissions | 71

Discussion
Common reasons why you might want to change file permissions include needing to
edit a file that is marked as read-only and giving a file execute permissions so that it
can run as a program or script.

The chmod command allows you to add or remove permissions for a file. There are
two syntaxes for doing this; one requires the use of octal (base 8) and the other is
text-based. You will use the easier-to-understand text method.

The first parameter to chmod is the change to make, and the second is the file or
folder to which it should apply. This change parameter takes the form of the permis‐
sion scope (+, -, = for add, remove, and set, respectively) and then the permission
type.

For example, the following code will add execute (x) rights to the file for the owner of
the file file2.txt.

$ chmod u+x file2.txt

If we now list the directory, we can see that the x permission has been added.

$ ls -l
total 16
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file1.txt
-rwxr--r-- 1 pi pi 5 Apr 24 08:08 file2.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file3.txt
drwxr-xr-x 2 pi pi 4096 Apr 23 15:23 mydir

If we wanted to add execute permission for the group or other users, then we could
use g and o, respectively. The letter a will add the permission to everyone.

See Also
For background on file permissions, see Recipe 3.12.

See Recipe 3.14 for changing file ownership.

3.14 Changing File Ownership
Problem
You need to change the ownership of a file.

Solution
The command chown (change owner) is used to modify the ownership of a file or
directory.

72 | Chapter 3: Operating System

Discussion
As we discovered in Recipe 3.12, any file or directory has both an owner and a group
associated with it. Since most users of the Raspberry Pi will just have the single user
of pi, we don’t really need to worry about groups.

Occasionally, you will find files on your system that have been installed with a differ‐
ent user than pi. If this is the case, you can change the ownership of the file by using
the chown command.

To just change the owner of a file, use chown followed by the new owner and group,
separated by a colon, and then the name of the file.

You will probably find that you need superuser privileges to change ownership, in
which case, prefix the command with sudo (Recipe 3.11).

$ sudo chown root:root file2.txt
$ ls -l
total 16
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file1.txt
-rwxr--r-- 1 root root 5 Apr 24 08:08 file2.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file3.txt
drwxr-xr-x 2 pi pi 4096 Apr 23 15:23 mydir

See Also
For background on file permissions, see Recipe 3.12.

Also see Recipe 3.13 for changing file permissions.

3.15 Making a Screen Capture
Problem
You want to capture an image of the Raspberry Pi’s screen and save it to a file.

Solution
Install and use the delightfully named scrot screen capture software.

Discussion
To install scrot, run the following command from Terminal:

$ sudo apt-get install scrot

The simplest way to trigger a screen capture is to just enter the command scrot. This
will immediately take an image of the primary display and save it in a file named
something like 2013-04-25-080116_1024x768_scrot.png within the current directory.

3.15 Making a Screen Capture | 73

Sometimes you want a screenshot to show a menu being opened or something that
generally disappears when the window in which you are interested loses focus. For
such situations, you can specify a delay before the capture takes place using the -d
option.

$ scrot -d 5

The delay is specified in seconds.

If you capture the whole screen, you can crop it later with image editing software,
such as Gimp (Recipe 4.11). However, it is more convenient to just capture an area of
the screen in the first place, which you can do using the -s option.

To use this option, type this command and then drag out the area of screen that you
want to capture with the mouse.

$ scrot -s

The filename will include the dimensions in pixels of the image captured.

See Also
The scrot command has a number of other options to control things like using mul‐
tiple screens and changing the format of the saved file. You can find out more about
scrot from its manpage by entering the following command.

$ man scrot

For more information on installing with apt-get, see Recipe 3.16.

3.16 Installing Software with apt-get
Problem
You want to install software using the command line.

Solution
The most frequently used tool for installing software from a Terminal session is
apt-get.

The basic format of the command, which you must run as a superuser, is:

$ sudo apt-get install <name of software>

For example, to install the AbiWord word processing software, you would enter the
command:

$ sudo apt-get install abiword

74 | Chapter 3: Operating System

Discussion
The apt-get package manager uses a list of available software. This list is included
with the Raspberry Pi operating system distribution that you use but is likely to be
out-of-date. So if the software that you try to install is reported by apt-get as not
found, run the following command to update the list:

$ sudo apt-get update

The list and the software packages for installation are all on the Internet, so none of
this will work unless your Raspberry Pi has an Internet connection.

If you find that when you update, you get an error like E: Problem
with MergeList /var/lib/dpkg/status, try running these
commands:

sudo rm /var/lib/dpkg/status
sudo touch /var/lib/dpkg/status

The installation process can often take a while because the files have to be downloa‐
ded and installed. Some installations will also add shortcuts to your desktop, or the
program groups on your Start menu.

You can search for software to install using the command apt-get search followed
by a search string such as abiword. This will then display a list of matching packages
that you could install.

See Also
See Recipe 3.17 for removing programs that you no longer need so that you can free
up space.

See also Recipe 3.20 for downloading source code from GitHub.

3.17 Removing Software Installed with apt-get
Problem
Having installed a whole load of programs using apt-get, you now find that you
want to remove some of them.

Solution
The apt-get utility has an option (remove) that will remove a package, but it will
only remove packages that have been installed with apt-get install.

For example, if you wanted to remove AbiWord, you would use the command:

3.17 Removing Software Installed with apt-get | 75

$ sudo apt-get remove abiword

Discussion
Removing a package like this does not always delete everything, as packages often
also have prerequisite packages that are installed as well. To remove these, you can
use the autoremove option, as shown here:

$ sudo apt-get autoremove abiword
$ sudo apt-get clean

The apt-get clean option will do some further tidying up of unused package instal‐
lation files.

See Also
See Recipe 3.16 for installing packages using apt-get.

3.18 Installing Python Packages with Pip
Problem
You want to use the pip package manager to install Python libraries.

Solution
If you have the latest version of Raspbian, then pip will already be installed and you
can run pip from the command line as shown in the example here, which is taken
from Recipe 8.1 where it is used to install the Python library svgwrite.

$ sudo pip install svgwrite

If pip is not installed on your system, then you can install it by using the commands:

$ sudo apt-get install python-pip

Discussion
Although many Python libraries can be installed using apt-get (see Recipe 3.16),
some cannot and you must use pip.

See Also
To install software using apt-get, see Recipe 3.16.

76 | Chapter 3: Operating System

3.19 Fetching Files from the Command Line
Problem
You want to download a file from the Internet without using a web browser.

Solution
Use the wget command to fetch a file from the Internet.

For example:

$ wget http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
--2013-06-07 07:35:01-- http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
Resolving www.icrobotics.co.uk (www.icrobotics.co.uk)... 155.198.3.147
Connecting to www.icrobotics.co.uk (www.icrobotics.co.uk)|155.198.3.147|
:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 5521400 (5.3M) [application/x-gzip]
Saving to: `Pifm.tar.gz'

100%[==>] 5,521,400 601K/s

2013-06-07 07:35:11 (601 KB/s) - `Pifm.tar.gz' saved [5521400/5521400]

If your URL contains any special characters, it is a good idea to enclose it in double
quotes. This example URL is from Recipe 4.10.

Discussion
You will find instructions for installing software that rely on using wget to fetch files.
It is often more convenient to do this from the command line rather than use a
browser, find the file, download it, and then copy it to the place you need it.

The wget command takes the URL to download as its argument and downloads it
into the current directory. It’s typically used to download an archive file of some type
but will also download any web page.

See Also
For more information on installing with apt-get, see Recipe 3.16.

For information on selecting and using a browser, see Recipe 4.3.

3.19 Fetching Files from the Command Line | 77

3.20 Fetching Source Code with Git
Problem
Sometimes Python libraries and other software are supplied via a Git repository URL.
You need to be able to fetch them onto your Raspberry Pi.

Solution
To use code in Git repositories, you need to use the git clone command to fetch the
files.

Discussion
For example, the following command will fetch all the source code examples from
this book:

$ git clone https://github.com/simonmonk/raspberrypi_cookbook_ed2.git

See Also
Learn more about Git and the Git hosting service GitHub.

See also Recipe 3.16.

3.21 Running a Program or Script Automatically on
Startup
Problem
You want a program or script to start automatically as your Raspberry Pi boots.

Solution
Modify your rc.local file to run the program you want.

Edit the file /etc/rc.local by using the command:

$ sudo nano /etc/rc.local

Add the following line after the first block of comment lines that begin with #:

$ /usr/bin/python /home/pi/my_program.py &

It is important to include the & on the end of the command line so that it is run in the
background; otherwise, your Raspberry Pi will not boot.

78 | Chapter 3: Operating System

Discussion
This way of autorunning a program needs a very careful edit of rc.local, or you may
stop your Raspberry Pi from booting.

See Also
A safer way of autorunning a program is detailed in Recipe 3.22.

3.22 Running a Program or Script Automatically as a
Service
Problem
You want to arrange for a script or program to start automatically every time the
Raspberry Pi reboots.

Solution
Debian Linux, upon which most Raspberry Pi distributions are based, uses a
dependency-based mechanism for automating the running of commands at startup.
This is a little tricky to use and involves creating a configuration file for the script or
program that you want to run in a folder called init.d.

Discussion
The following example shows you how to run a Python script in your home directory.
The script could do anything, but in this case, the script runs a simple Python web
server, which is described further in Recipe 7.17.

The steps involved in this are:

1. Create an init script.
2. Make the init script executable.
3. Tell the system about the new init script.

First, create the init script. This needs to be created in the folder /etc/init.d/. The
script can be called anything, but in this example, you will call it my_server.

Create the new file by using nano with the following command:

$ sudo nano /etc/init.d/my_server

Paste the following code into the editor window and save the file:

3.22 Running a Program or Script Automatically as a Service | 79

BEGIN INIT INFO
Provides: my_server
Required-Start: $remote_fs $syslog $network
Required-Stop: $remote_fs $syslog $network
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Simple Web Server
Description: Simple Web Server
END INIT INFO

#! /bin/sh
/etc/init.d/my_server

export HOME
case "$1" in
 start)
 echo "Starting My Server"
 sudo /usr/bin/python /home/pi/myserver.py 2>&1 &
 ;;
stop)
 echo "Stopping My Server"
 PID=`ps auxwww | grep myserver.py | head -1 | awk '{print $2}'`
 kill -9 $PID
 ;;
*)
 echo "Usage: /etc/init.d/my_server {start|stop}"
 exit 1
;;
esac
exit 0

This is quite a lot of work to automate the running of a script, but most of it is boiler-
plate code. To run a different script, just work your way through the script, changing
the descriptions and the name of the Python file you want to run.

The next step is to make this file executable for the owner, which you do using this
command:

$ sudo chmod +x /etc/init.d/my_server

Now that the program is set up as a service, you can test that everything is OK before
you set it to autostart as part of the boot sequence, using the following command:

$ /etc/init.d/my_server start
Starting My Server
Bottle v0.11.4 server starting up (using WSGIRefServer())...
Listening on http://192.168.1.16:80/
Hit Ctrl-C to quit.

Finally, if that runs OK, use the following command to make the system aware of the
new service that you have defined:

$ sudo update-rc.d my_server defaults

80 | Chapter 3: Operating System

See Also
For a simpler approach to making a program run automatically, see Recipe 3.21.

For more information on changing file and folder permissions, see Recipe 3.12.

3.23 Running a Program or Script Automatically at
Regular Intervals
Problem
You want to run a script once a day or at regular intervals.

Solution
Use the Linux crontab command.

To do this, the Raspberry Pi needs to know the time and date, and therefore needs a
network connection or a real-time clock. See Recipe 12.13.

Discussion
The command crontab allows you to schedule events to take place at regular inter‐
vals. This can be daily or hourly, and you can even define complicated patterns so dif‐
ferent things happen on different days of the week. This is useful for backup tasks that
you might want to run in the middle of the night.

You can edit the scheduled events by using the following command:

$ crontab -e

If the script or program that you want to run needs to be run by a superuser, then
prefix all the crontab commands with sudo (Recipe 3.11).

The comment line indicates the format of a crontab line. The digits are, in order,
minute, hour, day of month, month, day of week, and then the command that you
want to run.

The first line that starts with a # is just a comment line to remind you of the format
for a crontab line.

If there is a * in the digit position, that means every; if there is a number there instead,
the script will only be run at that minute/hour/day of the month.

So, to run the script every day at 1 a.m., you would add the line shown in Figure 3-7.

3.23 Running a Program or Script Automatically at Regular Intervals | 81

Figure 3-7. Editing crontab

Using only a single digit, you can specify ranges to run the script just on weekdays;
for example:

0 1 * * 1-5 /home/pi/myscript.sh

If your script needs to be run from a particular directory, you can use a semicolon (;)
to separate multiple commands as shown here:

0 1 * * * cd /home/pi; python mypythoncode.py

See Also
You can see the full documentation for crontab by entering this command:

$ man crontab

3.24 Finding Things
Problem
You want to find a file that you know is on the system somewhere.

Solution
Use the Linux find command.

Discussion
Starting with a directory specified in the command, the find command will search,
and if it finds the file, display its location. For example:

$ find /home/pi -name gemgem.py
/home/pi/python_games/gemgem.py

82 | Chapter 3: Operating System

You can start the search higher up the tree, even at the root of the whole filesystem
(/). This will make the search take a lot longer, and will also produce error messages.
You can redirect these error messages by adding 2>/dev/null to the end of the line.

To search for the file throughout the entire filesystem, use the following command:

$ find / -name gemgem.py 2>/dev/null
/home/pi/python_games/gemgem.py

You can also use wildcards with find as follows:

$ find /home/pi -name match*
/home/pi/python_games/match4.wav
/home/pi/python_games/match2.wav
/home/pi/python_games/match1.wav
/home/pi/python_games/match3.wav
/home/pi/python_games/match0.wav
/home/pi/python_games/match5.wav

See Also
The find command has a number of other advanced features for searching. To see
the full manpage documentation for find, use this command:

$ man find

3.25 Using the Command-Line History
Problem
You want to be able to repeat commands on the command line without having to
type them again.

Solution
Use the up and down arrow keys to select previous commands from the command
history, and the history command with grep to find older commands.

Discussion
You can access the previous command you ran by pressing the up arrow key. Pressing
it again will take you to the command before that, and so on. If you overshoot the
command you wanted, the down arrow key will take you back in the other direction.

If you want to cancel without running the selected command, use Ctrl-C.

Over time, your command history will grow too large to find a command that you
used ages ago. To find a command from way back, you can use the history
command.

3.25 Using the Command-Line History | 83

$ history
 1 sudo nano /etc/init.d/my_server
 2 sudo chmod +x /etc/init.d/my_server
 3 /etc/init.d/my_server start
 4 cp /media/4954-5EF7/sales_log/server.py myserver.py
 5 /etc/init.d/my_server start
 6 sudo apt-get update
 7 sudo apt-get install bottle
 8 sudo apt-get install python-bottle

This lists all your command history and is likely to have far too many entries for you
to find the one you want. To remedy this, you can pipe the history command into
the grep command, which will just display results matching a search string. So, for
example, to find all the apt-get (Recipe 3.16) commands that you’ve issued, you can
use the line:

$ history | grep apt-get
 6 sudo apt-get update
 7 sudo apt-get install bottle
 8 sudo apt-get install python-bottle
 55 history | grep apt-get

Each history item has a number next to it, so if you find the line you were looking for,
you can run it using ! followed by the history number, as shown here:

$!6
sudo apt-get update
Hit http://mirrordirector.raspbian.org wheezy InRelease
Hit http://mirrordirector.raspbian.org wheezy/main armhf Packages
Hit http://mirrordirector.raspbian.org wheezy/contrib armhf Packages
.....

See Also
To find files rather than commands, see Recipe 3.24.

3.26 Monitoring Processor Activity
Problem
The Raspberry Pi can run a bit slow sometimes, so you want to see what’s hogging the
processor.

Solution
Use the Task Manager utility, which you’ll find on the Start menu in the System Tools
program group (Figure 3-8).

84 | Chapter 3: Operating System

Figure 3-8. The Task Manager

The Task Manager allows you to see at a glance how much CPU and memory are
being used. You can also right-click on a process and select the option to kill it from
the pop-up menu.

The graphs at the top of the window display the total CPU usage and memory. The
processes are listed below that, and you can see the CPU share each is taking.

Discussion
If you prefer to do this type of thing from the command line, use the Linux top com‐
mand to display very similar data about processor and memory and which processes
are using the most resources (Figure 3-9). You can then use the kill command to kill
a process. You will need to do this as superuser.

In this case, you can see that the top process is a Python program that uses 97% of
CPU. The first column shows its process ID (2447). To kill this process, enter this
command:

$ kill 2447

It is quite possible to kill some vital operating system process this way, but if you do,
powering off your Pi and turning it back on again will restore things to normal.

3.26 Monitoring Processor Activity | 85

Figure 3-9. Using the top command to see resource usage

Sometimes, you may have a process running that is not immediately visible when you
use top. If this is the case, you can search all the processes running by using the ps
command and piping (Recipe 3.31) the results to the grep command, which will
search the results and highlight items of interest.

For example, to find the process ID for our CPU-hogging Python process, we could
run the following command:

$ ps -ef | grep "python"
pi 2447 2397 99 07:01 pts/0 00:00:02 python speed.py
pi 2456 2397 0 07:01 pts/0 00:00:00 grep --color=auto python

In this case, the process ID for the Python program speed.py is 2447. The second
entry in the list is the process for the ps command itself.

A variation on the kill command is the killall command. Use this with caution, as
it kills all processes that match its argument. So, for example, the following command
will kill all Python programs running on the Raspberry Pi:

$ sudo killall python

See Also
See also the manpages for top, ps, grep, kill, and killall. You can view these by
typing man followed by the name of the command, as shown here:

$ man top

86 | Chapter 3: Operating System

3.27 Working with File Archives
Problem
You have downloaded a compressed file and want to uncompress it.

Solution
Depending on the file type, you will need to use the tar or gunzip commands.

Discussion
If the file that you want to uncompress just has the extension .gz, you can unzip it
using the command:

$ gunzip myfile.gz

You also often find files (called tarballs) that contain a directory that has been
archived with the Linux tar utility and then compressed with gzip into a file with a
name like myfile.tar.gz.

You can extract the original files and folders out of a tarball by using the tar
command:

$ tar -xzf myfile.tar.gz

See Also
You can find out more about tar from the manpages, which you can access by using
the command man tar.

3.28 Listing Connected USB Devices
Problem
You’ve plugged in a USB device and want to make sure Linux recognizes it.

Solution
Use the lsusb command. This will list all the devices attached to the USB ports on
your Raspberry Pi:

$ lsusb
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 15d9:0a41 Trust International B.V. MI-2540D [Optical mouse]

3.27 Working with File Archives | 87

Discussion
This command will tell you whether a device is connected or not, but it will not guar‐
antee that it is working correctly. There may be drivers to install or configuration
changes to make for the hardware.

See Also
For an example of using lsusb when attaching an external webcam, see Recipe 4.5.

3.29 Redirecting Output from the Command Line to a File
Problem
You want to quickly create a file with some text, or record a directory listing into a
file.

Solution
Use the > command to redirect output that would otherwise appear on the command
line.

For example, to copy a directory listing into a file called myfiles.txt, do the following:

$ ls > myfiles.txt
$ more myfiles.txt
Desktop
indiecity
master.zip
mcpi

Discussion
You can use the > command on any Linux command that produces output, even if
you are running, say, a Python program.

You can also use the opposite (<) command to redirect user input, although this is not
nearly as useful as >.

See Also
To use cat to join together a number of files, see Recipe 3.30.

88 | Chapter 3: Operating System

3.30 Concatenating Files
Problem
You have a number of text files and you want to join them into one big file.

Solution
Use the cat command to concatenate a number of files into one output file.

For example:

$ cat file1.txt file2.txt file3.txt > full_file.txt

Discussion
Joining files is the real purpose of the cat command. You can supply as many file‐
names as you like, and they will all be written to the file you direct to. If you do not
redirect the output, then it will just appear in your Terminal window. If they are big
files, this might take some time!

See Also
See also Recipe 3.7, where cat is used to display the contents of a file.

3.31 Using Pipes
Problem
You want to use the output of one Linux command as the input to another command.

Solution
Use the pipe command, which is the bar symbol (|) on your keyboard, to pipe the
output of one command to another. For example:

$ ls -l *.py | grep Jun
-rw-r--r-- 1 pi pi 226 Jun 7 06:49 speed.py

This example will find all the files with the extension py that also have Jun in their
directory listing, indicating that they were last modified in June.

Discussion
At first sight, this looks rather like output redirection using > (Recipe 3.29). The dif‐
ference is that +>_ will not work where the target is another program. It will only
work for redirecting to a file.

3.30 Concatenating Files | 89

You can chain together as many programs as you like, as shown here, although this
isn’t something you will do often:

$ command1 | command2 | command3

See Also
See Recipe 3.26 for an example of using grep to find a process, and Recipe 3.25 to
search your command history, using a pipe and grep.

3.32 Hiding Output to the Terminal
Problem
You want to run a command, but you don’t want the output filling up your screen.

Solution
Redirect the output to /dev/null using >.

For example:

$ ls > /dev/null

Discussion
This example illustrates the syntax but is otherwise pretty useless. A more common
use is where you’re running a program and the developer has left a lot of trace mes‐
sages in her code, which you don’t really want to see. The following example hides
superfluous output from the find command (see Recipe 3.34).

$ find / -name gemgem.py 2>/dev/null
/home/pi/python_games/gemgem.py

See Also
For more information about redirecting standard output, see Recipe 3.29.

3.33 Running Programs in the Background
Problem
You want to run a program but also work on some other task.

Solution
Run the program or command in the background using the & command.

90 | Chapter 3: Operating System

For example:

$ python speed.py &
[1] 2528
$ ls

Rather than wait until the program has finished running, the command line displays
the process ID (the second number) and immediately allows you to continue with
whatever other commands you want to run. You can then use this process ID to kill
the background process (Recipe 3.26).

To bring the background process back to the foreground, use the fg command:

$ fg
python speed.py

This will report the command or program that is running and then wait for it to
finish.

Discussion
Output from the background process will still appear in the Terminal.

An alternative to putting processes in the background is to just open more than one
Terminal window.

See Also
For information on managing processes, see Recipe 3.26.

3.34 Creating Command Aliases
Problem
You want to create aliases to commands that you use frequently.

Solution
Edit the file ~/.bashrc using nano (Recipe 3.6), and then move to the end of the file
and add as many lines as you want, like this:

alias l='ls -a'

This creates an alias called l that, when entered, will be interpreted as the command
ls -a.

Save and exit the file using Ctrl-X and Ctrl-Y, and then to update the Terminal with
the new alias, type the following command:

$ source .bashrc

3.34 Creating Command Aliases | 91

Discussion
Many Linux users set up an alias for rm like the following, so that it confirms
deletions.

$ alias rm='rm -i'

This is not a bad idea, as long as you do not forget when you use someone else’s sys‐
tem that doesn’t have this alias set up!

See Also
For more information about rm, see Recipe 3.10.

3.35 Setting the Date and Time
Problem
You want to manually set the date and time on your Raspberry Pi, because it does not
have an Internet connection.

Solution
Use the Linux date command.

The date and time format is MMDDHHMMYYYY, where MM is the month number,
DD is the day of the month, HH and MM are the hours and minutes, respectively,
and YYYY is the year.

For example:

$ sudo date 010203042013
Wed Jan 2 03:04:00 UTC 2013

Discussion
If the Raspberry Pi is connected to the Internet, then as it boots up it will automati‐
cally set its own time using an Internet time server.

You can also use date to display the UTC time by just entering date on its own:

$ date
Wed Jan 2 03:08:14 UTC 2013

See Also
If you want your Raspberry Pi to maintain the correct time even when there is no
network, then you can use a real-time clock (RTC) module (Recipe 12.13).

92 | Chapter 3: Operating System

3.36 Finding Out How Much Room You Have on the
SD Card
Problem
You want to know how much free space there is on the SD card.

Solution
Use the Linux df command:

$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 3.6G 1.7G 1.9G 48% /
/dev/root 3.6G 1.7G 1.9G 48% /
devtmpfs 180M 0 180M 0% /dev
tmpfs 38M 236K 38M 1% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 75M 0 75M 0% /run/shm
/dev/mmcblk0p1 56M 19M 38M 34% /boot

Discussion
Looking at the first line of the results, you can see that there is 3.6 GB of storage on
the SD card, of which 1.7 GB is used.

When you run out of disk space, you are likely to get unexpected bad behavior, such
as error messages saying that a file could not be written.

See Also
You can find the manpage for df using man df.

3.36 Finding Out How Much Room You Have on the SD Card | 93

CHAPTER 4

Software

4.0 Introduction
This chapter contains a number of recipes for using ready-made software on the
Raspberry Pi.

Some of the recipes in this chapter are concerned with converting the Raspberry Pi
into a single-use appliance, while others use specific pieces of software on a Rasp‐
berry Pi.

4.1 Making a Media Center
Problem
You want to convert your Raspberry Pi into a super-duper media center.

Solution
To use your Raspberry Pi as a media center, you should definitely go for the superior
performance of the Raspberry Pi 3 or 2 Model B, as video playing is very processor-
intensive.

You can set up your Raspberry Pi as a media center during the NOOBS installation
process (Recipe 1.5). Instead of selecting Raspbian as the distribution to install, select
either OpenELEC_Pi1 if you have a Raspberry Pi 1 or OpenELEC_Pi2 if you have a
Raspberry Pi 2.

OpenELEC is a distribution that optimizes your Raspberry Pi as a media center. It
incudes the Kodi media center software, which is based on the XBMC open source
project that was originally developed to convert Xbox game consoles into media cen‐

95

ters. The code has since been ported to many platforms including the Raspberry Pi
(Figure 4-1).

Figure 4-1. Raspberry Pi as a media center

Raspberry Pi is perfectly capable of playing full HD video as well as streamed music,
MP3 files, and Internet radio.

Discussion
Kodi is a powerful piece of software with many features. Perhaps the simplest way to
check that it is working is to put some music and/or video files onto a USB flash drive
or external USB hard disk and connect it to the Raspberry Pi. You should be able to
play them from Kodi.

Since the Raspberry Pi is likely to be sitting near your TV, you may find that your TV
has a USB port that can provide enough current to run the Raspberry Pi. If this is the
case, you won’t need a separate power supply.

A wireless keyboard and mouse are a good idea because if you buy them as a pair,
they will use a single USB port for the dongle, which avoids the need for wires trailing
all over the place. You can also buy mini-keyboards with built-in trackpads that are
useful in this situation.

A wired network connection is generally higher performance and better than a WiFi
connection, but it is not always convenient to have the Pi near an Ethernet socket. If
this is the case, then you can set up XBMC to use a WiFi dongle for a network
connection.

96 | Chapter 4: Software

Setting up Kodi is very intuitive, and you can find full instructions on using the soft‐
ware at http://kodi.wiki/.

See Also
You can add an IR remote to Raspberry Pi to control XBMC.

4.2 Installing Office Software
Problem
You need to open word processor and spreadsheet documents on a Raspberry Pi.

Solution
Raspberry Pi is, after all, a Linux computer, so there are several office applications
that you can install to use spreadsheets and word processor documents.

Programs for the Raspberry Pi are downloaded from the Internet, so you’ll need an
Internet connection.

Before you install any new software, it is a good idea to open a Terminal and run the
following command:

$ sudo apt-get update

To install the AbiWord word processor, run this command:

$ sudo apt-get install abiword

You will be asked to confirm the installation by typing Y; after a minute or so, installa‐
tion will be complete. If you look on your Start menu, you will see a new section
called Office, where you will find AbiWord (Figure 4-2).

AbiWord will open .doc, .docx, and other common word processing document for‐
mats.

If you need to use a spreadsheet, Gnumeric is a good choice. Install it by using the
command:

$ sudo apt-get install gnumeric

4.2 Installing Office Software | 97

Figure 4-2. AbiWord on Raspberry Pi

Discussion
If you find that the office applications run a bit too slowly, try overclocking your
Raspberry Pi (Recipe 1.10) to speed things up. A Raspberry Pi 3 or 2 will also run
office applications much better than an older Raspberry Pi.

See Also
There are efforts in progress to port other office software to the Raspberry Pi, such as
Libre Office (a fork of Open Office). Check the Internet for the latest news on office
software ports.

See Recipe 3.16 for information on using apt-get.

4.3 Installing other Browsers
Problem
You want to use a browser other than Midori.

98 | Chapter 4: Software

Solution
You can use a number of browsers on the Raspberry Pi. The Pi is not a powerful com‐
puter, and modern browsers and web pages can put quite a load on it. This means
that when you use a browser on a Raspberry Pi, there is always a trade-off between
features and performance.

Chromium (Figure 4-3), as the name suggests, will be familiar to users of Google
Chrome. It is full-featured but noticeably slow when you try to scroll up and down a
busy web page. You can install Chromium by using the following command, which
will put a new link in the Internet section of your Start menu:

$ sudo apt-get install chromium-browser

Figure 4-3. The Chromium browser

Another popular alternative to Midori is Iceweasel (Figure 4-4). This browser is based
on Firefox and will perform faster than Chromium because it uses the mobile version
of websites (when available), which will normally be much simpler HTML. You can
download and install Iceweasel by using this command:

$ sudo apt-get install iceweasel

4.3 Installing other Browsers | 99

Figure 4-4. The Iceweasel browser

Discussion
Since browsers require a certain amount of power for many websites, you really need
a Raspberry Pi 3 or 2 to avoid a frustratingly slow experience.

See Also
For more information on installing with apt-get, see Recipe 3.16.

4.4 Using the Pi Store
Problem
You want to install software and games using the Pi Store.

Solution
The Pi Store (Figure 4-5) is the Raspberry Pi equivalent of Apple’s App Store or Goo‐
gle’s Play Store; it is a place from which you can download, install, and run all sorts of
applications, both free and for sale.

100 | Chapter 4: Software

You will find a shortcut on your Start menu for the Pi Store application in the Inter‐
net section.

Figure 4-5. The Pi Store

The first time you try to download an app, you will be asked to register. After you
register, the app will download and appear in the My Library tab. To run the app, just
double-click it.

Discussion
This is a convenient way to browse for interesting programs to use on your Raspberry
Pi. More and more apps are finding their way into the store.

See Also
See the official Pi Store website.

4.5 Making a Webcam Server
Problem
You want to set up a Raspberry Pi as a webcam server.

4.5 Making a Webcam Server | 101

Solution
Download the motion software. This will allow you to set up a Raspberry Pi with a
USB webcam connected to it so you can connect to a web page and view the webcam.

To install the software, enter the following command in a Terminal window:

$ sudo apt-get install motion

Plug in your USB webcam and type lsusb to see if the webcam is connected:

$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 3538:0059 Power Quotient International Co., Ltd
Bus 001 Device 006: ID eb1a:299f eMPIA Technology, Inc.

If you can’t see an entry that obviously looks like a webcam, try disconnecting it, run
the command again, and see if one of the entries vanishes from the list. In this case,
the final entry in the list is for the webcam.

There are now a few configuration changes that you need to make. First, edit the
file /etc/motion/motion.conf using the command:

$ sudo nano /etc/motion/motion.conf

This is quite a big configuration file. Right near the top of the file, you will find the
line daemon off; change this to daemon on.

The other change is much further down the file. You need to change webcam_local
host = on to webcam_localhost = off.

There is one other file that you need to change. Enter the command:

$ sudo nano /etc/default/motion

Change start_motion_daemon=no to start_motion_daemon=yes.

To get the web service running, issue the command:

$ sudo service motion start

You should now be able to open your web browser and view the webcam. To do this,
you will need to know the IP address of your Raspberry Pi (Recipe 2.2).

From another computer on the same network, open a browser and go to the URL
http://192.168.1.16:8081/. You will need to change the URL to match the IP address of
your Raspberry Pi, but keep the :8081 port number on the end of the URL.

If all goes well, you should see something like Figure 4-6.

102 | Chapter 4: Software

Figure 4-6. A Raspberry Pi webcam

Discussion
The motion software is actually really powerful; there are many other settings you
can tweak to change how your webcam works.

By default, the webcam will be viewable only from within your network. If you want
your webcam to be visible to the whole Internet, you need to set up port forwarding
on your home hub. This will require you to log in to the admin console for the hub,
look for the port forwarding option, and enable it for port 8081 for the IP address of
the Raspberry Pi.

You will then be able to view the webcam by using the external IP address allocated
by your ISP. This is usually shown on the front page of your admin console. But
beware: unless you pay your ISP for a static IP address, this IP address is likely to
change every time you restart your home hub modem.

Services such as No-ip can also be used to provide dynamic DNS, so that you can reg‐
ister a domain name that automatically follows changes to your IP address.

See Also
There is thorough documentation on the motion website.

You can find a list of webcams compatible with the Raspberry Pi at http://elinux.org/
RPi_USB_Webcams.

The Raspberry Pi has a plug-in camera module (Recipe 1.14). At the time of writing,
this is not compatible with motion, but it may be by the time you read this.

4.5 Making a Webcam Server | 103

To use a webcam for computer vision projects, see Chapter 8.

See Recipe 3.16 for information on using apt-get.

4.6 Running a Vintage Game Console Emulator
Problem
You want to use a games emulator on a Raspberry Pi to make a vintage game console.

Solution
There are a number of emulators around for game consoles from the 1980s. One of
the most popular is Stella, an emulator for the Atari 2600 (Figure 4-7).

Figure 4-7. Asteroids on the Stella Atari 2600 emulator

It is worth noting that even though these games are ancient, they
are still owned by someone. The ROM image files that you need to
play the games on an emulator like Stella—although easy to find on
the Internet—are not necessarily yours to take. So, please stick to
the law.

104 | Chapter 4: Software

To install Stella, simply enter the following command in a Terminal window:

$ sudo apt-get install stella

Once it’s installed, you will find a new program in Games on your Start menu. Do not
run it yet—you need to obtain the ROM image for a game.

If you are outside of the US and own the actual game, you are entitled to take a copy
of the ROM image for backup purposes in many, but not all, countries. You can also
find ROM images for some games that have been released without any license restric‐
tions.

Now that you have the ROM image for the game you wish to play, create a folder
called roms and place the ROM image in that folder. Then start Stella.

Click the image file to start a game. By default, the cursor keys are mapped to the joy‐
stick controls and the space bar is fire. You can change a number of settings for the
emulator—for example, you almost certainly want to go to Video Settings and set it to
fullscreen mode.

You can also use Input Settings and the Emul Events tab to map controller buttons to
your keyboard.

Discussion
The emulator uses a surprisingly large amount of the Raspberry Pi’s meager resour‐
ces, so you may find that you need to use a Raspberry Pi 3 or 2.

If you search the Internet, you will find that many people have taken this basic setup
and added a retro USB controller, like the widely available and quite low-cost Nin‐
tendo Retrolink USB Super SNES Classic Controller, and built the Pi and a monitor
into a big arcade-style housing.

See Also
There are a number of other console emulators available—at various stages of matur‐
ity, and thus reliability—on the Raspberry Pi. One to consider is Mame, which emu‐
lates a number of different game platforms.

For more information on installing with apt-get, see Recipe 3.16.

4.7 Running Minecraft Pi Edition
Problem
You want to run the popular game Minecraft on your Raspberry Pi.

4.7 Running Minecraft Pi Edition | 105

Solution
Mojang, the original developers of Minecraft, have ported it to the Raspberry Pi and
Minecraft Pi is pre-installed on the latest Raspbian distribution.

Figure 4-8. Minecraft on Raspberry Pi

Discussion
To get Minecraft to fit on the Raspberry Pi, the developers made some shortcuts in
the graphics code. This means that you can only play the game directly on the Rasp‐
berry Pi with the keyboard, mouse, and monitor connected directly to it. It will not
work over a remote VNC connection.

The Pi edition of Minecraft is based on the mobile version of Minecraft and lacks
some features, most notably Redstone.

See Also
Find out more about the Raspberry Pi port of Minecraft.

You can also run a full version of the Minecraft Server on a Raspberry Pi (Recipe 4.8),
although a Raspberry Pi 3 or 2 will perform a lot better (see Recipe 1.1).

Minecraft Pi also includes a Python programming interface, and in Recipe 7.20, you
will learn how to send commands to Python over an SSH connection to do automa‐
ted building.

106 | Chapter 4: Software

4.8 Running a Minecraft Server
Problem
You want to host a low-cost low-energy Minecraft server for you and your friends to
play on.

Solution
The first step is to install the Java runtime environment by using these commands:

$ sudo apt-get update
$ sudo apt-get install openjdk-7-jdk

Then create a directory to contain the server code and fetch the spigot Minecraft
server using the commands:

$ mkdir mcserver
$ cd mcserver
$ wget http://getspigot.org/spigot18/spigot_server.jar

Start the server using the command:

$ java -Xms512M -Xmx800M -jar spigot_server.jar nogui

The server will soon give you the following error message:

[15:51:26 WARN]: Failed to load eula.txt
[15:51:26 INFO]: You need to agree to the EULA in order to run
the server. Go to eula.txt for more info.
[15:51:26 INFO]: Stopping server

This is telling you that you need to accept the terms of the license agreement by edit‐
ing the file called eula.txt that the server has just created for you. So, open eula.txt
using nano using the command:

$ nano eula.txt

Change the line that says eula=false to eula=true and save the file, then run, and
then start the server again. This time it will take several minutes to create a world and
start up the server. Don’t worry, the next time you run it, it will be a lot quicker.

Eventually, the server will start and you can test it by connecting to it from another
computer running Minecraft on your network.

Start Minecraft and click on Multiplayer and then Direct Connect. Enter the IP
address of your Raspberry Pi (Figure 4-9) and then click Connect.

4.8 Running a Minecraft Server | 107

Figure 4-9. Connecting to the Minecraft server

Once you are connected, you and anyone else on your network can join the server
and start playing (Figure 4-10).

Figure 4-10. Playing on a Raspberry Pi Minecraft server

108 | Chapter 4: Software

You will probably want to give yourself operator status in the game by typing the
command:

> op YourName

where YourName is your nickname in the game.

Discussion
A Raspberry Pi 2 with its four processor cores and 1 GB of memory will run a pretty
decent Minecraft server. The parameters -Xms512M and -Xmx800M set the minimum
and maximum amounts of memory that Java should use for the server.

The LXTerminal or SSH window will let you know when anyone connects to the
server, and you can also issue various server admin commands from here. Type help
for a list of commands.

When you want to stop the server, enter the command stop.

[17:41:10 INFO]: UUID of player SimonMonk is 4e3e1a27-4e7e-4bfb-b331-a30af5bd49ec
[17:41:11 INFO]: SimonMonk[/192.168.1.5:58831] logged in with entity id
382 at ([world]257.23244892748414, 67.0, 185.3728463324922)
>stop
[17:41:20 INFO]: Stopping the server
[17:41:20 INFO]: Stopping server
[17:41:20 INFO]: Saving players
[17:41:20 INFO]: SimonMonk lost connection: Server closed
[17:41:20 INFO]: SimonMonk left the game.
[17:41:21 INFO]: Saving worlds
[17:41:21 INFO]: Saving chunks for level 'world'/Overworld
[17:41:24 INFO]: Saving chunks for level 'world_nether'/Nether
[17:41:24 INFO]: Saving chunks for level 'world_the_end'/The End
>pi@Pi2headless ~/mcserver $

To allow your friends from the wider Internet to play on your server, you will need to
use your router’s admin console to set up port forwarding.

See Also
You do not need to be directly connected to the Raspberry Pi to start a Minecraft
server; it will work just fine if started from SSH (Recipe 2.7).

For information on running your own Minecraft server, check out http://uk.ign.com/
wikis/minecraft/Admin_and_Server_Commands.

See also the Minecraft Pi edition (Recipe 4.7).

4.8 Running a Minecraft Server | 109

4.9 Running Open Arena
Problem
You want to run the Quake derivative Open Arena on your Raspberry Pi.

Solution
Download and run Open Arena (Figure 4-11) from the Pi Store.

Figure 4-11. Open Arena on Raspberry Pi

Discussion
Not surprisingly, you will find Open Arena in the Games section of the Pi Store. Since
the game is quite violent and bloody, it comes under a plain wrapper.

See Also
Find out more about Open Arena.

For more information on using the Pi Store, see Recipe 4.4.

110 | Chapter 4: Software

4.10 Raspberry Pi Radio Transmitter
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to convert your Raspberry Pi into a high-powered FM transmitter that will
send a radio signal to a normal FM radio receiver (Figure 4-12).

Solution
The clever folks at Imperial College, London, have created some C code and a Python
wrapper that allow you to do just this. The download even includes the theme from
Star Wars to play as a sample.

All you need is a short length of wire attached to GPIO pin 4. A female-to-male
header lead will work just fine for this. In fact, it should work with the radio right
next to your Pi without any kind of antenna—such is the strength of the transmis‐
sion.

Figure 4-12. Raspberry Pi as an FM transmitter

4.10 Raspberry Pi Radio Transmitter | 111

The first step is to install the pifm library using the following commands:

$ mkdir pifm
$ cd pifm
$ wget http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
$ tar -xzf Pifm.tar.gz

Next, find yourself an FM radio receiver and tune it to 103.0 MHz. If this frequency is
already occupied by some other transmission, pick another frequency and make note
of it.

Now run the following command (changing the final parameter from 103.0 if you
had to change frequency):

sudo ./pifm sound.wav 103.0

If all is well, you should hear the stirring tones of the Star Wars theme.

Discussion
You need to know that this project may not be legal in your country. The power out‐
put is higher than that of FM transmitters used with MP3 players.

You can play other .wav files, but they must be 16-bit 44.1kHz.

The code also includes a Python library that you can use within your own Python
programs. So, you could write a user interface to allow the selection and playing of
tunes.

The following fragment of code illustrates the use of the Python interface:

pi@raspberrypi ~/pifm $ sudo python
Python 2.7.3 (default, Jan 13 2013, 11:20:46)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import PiFm
>>> PiFm.play_sound("sound.wav")

Were you to put a Raspberry Pi in your vehicle, this would be a great way of out‐
putting sound through the vehicle’s audio system—especially if you use the features of
the latest version of pifm, which allow you to stream music to the FM transmitter
from various sources.

See Also
This description is based on the original post from Imperial College London. This
also includes clever tricks for piping music from various sources to pifm including
from a USN microphone, which opens up all sorts of opportunities.

112 | Chapter 4: Software

4.11 Running GIMP
Problem
You want to edit an image.

Solution
Download and run the GNU image manipulation program (GIMP; see Figure 4-13).

Figure 4-13. GIMP on the Raspberry Pi

To install GIMP, open a Terminal session and type the following command:

$ sudo apt-get install gimp

Once GIMP is installed, you’ll find a new entry in your Start menu under the Graph‐
ics heading called GNU Image Manipulation Program.

Discussion
Despite being very hungry for memory and processor power, GIMP is quite usable
on a Raspberry Pi model B.

4.11 Running GIMP | 113

See Also
Find out more from the GIMP website.

GIMP has a lot of features and is a very sophisticated image editing program, so it
does take a little learning. You’ll find an online manual for the software at the GIMP
website, under the Documentation tab.

For more information on installing with apt-get, see Recipe 3.16.

4.12 Internet Radio
Problem
You want to be able to play Internet radio on your Raspberry Pi.

Solution
Install the VLC media player by running the following command:

sudo apt-get install vlc

Once it’s installed, you can find VLC in the Sound & Video section of your Start
menu.

Run the program and select the Open Network Stream option on the Media menu.
This will open a dialog box (see Figure 4-14) where you can enter the URL of the
Internet radio station that you wish to play.

You will need to plug headphones or amplified speakers into the audio socket on the
Raspberry Pi.

Discussion
VLC can also be run from the command line:

$ vlc http://www.a-1radio.com/listen.pls -I dummy

VLC will probably produce a series of error messages, but then play the audio just
fine.

114 | Chapter 4: Software

Figure 4-14. VLC on Raspberry Pi

See Also
This recipe borrows heavily from this tutorial, where Jan Holst takes things a step fur‐
ther and adds radio-style controls to the project.

For UK readers, you can find a list of the BBC radio stream URLs online.

4.12 Internet Radio | 115

CHAPTER 5

Python Basics

5.0 Introduction
Although there are many languages that can be used to program the Raspberry Pi,
Python is the most popular. In fact, the Pi in Raspberry Pi is inspired by the word
Python.

In this chapter, you will find a host of recipes to help you get programming with
Raspberry Pi.

5.1 Deciding Between Python 2 and Python 3
Problem
You need to use Python but are unsure about which version to use.

Solution
Use both. Use Python 3 until you face a problem that is best solved by reverting to
version 2.

Discussion
Although the latest version of Python is Python 3 and has been for years, you will
find that a lot of people stick to Python 2. In fact, in the Raspbian distribution, both
versions are supplied and version 2 is just called Python, whereas version 3 is called
Python 3. You even run Python 3 by using the command python3. The examples in
this book are written for Python 3 unless otherwise stated. Most will run on both
Python 2 and Python 3 without modification.

117

This reluctance on the part of the Python community to ditch the old Python 2 is
largely because Python 3 introduced some changes that broke compatibility with ver‐
sion 2. This means that some of the huge body of third-party libraries that have been
developed for Python 2 won’t work under Python 3.

My strategy is to write in Python 3 wherever possible, and revert to Python 2 when I
have to because of compatibility problems.

See Also
For a good summary of the Python 2 versus Python 3 debate, see the Python wiki.

5.2 Editing Python Programs with IDLE
Problem
You are not sure what to use to write your Python programs.

Solution
The common Raspberry Pi distributions come with the IDLE Python development
tool in both the Python 2 and Python 3 versions. If you are using Raspbian, you will
find shortcuts to both versions of IDLE labeled Python 2 and Python 3 in the Pro‐
gramming section of your Start menu (Figure 5-1).

Figure 5-1. Starting Python with IDLE

118 | Chapter 5: Python Basics

Discussion
IDLE and IDLE 3 appear to be identical; the only difference is the version of Python
that they use, so open IDLE 3 (Figure 5-2).

Figure 5-2. IDLE Python console

The window that opens is labeled Python Shell. This is an interactive area where you
can type Python and see the results immediately. So try typing the following into the
shell next to the >>> prompt:

>>> 2 + 2
4
>>>

Python has evaluated the expression 2 + 2 and given us the answer of 4.

The Python Shell is fine for trying things out, but if you want to write programs, then
you need to use an editor. To open a new file to edit using IDLE, select New Window
from the File menu (Figure 5-3).

You can now enter your program into the editor window. Just to try things, paste the
following text into the editor, save the file as count.py, and then select Run Module
from the Run menu. You can see the results of the program running in the Python
console:

for i in range(1, 10):
 print(i)

5.2 Editing Python Programs with IDLE | 119

Figure 5-3. IDLE editor

Python is unusual for a programming language in that indentation is a fundamental
part of the language. Whereas many C-based languages use { and } to delimit a block
of code, Python uses the indentation level. So in the preceding example, Python
knows that print is to be invoked repeatedly as part of the for loop because it is
indented out four spaces.

The convention used in this book is to use four spaces for a level of indentation.

When you’re starting out in Python, it’s not uncommon to see an
error such as IndentationError: unexpected indent, which
means that somewhere things are not indented correctly. If every‐
thing appears to line up, double-check that none of the indents
contain Tab characters. Python treats tabs differently.

Notice how IDLE uses color-coding to highlight the structure of the program.

See Also
Many of the recipes in this chapter use IDLE to edit Python examples.

As well as using IDLE to edit and run Python files, you can also edit files in nano
(Recipe 3.6) and then run them from a Terminal session (Recipe 5.4).

120 | Chapter 5: Python Basics

5.3 Using the Python Console
Problem
You want to enter Python commands without writing a whole program.

Solution
Use the Python console, either within IDLE (Recipe 5.2) or in a Terminal session.

Discussion
To start a Python 2 console in a Terminal window, just type the command python; for
a Python 3 console, enter the command python3.

The >>> prompt indicates that you can type Python commands. If you need to type
multiline commands, then the console will automatically provide a continuation line
indicated by three dots. You still need to indent any such lines, by four spaces, as
shown in the following session:

>>> for i in range(1, 10):
... print(i)
...
1
2
3
4
5
6
7
8
9
>>>

You will need to press Enter twice after your last command for the console to recog‐
nize the end of the indented block and run the code.

The Python console also provides a command history so that you can move back and
forth through your previous commands using the up and down keys.

See Also
If you have more than a couple of lines that you want to type in, then chances are you
would be better off using IDLE (Recipe 5.2) to edit and run a file.

5.3 Using the Python Console | 121

5.4 Running Python Programs from the Terminal
Problem
Running programs from within IDLE is fine, but sometimes you want to run a
Python program from a Terminal window.

Solution
Use the python or python3 command in a Terminal, followed by the filename con‐
taining the program you want to run.

Discussion
To run a Python 2 program from the command line, use a command like this:

$ python myprogram.py

If you want to run the program using Python 3, then change the command python to
python3. The Python program that you wish to run should be in a file with the exten‐
sion .py.

You can run most Python programs as a normal user; however, there are some, espe‐
cially those that use the GPIO port, that you need to run as superuser. If this is the
case for your program, prefix the command with sudo:

$ sudo python myprogram.py

In the earlier examples, you have to include python in the command to run the pro‐
gram, but you can also add a line to the start of a Python program so that Linux
knows it is a Python program. This special line is called a shebang (a contraction of
hash-bang) and the following single-line example program has it as its first line.

#!/usr/bin/python
print("I'm a program, I can run all by myself")

Before you can run this directly from the command line, you have to give the file
write permissions by using the command below (see Recipe 3.13).

$ chmod +x test.py

The parameter +x means add execute permission.

Now you will be able to run the Python program test.py by using the single
command:

$./test.py
I'm a program, I can run all by myself
$

The ./ at the start of the line is needed for the command line to find the file.

122 | Chapter 5: Python Basics

See Also
Recipe 3.23 allows you to run a Python program as a timed event.

To automatically run a program at startup, see Recipe 3.22.

5.5 Variables
Problem
You want to give a value a name.

Solution
Assign a value to a name using =.

Discussion
In Python, you don’t have to declare the type of a variable, you can just assign it a
value, as shown in the following examples:

a = 123
b = 12.34
c = "Hello"
d = 'Hello'
e = True

You can define character-string constants using either single or double quotes. The
logical constants in Python are True and False, and are case-sensitive.

By convention, variable names begin with a lowercase letter and if the variable name
consists of more than one word, the words are joined together with an underscore
character. It is always a good idea to give your variables descriptive names.

Some examples of valid variable names are x, total, and number_of_chars.

See Also
Variables can also be assigned a value that is a list (Recipe 6.1) or dictionary (Recipe
6.12).

For more information on arithmetic with variables, see Recipe 5.8.

5.6 Displaying Output
Problem
You want to see the value of a variable.

5.5 Variables | 123

Solution
Use the print command. You can try the following example in the Python console
(Recipe 5.3):

>>> x = 10
>>> print(x)
10
>>>

Discussion
In Python 2, you can use the print command without brackets. However, this is not
true in Python 3, so for compatibility with both versions of Python, use brackets
around the value you are printing.

See Also
To read user input, see Recipe 5.7.

5.7 Reading User Input
Problem
You want to prompt the user to enter a value.

Solution
Use the input (Python 3) or raw_input (Python 2) command. You can try the follow‐
ing example in the Python 3 console (Recipe 5.3):

>>> x = input("Enter Value:")
Enter Value:23
>>> print(x)
23
>>>

Discussion
In Python 2, raw_input must be substituted for input in the preceding example.

Python 2 also has an input function, but this validates the input and attempts to con‐
vert it into a Python value of the appropriate type, whereas raw_input does the same
thing as input in Python 3 and just returns a string.

124 | Chapter 5: Python Basics

See Also
Find more information on Python 2 input.

5.8 Arithmetic
Problem
You want to do arithmetic in Python.

Solution
Use the +, -, *, and / operators.

Discussion
The most common operators for arithmetic are +, -, *, and /, which are, respectively,
add, subtract, multiply, and divide.

You can also group parts of the expression together with parentheses, as shown in the
following example, which, given a temperature in degrees Celsius, converts it to
degrees Fahrenheit:

>>> tempC = input("Enter temp in C: ")
Enter temp in C: 20
>>> tempF = (int(tempC) * 9) / 5 + 32
>>> print(tempF)
68.0
>>>

Other arithmetic operators include % (modulo remainder) and ** (raise to the power
of). For example, to raise 2 to the power of 8, you would write the following:

>>> 2 ** 8
256

See Also
See Recipe 5.7 on using the input command, and Recipe 5.12 on converting the
string value from input to a number.

The Math library has many useful math functions that you can use.

5.9 Creating Strings
Problem
You want to create a string variable.

5.8 Arithmetic | 125

Solution
Use the assignment operator and a string constant to create a new string. You can use
either double or single quotation marks around the string, but they must match.

For example:

>>> s = "abc def"
>>> print(s)
abc def
>>>

Discussion
If you need to include double or single quotes inside a string, then pick the type of
quotes that you don’t want to use inside the string as the beginning and end markers
of the string. For example:

>>> s = "Isn't it warm?"
>>> print(s)
Isn't it warm?
>>>

Sometimes you’ll need to include special characters such as tab or newline inside
your string. This requires the use of what are called escape characters. To include a
tab, use \t, and for a newline, use \n. For example:

>>> s = "name\tage\nMatt\t14"
>>> print(s)
name age
Matt 14
>>>

See Also
For a full list of escape characters, see the Python Reference Manual.

5.10 Concatenating (Joining) Strings
Problem
You want to join a number of strings together.

Solution
Use the + (concatenate) operator.

For example:

126 | Chapter 5: Python Basics

>>> s1 = "abc"
>>> s2 = "def"
>>> s = s1 + s2
>>> print(s)
abcdef
>>>

Discussion
In many languages, you can have a chain of values to concatenate, some of which are
strings and some of which are other types such as numbers; numbers will automati‐
cally be converted into strings during the concatenation. This is not the case in
Python, and if you try the following command, you will get an error:

>>> "abc" + 23
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

You need to convert each component that you want to concatenate to a string before
concatenating, as shown in this example:

>>> "abc" + str(23)
'abc23'
>>>

See Also
See Recipe 5.11 for more information about converting numbers to strings using the
str function.

5.11 Converting Numbers to Strings
Problem
You want to convert a number into a string.

Solution
Use the str Python function. For example:

>>> str(123)
'123'
>>>

Discussion
A common reason for wanting to convert a number into a string is so you can then
concatenate it with another string (Recipe 5.10).

5.11 Converting Numbers to Strings | 127

See Also
For the reverse operation of turning a string into a number, see Recipe 5.12.

5.12 Converting Strings to Numbers
Problem
You want to convert a string into a number.

Solution
Use the int or float Python function.

For example, to convert -123 into a number, you could use:

>>> int("-123")
-123
>>>

This will work on both positive and negative whole numbers.

To convert a floating-point number, use float instead of int:

>>> float("00123.45")
123.45
>>>

Discussion
Both int and float will handle leading zeros correctly and are tolerant of any spaces
or other whitespace characters around the number.

You can also use int to convert a string representing a number in a number base
other than the default of 10 by supplying the number base as the second argument.
The following example converts the string representation of binary 1001 into a
number:

>>> int("1001", 2)
9
>>>

This second example converts the hexadecimal number AFF0 to an integer:

>>> int("AFF0", 16)
45040
>>>

See Also
For the reverse operation of turning a number into a string, see Recipe 5.11.

128 | Chapter 5: Python Basics

5.13 Finding the Length of a String
Problem
You need to know how many characters there are in a string.

Solution
Use the len Python function.

Discussion
For example, to find the length of the string abcdef, you would use:

>>> len("abcdef")
6
>>>

See Also
The len command also works on lists (Recipe 6.3).

5.14 Finding the Position of One String Inside Another
Problem
You need to find the position of one string within another.

Solution
Use the find Python function.

For example, to find the starting position of the string def within the string abcdef
ghi, you would use:

>>> s = "abcdefghi"
>>> s.find("def")
3
>>>

Note that the character positions start at 0, so a position of 3 means the fourth char‐
acter in the string.

Discussion
If the string you’re looking for doesn’t exist in the string being searched, then find
returns the value -1.

5.13 Finding the Length of a String | 129

See Also
The replace function is used to find and then replace all occurrences of a string
(Recipe 5.16).

5.15 Extracting Part of a String
Problem
You want to cut out a section of a string between certain character positions.

Solution
Use the Python [:] notation.

For example, to cut out a section from the second character to the fifth character of
the string abcdefghi, you would use:

>>> s = "abcdefghi"
>>> s[1:5]
'bcde'
>>>

Note that the character positions start at 0, so a position of 1 means the second char‐
acter in the string, and 5 means the sixth, but the character range is exclusive at the
high end so the letter f is not included in this example.

Discussion
The [:] notation is actually quite powerful. You can omit either argument, in which
case, the start or end of the string is assumed as appropriate. For example:

>>> s[:5]
'abcde'
>>>

and

>>> s = "abcdefghi"
>>> s[3:]
'defghi'
>>>

You can also use negative indices to count back from the end of the string. This can
be useful in situations such as when you want to find the three-letter extension of a
file, as in the following example:

>>> "myfile.txt"[-3:]
'txt'

130 | Chapter 5: Python Basics

See Also
Recipe 5.10 describes joining strings together rather than splitting them.

Recipe 6.10 uses the same syntax but with lists rather than strings.

5.16 Replacing One String of Characters with Another
Inside a String
Problem
You want to replace all occurrences of a string within another string.

Solution
Use the replace function.

For example, to replace all occurrences of X with times, you would use:

>>> s = "It was the best of X. It was the worst of X"
>>> s.replace("X", "times")
'It was the best of times. It was the worst of times'
>>>

Discussion
The string being searched for must match exactly; that is, the search is case-sensitive
and will include spaces.

See Also
See Recipe 5.14 for searching a string without performing a replacement.

5.17 Converting a String to Upper- or Lowercase
Problem
You want to convert all the characters in a string to upper- or lowercase letters.

Solution
Use the upper or lower function as appropriate.

For example, to convert aBcDe to uppercase, you would use:

5.16 Replacing One String of Characters with Another Inside a String | 131

>>> "aBcDe".upper()
'ABCDE'
>>>

To convert it to lowercase, you would use:

>>> "aBcDe".lower()
'abcde'
>>>

Discussion
Like most functions that manipulate a string in some way, upper and lower do not
actually modify the string but rather return a modified copy of the string.

For example, the following code returns a copy of the string s, but note how the origi‐
nal string is unchanged.

>>> s = "aBcDe"
>>> s.upper()
'ABCDE'
>>> s
'aBcDe'
>>>

If you want to change the value of s to be all uppercase, then you need to do the
following:

>>> s = "aBcDe"
>>> s = s.upper()
>>> s
'ABCDE'
>>>

See Also
See Recipe 5.16 for replacing text within strings.

5.18 Running Commands Conditionally
Problem
You want to run some Python commands only when some condition is true.

Solution
Use the Python if command.

The following example will print the message x is big only if x has a value greater
than 100:

132 | Chapter 5: Python Basics

>>> x = 101
>>> if x > 100:
... print("x is big")
...
x is big

Discussion
After the if keyword, there is a condition. This condition often, but not always, com‐
pares two values and gives an answer that is either True or False. If it is True, then
the subsequent indented lines will all be executed.

It is quite common to want to do one thing if a condition is True and something dif‐
ferent if the answer is False. In this case, the else command is used with if, as
shown in this example:

x = 101
if x > 100:
 print("x is big")
else:
 print("x is small")

print("This will always print")

You can also chain together a long series of elif conditions. If any one of the condi‐
tions succeeds, then that block of code is executed and none of the other conditions
are tried. For example:

x = 90
if x > 100:
 print("x is big")
elif x < 10:
 print("x is small")
else:
 print("x is medium")

This example will print x is medium.

See Also
See Recipe 5.19 for more information on different types of comparisons you can
make.

5.19 Comparing Values
Problem
You want to compare values.

5.19 Comparing Values | 133

Solution
Use one of the comparison operators: <, >, <=, >=, ==, or !=.

Discussion
You used the < (less than) and > (greater than) operators in Recipe 5.18. Here’s the
full set of comparison operators:

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Exactly equal to
!= Not equal to

Some people prefer to use the <> operator in place of !=. Both work the same.

You can test these commands using the Python console (Recipe 5.3), as shown in the
following exchange:

>>> 1 != 2
True
>>> 1 != 1
False
>>> 10 >= 10
True
>>> 10 >= 11
False
>>> 10 == 10
True
>>>

A common mistake is to use = (set a value) instead of == (double equals) in compari‐
sons. This can be difficult to spot because if one half of the comparison is a variable, it
is perfectly legal syntax and will run, but it will not produce the result you were
expecting.

As well as comparing numbers, you can also compare strings by using these compari‐
son operators, as shown here:

>>> 'aa' < 'ab'
True
>>> 'aaa' < 'aa'
False

The strings are compared lexicographically—that is, in the order that you would find
them in a dictionary.

134 | Chapter 5: Python Basics

This is not quite correct because, for each letter, the uppercase version of the letter is
considered less than the lowercase equivalent. Each letter has a value that is its ASCII
code.

See Also
See also Recipes 5.18 and 5.20.

5.20 Logical Operators
Problem
You need to specify a complex condition in an if statement.

Solution
Use one of the logical operators: and, or, and not.

Discussion
As an example, you may want to check whether a variable x has a value between 10
and 20. For that, you would use the and operator:

>>> x = 17
>>> if x >= 10 and x <= 20:
... print('x is in the middle')
...
x is in the middle

You can combine as many and and or statements as you need and also use brackets to
group them if the expressions become complicated.

See Also
See Recipes 5.18 and 5.19.

5.21 Repeating Instructions an Exact Number of Times
Problem
You need to repeat some program code an exact number of times.

Solution
Use the Python for command and iterate over a range.

5.20 Logical Operators | 135

For example, to repeat a command 10 times, use the following example:

>>> for i in range(1, 11):
... print(i)
...
1
2
3
4
5
6
7
8
9
10
>>>

Discussion
The second parameter in the range command is exclusive; that is, to count up to 10,
you must specify a value of 11.

See Also
If the condition for stopping the loop is more complicated than simply repeating a
number of times, see Recipe 5.22.

If you are trying to repeat commands for each element of a list or dictionary, see Rec‐
ipes 6.7 or 6.15, respectively.

5.22 Repeating Instructions Until Some Condition
Changes
Problem
You need to repeat some program code until something changes.

Solution
Use the Python while statement. The while statement repeats its nested commands
until its condition becomes false. The following example will stay in the loop until the
user enters X for exit:

>>> answer = ''
>>> while answer != 'X':
... answer = input('Enter command:')
...
Enter command:A

136 | Chapter 5: Python Basics

Enter command:B
Enter command:X
>>>

Discussion
Note that the preceding example uses the input command as it works in Python 3. To
run the example in Python 2, substitute the command raw_input for input.

See Also
If you just want to repeat some commands a number of times, see Recipe 5.21.

If you are trying to repeat commands for each element of a list or dictionary, then see
Recipes 6.7 or 6.15, respectively.

5.23 Breaking Out of a Loop
Problem
You are in a loop and need to exit the loop if some condition occurs.

Solution
Use the Python break statement to exit either a while or for loop.

The following example behaves in exactly the same way as the example code in
Recipe 5.22:

>>> while True:
... answer = input('Enter command:')
... if answer == 'X':
... break
...
Enter command:A
Enter command:B
Enter command:X
>>>

Discussion
Note that this example uses the input command as it works in Python 3. To run the
example in Python 2, substitute the command raw_input for input.

This example behaves in exactly the same way as the example of Recipe 5.22. How‐
ever, in this case, the condition for the while loop is just True, so the loop will never
end unless we use break to exit the loop when the user enters X.

5.23 Breaking Out of a Loop | 137

See Also
You can also leave a while loop by using its condition; see Recipe 5.18.

5.24 Defining a Function in Python
Problem
You want to avoid repeating the same code over and over in a program.

Solution
Create a function that groups together lines of code, allowing it to be called from
multiple places.

Creating and then calling a function in Python is illustrated in the following example:

def count_to_10():
 for i in range(1, 11):
 print(i)

count_to_10()

In this example, we have defined a function using the def command that will print
out the numbers between 1 and 10 whenever it is called:

count_to_10()

Discussion
The conventions for naming functions are the same as for variables in Recipe 5.5; that
is, they should start with a lowercase letter, and if the name consists of more than one
word, the words should be separated by underscores.

The example function is a little inflexible because it can only count to 10. If we
wanted to make it more flexible—so it could count up to any number—then we can
include the maximum number as a parameter to the function, as this example illus‐
trates:

def count_to_n(n):
 for i in range(1, n + 1):
 print(i)

count_to_n(5)

The parameter name n is included inside the parentheses and then used inside the
range command, but not before 1 is added to it.

138 | Chapter 5: Python Basics

Using a parameter for the number you want to count up to means that if you usually
count to 10 but sometimes count to a different number, you will always have to spec‐
ify the number. You can, however, specify a default value for a parameter, and hence
have the best of both worlds, as shown in this example:

def count_to_n(n=10):
 for i in range(1, n + 1):
 print(i)

count_to_n()

This will now count to 10 unless a different number is specified when you call the
function.

If your function needs more than one parameter, perhaps to count between two num‐
bers, then the parameters are separated by commas:

def count(from_num=1, to_num=10):
 for i in range(from_num, to_num + 1):
 print(i)

count()
count(5)
count(5, 10)

All these examples are functions that do not return any value; they just do something.
If you need a function to return a value, you need to use the return command.

The following function takes a string as an argument and adds the word please to the
end of the string.

def make_polite(sentence):
 return sentence + " please"

print(make_polite("Pass the cheese"))

When a function returns a value, you can assign the result to a variable, or as in this
example, print out the result.

See Also
To return more than one value from a function, see Recipe 7.3.

5.24 Defining a Function in Python | 139

CHAPTER 6

Python Lists and Dictionaries

6.0 Introduction
In Chapter 5, you looked at the basics of the Python language. In this chapter, you
look at two key Python data structures: lists and dictionaries.

6.1 Creating a List
Problem
You want to use a variable to hold a series of values rather than just one value.

Solution
Use a list. In Python, a list is a collection of values stored in order so that you can
access them by position.

You create a list using [and] to contain its initial contents:

>>> a = [34, 'Fred', 12, False, 72.3]
>>>

Unlike the more rigid arrays in languages like C, you don’t need to specify the size of
a list in Python when you declare it. You can also change the number of elements in
the list any time you like.

Discussion
As this example illustrates, the items in a list do not have to be all of the same type,
although they often are.

141

If you want to create an empty list that you can add items to later, you can write:

>>> a = []
>>>

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.2 Accessing Elements of a List
Problem
You want to find individual elements of a list or change them.

Solution
Use the [] notation to access elements of a list by their position in the list. For
example:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a[1]
'Fred'

Discussion
The list positions (indices) start at 0 for the first element.

As well as using the [] notation to read values out of a list, you can also use it to
change values at a certain position. For example:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a[1] = 777
>>> a
[34, 777, 12, False, 72.3]

If you try to change (or, for that matter, read) an element of a list using an index that
is too large, you will get an “Index out of range” error:

>>> a[50] = 777
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range
>>>

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

142 | Chapter 6: Python Lists and Dictionaries

6.3 Finding the Length of a List
Problem
You need to know how many elements there are in a list.

Solution
Use the len Python function. For example:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> len(a)
5

Discussion
The len command also works on strings (Recipe 5.13).

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.4 Adding Elements to a List
Problem
You need to add an item to a list.

Solution
Use the append, insert, or extend Python functions.

To add a single item to the end of a list, use append:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.append("new")
>>> a
[34, 'Fred', 12, False, 72.3, 'new']

Discussion
Sometimes you don’t want to add the new elements to the end of a list, but rather you
want to insert them at a certain position in the list. For this, use the insert com‐
mand. The first argument is the index where the item should be inserted, and the sec‐
ond argument is the item to be inserted:

6.3 Finding the Length of a List | 143

>>> a.insert(2, "new2")
>>> a
[34, 'Fred', 'new2', 12, False, 72.3]

Note how all the elements after the newly inserted element are shuffled up one
position.

Both append and insert add only one element to a list. The extend function adds all
the elements of one list to the end of another:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> b = [74, 75]
>>> a.extend(b)
>>> a
[34, 'Fred', 12, False, 72.3, 74, 75]

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.5 Removing Elements from a List
Problem
You need to remove an item from a list.

Solution
Use the pop Python function.

The command pop with no parameters removes the last element of a list:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.pop()
72.3
>>> a
[34, 'Fred', 12, False]

Discussion
Notice that pop returns the value removed from the list.

To remove an item in a position rather than the last element, use pop with a parame‐
ter of the position from which the item will be removed:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.pop(0)
34

144 | Chapter 6: Python Lists and Dictionaries

If you use an index position that is beyond the end of the list, you will get an “Index
out of range” exception.

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.6 Creating a List by Parsing a String
Problem
You need to convert a string of words separated by some character into an array of
strings, with each string in the array being one of the words.

Solution
Use the split Python string function.

The command split with no parameters separates the words out of a string into
individual elements of an array:

>>> "abc def ghi".split()
['abc', 'def', 'ghi']

If you supply split with a parameter, then it will split the string, using the parameter
as a separator. For example:

>>> "abc--de--ghi".split('--')
['abc', 'de', 'ghi']

Discussion
This command can be very useful when you are, say, importing data from a file. The
split command can optionally take an argument that is the string to use as a delim‐
iter when you are splitting the string. So, if you were to use commas as a separator,
you could split the string as follows:

>>> "abc,def,ghi".split(',')
['abc', 'def', 'ghi']

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.6 Creating a List by Parsing a String | 145

6.7 Iterating Over a List
Problem
You need to apply some lines of code to each item in a list in turn.

Solution
Use the for Python language command:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> for x in a:
... print(x)
...
34
Fred
12
False
72.3
>>>

Discussion
The for keyword is immediately followed by a variable name (in this case, x). This is
called the loop variable and will be set to each of the elements of the list specified
after in.

The indented lines that follow will be executed one time for each element in the list.
Each time around the loop, x will be given the value of the element in the list at that
position. You can then use x to print out the value, as shown in the previous example.

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.8 Enumerating a List
Problem
You need to run some lines of code for each item in a list in turn, but you also need to
know the index position of each item.

Solution
Use the for Python language command along with the enumerate command.

146 | Chapter 6: Python Lists and Dictionaries

>>> a = [34, 'Fred', 12, False, 72.3]
>>> for (i, x) in enumerate(a):
... print(i, x)
...
(0, 34)
(1, 'Fred')
(2, 12)
(3, False)
(4, 72.3)
>>>

Discussion
It’s quite common to need to know the position of something in the list while enu‐
merating each of the values. An alternative method is to simply count with an index
variable and then access the value by using the [] syntax:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> for i in range(len(a)):
... print(i, a[i])
...
(0, 34)
(1, 'Fred')
(2, 12)
(3, False)
(4, 72.3)
>>>

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

See Recipe 6.7 to iterate over a list without needing to know each item’s index
position.

6.9 Sorting a List
Problem
You need to sort the elements of a list.

Solution
Use the sort Python language command:

>>> a = ["it", "was", "the", "best", "of", "times"]
>>> a.sort()
>>> a
['best', 'it', 'of', 'the', 'times', 'was']

6.9 Sorting a List | 147

Discussion
When you sort a list, you’ll actually be modifying it rather than returning a sorted
copy of the original list. This means that if you also need the original list, you need to
use the copy command in the standard library to make a copy of the original list
before sorting it:

>>> import copy
>>> a = ["it", "was", "the", "best", "of", "times"]
>>> b = copy.copy(a)
>>> b.sort()
>>> a
['it', 'was', 'the', 'best', 'of', 'times']
>>> b
['best', 'it', 'of', 'the', 'times', 'was']
>>>

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.10 Cutting Up a List
Problem
You need to make a sublist of a list, using a range of the original list’s elements.

Solution
Use the [:] Python language construction. The following example returns a list con‐
taining the elements of the original list from index position 1 to index position 2 (the
number after the : is exclusive):

>>> l = ["a", "b", "c", "d"]
>>> l[1:3]
['b', 'c']

Note that the character positions start at 0, so a position of 1 means the second char‐
acter in the string, and 5 means the sixth, but the character range is exclusive at the
high end, so the letter d is not included in this example.

Discussion
The [:] notation is actually quite powerful. You can omit either argument, in which
case the start or end of the list is assumed as appropriate. For example:

>>> l = ["a", "b", "c", "d"]
>>> l[:3]
['a', 'b', 'c']

148 | Chapter 6: Python Lists and Dictionaries

>>> l[3:]
['d']
>>>

You can also use negative indices to count back from the end of the list. The following
example returns the last two elements in the list:

>>> l[-2:]
['c', 'd']

Incidentally, l[:-2] returns ['a', 'b'] in the preceding example.

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

See Recipe 5.15 where the same syntax is used for strings.

6.11 Applying a Function to a List
Problem
You need to apply a function to each element of a list and collect the results.

Solution
Use the Python language feature called comprehensions.

The following example converts each string element of the list to uppercase and
returns a new list that is the same length as the old one, but with all the strings in
uppercase:

>>> l = ["abc", "def", "ghi", "ijk"]
>>> [x.upper() for x in l]
['ABC', 'DEF', 'GHI', 'IJK']

Although it can get confusing, there is no reason why you can’t combine these kinds
of statements, nesting one comprehension inside another.

Discussion
This is a very concise way of doing comprehensions. The whole expression has to be
enclosed in brackets ([]). The first element of the comprehension is the code to be
evaluated for each element of the list. The rest of the comprehension looks rather like
a normal list iteration command (Recipe 6.7). The loop variable follows the for key‐
word, and the list to be used follows the in keyword.

6.11 Applying a Function to a List | 149

See Also
All the recipes between Recipes 6.1 and 6.11 involve the use of lists.

6.12 Creating a Dictionary
Problem
You need to create a lookup table where you associate values with keys.

Solution
Use a Python dictionary.

Arrays are great when you need to access a list of items in order or you always know
the index of the element that you want to use. Dictionaries are an alternative to lists
for storing collections of data, but they are organized very differently.

Figure 6-1 shows how a dictionary is organized.

Figure 6-1. A Python dictionary

A dictionary stores key/value pairs in such a way that you can use the key to retrieve
that value very efficiently and without having to search the whole dictionary.

To create a dictionary, you use the {} notation:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}

Discussion
In this example, the keys of the dictionary are strings, but they do not have to be; they
could be numbers or in fact any data type, although strings are most commonly used.

The values can also be of any data type, including other dictionaries or lists. The fol‐
lowing example creates one dictionary (a) and then uses it as a value in a second dic‐
tionary (b):

>>> a = {'key1':'value1', 'key2':2}
>>> a
{'key2': 2, 'key1': 'value1'}
>>> b = {'b_key1':a}

150 | Chapter 6: Python Lists and Dictionaries

>>> b
{'b_key1': {'key2': 2, 'key1': 'value1'}}

When you display the contents of a dictionary, you will notice that the order of the
items in the dictionary may not match the order in which they were specified when
the dictionary was created and initialized with some contents:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}
>>> phone_numbers
{'Jane': '01234 666666', 'Simon': '01234 567899'}

Unlike lists, dictionaries have no concept of keeping items in order. Because of the
way they are represented internally, the order of a dictionary’s contents will be—for
all intents and purposes—random.

The reason the order appears to be random is that the underlying data structure is a
hash table. Hash tables use a hashing function to decide where to store the value; the
hashing function calculates a numeric equivalent to any object.

You can find out more about hash tables at Wikipedia.

See Also
All the recipes between Recipes 6.12 and 6.15 involve the use of dictionaries.

6.13 Accessing a Dictionary
Problem
You need to find and change entries in a dictionary.

Solution
Use the Python [] notation. Use the key of the entry to which you need access inside
the brackets:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}
>>> phone_numbers['Simon']
'01234 567899'
>>> phone_numbers['Jane']
'01234 666666'

Discussion
The lookup process is in one direction only, from key to value.

If you use a key that is not present in the dictionary, you will get a key error. For
example:

6.13 Accessing a Dictionary | 151

{'b_key1': {'key2': 2, 'key1': 'value1'}}
>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}
>>> phone_numbers['Phil']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Phil'
>>>

As well as using the [] notation to read values from a dictionary, you can also use it
to add new values or overwrite existing ones.

The following example adds a new entry to the dictionary with a key of Pete and a
value of 01234 777555:

>>> phone_numbers['Pete'] = '01234 777555'
>>> phone_numbers['Pete']
'01234 777555'

If the key is not in use in the dictionary, a new entry is automatically added. If the key
is already present, then whatever value was there before will be overwritten by the
new value.

This is in contrast to trying to read a value from the dictionary, where an unknown
key will cause an error.

See Also
All the recipes between Recipes 6.12 and 6.15 involve the use of dictionaries.

For information on handling errors, see Recipe 7.10.

6.14 Removing Things from a Dictionary
Problem
You need to remove an item from a dictionary.

Solution
Use the pop command, specifying the key for the item that you want to remove:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}
>>> phone_numbers.pop('Jane')
'01234 666666'
>>> phone_numbers
{'Simon': '01234 567899'}

152 | Chapter 6: Python Lists and Dictionaries

Discussion
The pop command returns the value of the item removed from the dictionary.

See Also
All the recipes between Recipes 6.12 and 6.15 involve the use of dictionaries.

6.15 Iterating Over Dictionaries
Problem
You need to do something to each of the items in the dictionary in turn.

Solution
Use the for command to iterate over the keys of the dictionary:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}
>>> for name in phone_numbers:
... print(name)
...
Jane
Simon

Discussion
There are a couple of other techniques that you can use to iterate over a dictionary.
The following form can be useful if you need access to the values as well as the keys:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}
>>> for name, num in phone_numbers.items():
... print(name + " " + num)
...
Jane 01234 666666
Simon 01234 567899

See Also
All the recipes between Recipes 6.12 and 6.15 involve the use of dictionaries.

See the for command used elsewhere in Recipes 5.21, 6.7, and 6.11.

6.15 Iterating Over Dictionaries | 153

CHAPTER 7

Advanced Python

7.0 Introduction
In this chapter, you will explore some of the more advanced concepts in the Python
language—in particular, object-oriented Python, reading and writing files, handling
exceptions, using modules, and Internet programming.

7.1 Formatting Numbers
Problem
You want to format numbers to a certain number of decimal places.

Solution
Apply a format string to the number. For example:

>>> x = 1.2345678
>>> "x={:.2f}".format(x)
'x=1.23'
>>>

Discussion
The formatting string can contain a mixture of regular text and markers delimited by
{ and }. The parameters to the format function (there can be as many as you like) will
be substituted in place of the marker, according to the format specifier.

In the preceding example, the format specifier is :.2f, which means that the number
will be specified with two digits after the decimal place and is a float f.

155

If you wanted the number to be formatted so that the total length of the number is
always seven digits (or padding spaces), then you would add another number before
the decimal place like this:

>>> "x={:7.2f}".format(x)
'x= 1.23'
>>>

In this case, since the number is only three digits long, there are four spaces of pad‐
ding before the 1. If you wanted the padding to take the form of leading zeros, you
would use:

>>> "x={:07.2f}".format(x)
'x=0001.23'
>>>

A more complicated example might be to display the temperature in both degrees
Celsius and degrees Fahrenheit, as shown here:

>>> c = 20.5
>>> "Temperature {:5.2f} deg C, {:5.2f} deg F.".format(c, c * 9 / 5 + 32)
'Temperature 20.50 deg C, 68.90 deg F.'
>>>

See Also
Formatting in Python involves a whole formatting language.

7.2 Formatting Dates and Times
Problem
You want to convert a date into a string and format it in a certain way.

Solution
Apply format string to the date object.

For example:

>>> from datetime import datetime
>>> d = datetime.now()
>>> "{:%Y-%m-%d %H:%M:%S}".format(d)
'2015-12-09 16:00:45'
>>>

Discussion
The Python formatting language includes some special symbols for formatting date.
%Y, %m, and %d correspond to year, month, and day numbers, respectively.

156 | Chapter 7: Advanced Python

Other symbols useful for formatting the date are %B, which supplies the full name of
the month and %Y, which gives the year in four digit format, as shown here:

>>> "{:%d %B %Y}".format(d)
'09 December 2015'

See Also
See Recipe 7.1 for formatting of numbers.

Formatting in Python actually involves a whole formatting language. You will find
full details of this at http://strftime.org/.

7.3 Returning More Than One Value
Problem
You need to write a function that returns more than one value.

Solution
Return a Python tuple and use the multiple variable assignment syntax. A tuple is a
Python data structure that’s a little like a list, except that tuples are enclosed in paren‐
theses rather than brackets. They are also of fixed size.

For example, you could have a function that converts a temperature in Kelvin into
both Fahrenheit and Celsius. You can arrange for this function to return the tempera‐
ture in both these units by separating the multiple return values by commas:

>>> def calculate_temperatures(kelvin):
... celsius = kelvin - 273
... fahrenheit = celsius * 9 / 5 + 32
... return celsius, fahrenheit
...
>>> c, f = calculate_temperatures(340)
>>>
>>> print(c)
67
>>> print(f)
152.6

When you call the function, you just provide the same number of variables before the
= and each of the return values will be assigned to the variables in the same position.

Discussion
Sometimes when you just have one or two values to return, this is the right way to
return multiple values. However, if the data is complex, you might find that the solu‐

7.3 Returning More Than One Value | 157

tion is neater if you use Python’s object-oriented features and define a class that con‐
tains the data. That way, you can return an instance of the class rather than a tuple.

See Also
See Recipe 7.4 for information on defining classes.

7.4 Defining a Class
Problem
You need to group together related data and functionality into a class.

Solution
Define a class and provide it with the member variables you need.

The following example defines a class to represent an address book entry:

class Person:
 '''This class represents a person object'''

 def __init__(self, name, tel):
 self.name = name
 self.tel = tel

The first line inside the class definition uses the triple quotes to denote a documenta‐
tion string. This should explain the purpose of the class. Although entirely optional,
adding a documentation string to a class allows others to see what the class does. This
is particularly useful if the class is made available for others to use.

Doc strings are not like normal comments because, although they are not active lines
of code, they do get associated with the class, so, at any time, you can read the doc
string for a class by using the following command:

Person.__doc__

Inside the class definition is the constructor method, which will be called automati‐
cally whenever you create a new instance of the class. A class is like a template, so in
defining a class called Person, we do not create any actual Person objects until later:

def __init__(self, name, tel):
 self.name = name
 self.tel = tel

The constructor method must be named as shown with double underscores on either
side of the word init.

158 | Chapter 7: Advanced Python

Discussion
One way in which Python differs from most object-oriented languages is that you
have to include the special variable self as a parameter to all the methods that you
define within the class. This is a reference to, in this case, the newly created instance.
The variable self is the same concept as the special variable this that you find in
Java and some other languages.

The code in this method transfers parameters that were supplied to it into member
variables. The member variables do not need to be declared in advance, but do need
to be prefixed by self..

So the following line:

self.name = name

creates a variable called name that’s accessible to every member of the class Person
and initializes it with the value passed into the call to create an instance, which looks
like this:

p = Person("Simon", "1234567")

We can then check that our new Person object, p, has a name of "Simon" by typing
the following:

>>> p.name
Simon

In a complex program, it is good practice to put each class in its own file with a file‐
name that matches the class name. This also makes it easy to convert the class into a
module (see Recipe 7.11).

See Also
See Recipe 7.5 for information on defining methods.

7.5 Defining a Method
Problem
You need to add a method to a class.

Solution
The following example shows how you can include a method within a class defini‐
tion:

class Person:
 '''This class represents a person object'''

7.5 Defining a Method | 159

 def __init__(self, first_name, surname, tel):
 self.first_name = first_name
 self.surname = surname
 self.tel = tel

 def full_name(self):
 return self.first_name + " " + self.surname

The full_name method concatenates the first name and surname attributes of the
person, with a space in between.

Discussion
You can think of methods as just functions that are tied to a specific class and may or
may not use member variables of that class in their processing. So, as with a function,
you can write whatever code you like in a method and also have one method call
another.

If one method calls another within the same class, the call to the method has to be
prefixed with self.

See Also
See Recipe 7.4 for information on defining a class.

7.6 Inheritance
Problem
You need a specialized version of an existing class.

Solution
Use inheritance to create a subclass of an existing class and add new member variables
and methods.

By default, all new classes that you create are subclasses of object. You can change
this by specifying the class you want to use as a superclass in parentheses after the
class name in a class definition. The following example defines a class (Employee) as a
subclass of Person and adds a new member variable (salary) and an extra method
(give_raise):

class Employee(Person):

 def __init__(self, first_name, surname, tel, salary):
 super().__init__(first_name, surname, tel)
 self.salary = salary

160 | Chapter 7: Advanced Python

 def give_raise(self, amount):
 self.salary = self.salary + amount

Note that the preceding example is for Python 3. For Python 2, you can’t use super
the same way. Instead, you must write:

class Employee(Person):

 def __init__(self, first_name, surname, tel, salary):
 Person.__init__(self, first_name, surname, tel)
 self.salary = salary

 def give_raise(self, amount):
 self.salary = self.salary + amount

Discussion
In both of these examples, the initializer method for the subclass first uses the initial‐
izer method of the parent class (superclass) and then adds the member variable. This
has the advantage that you do not need to repeat the initialization code in the new
subclass.

See Also
See Recipe 7.4 for information on defining a class.

The Python inheritance mechanism is actually very powerful and supports multiple
inheritance, where a subclass inherits from more than one superclass. For more on
multiple inheritance, see the official documentation for Python.

7.7 Writing to a File
Problem
You need to write something to a file.

Solution
Use the open, write, and close functions to open a file, write some data, and then
close the file, respectively:

>>> f = open('test.txt', 'w')
>>> f.write('This file is not empty')
>>> f.close()

7.7 Writing to a File | 161

Discussion
Once you have opened the file, you can make as many writes to it as you like before
you close the file. Note that it is important to use close because although each write
should update the file immediately, it may be buffered in memory and data could be
lost. It could also leave the file locked so that other programs can’t open it.

The open method takes two parameters. The first is the path to the file to be written.
This can be relative to the current working directory, or if it starts with a /, an abso‐
lute path.

The second parameter is the mode in which the file should be opened. To overwrite
an existing file or create the file with the name specified if it doesn’t exist, just use w.
Table 7-1 shows the full list of file mode characters. You can combine these using +.
So to open a file in read and binary mode, you would use:

>>> f = open('test.txt', 'r+b')

Table 7-1. File modes
Mode Description
r Read

w Write

a Append - to the end of an existing file rather than overwriting

b Binary mode

t Text mode (default)

+ A shortcut for r+w

Binary mode allows you to read or write binary streams of data, such as images,
rather than text.

See Also
To read the contents of a file, see Recipe 7.8. For more information on handling
exceptions, see Recipe 7.10.

7.8 Reading from a File
Problem
You need to read the contents of a file into a string variable.

162 | Chapter 7: Advanced Python

Solution
To read a file’s contents, you need to use the file methods open, read, and close. The
following example reads the entire contents of the file into the variable s:

f = open('test.txt')
s = f.read()
f.close()

Discussion
You can also read text files one line at a time using the method readline.

The preceding example will throw an exception if the file does not exist or is not
readable for some other reason. You can handle this by enclosing the code in a try/
except construction like this:

try:
 f = open('test.txt')
 s = f.read()
 f.close()
except IOError:
 print("Cannot open the file")

See Also
To write things to a file and for a list of file open modes, see Recipe 7.7.

For more information on handling exceptions, see Recipe 7.10.

7.9 Pickling
Problem
You want to save the entire contents of a data structure to a file so that it can be read
the next time the program is run.

Solution
Use the Python pickling feature to dump the data structure to file in a format that can
be automatically read back into memory as an equivalent data structure later on.

The following example saves a complex list structure to file:

>>> import pickle
>>> mylist = ['some text', 123, [4, 5, True]]
>>> f = open('mylist.pickle', 'w')
>>> pickle.dump(mylist, f)
>>> f.close()

7.9 Pickling | 163

To unpickle the contents of the file into a new list, use the following:

>>> f = open('mylist.pickle')
>>> other_array = pickle.load(f)
>>> f.close()
>>> other_array
['some text', 123, [4, 5, True]]

Discussion
Pickling will work on pretty much any data structure you can throw at it. It does not
need to be a list.

The file is saved in a text format that is sort of human-readable, but you will not nor‐
mally need to look at or edit the text file.

See Also
To write things to a file and for a list of file open modes, see Recipe 7.7.

7.10 Handling Exceptions
Problem
If something goes wrong while a program is running, you want to catch the error or
exception and display a more user-friendly error message.

Solution
Use Python’s try/except construct.

The following example, taken from Recipe 7.8, catches any problems in opening a
file:

try:
 f = open('test.txt')
 s = f.read()
 f.close()
except IOError:
 print("Cannot open the file")

Because you wrapped the potentially error-prone commands to open the file in a try/
except construction, any error that occurs will be captured before it displays any
error message allowing you to handle it in your own way. In this case, that means dis‐
playing the friendly message "Cannot open the file".

164 | Chapter 7: Advanced Python

Discussion
A common situation where runtime exceptions can occur, in addition to during file
access, is when you are accessing a list and the index you are using is outside the
bounds of the list. For example, this happens if you try to access the fifth (index 4)
element of a three-element list:

>>> list = [1, 2, 3]
>>> list[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Errors and exceptions are arranged in a hierarchy, and you can be as specific or gen‐
eral as you like when catching the exceptions.

Exception is pretty near the top of that tree and will catch almost any exception. You
can also have separate except sections for catching different types of exception and
handling, each in a different way. If you do not specify any exception class, all excep‐
tions will be caught.

Python also allows you to have else and finally clauses in your error handling:

list = [1, 2, 3]
try:
 list[8]
except:
 print("out of range")
else:
 print("in range")
finally:
 print("always do this")

The else clause will be run if there is no exception, and the finally clause will be
run whether there is an exception or not.

Whenever an exception occurs, you can get more information about it by using the
exception object, which is available only if you use the as keyword, as shown in the
following example:

>>> list = [1, 2, 3]
>>> try:
... list[8]
... except Exception as e:
... print("out of range")
... print(e)
...
out of range
list index out of range
>>>

7.10 Handling Exceptions | 165

This allows you to handle the error in your own way, but also keep hold of the origi‐
nal error message.

See Also
Python documentation for Python exception class hierarchy.

7.11 Using Modules
Problem
You want to use a Python module in your program.

Solution
Use the import command:

import random

Discussion
There is a very large number of modules (sometimes called libraries) available for
Python. Many are included with Python as part of the standard library and others can
be downloaded and installed into Python.

Standard Python libraries include modules for random numbers, database access,
various Internet protocols, object serialization, and many more.

One consequence of having so many modules is that there is the potential for conflict
—for example, if two modules have a function of the same name. To avoid such con‐
flicts, when importing a module, you can specify how much of the module is accessi‐
ble.

For example, if you just use a command like this:

import random

there is no possibility of any conflicts because you will only be able to access any
functions or variables in the module by prefixing them with random.. (Incidentally,
you’ll be meeting the random package in the next recipe.)

If, on the other hand, you use the following command, everything in the module will
be accessible without your having to put anything in front of it. Unless you know
what all the functions are in all the modules you are using, there is a much greater
chance of conflict.

from random import *

166 | Chapter 7: Advanced Python

In between these two extremes, you can explicitly specify the components of a mod‐
ule that you need within a program so that they can be conveniently used without any
prefix.

For example:

>>> from random import randint
>>> print(randint(1,6))
2
>>>

A third option is to use the as keyword to provide a more convenient or meaningful
name for the module when referencing it.

>>> import random as R
>>> R.randint(1, 6)

See Also
For a definitive list of the modules included with Python, see http://docs.python.org/2/
library/.

7.12 Random Numbers
Problem
You need to generate a random number between a range of numbers.

Solution
Use the random library:

>>> import random
>>> random.randint(1, 6)
2
>>> random.randint(1, 6)
6
>>> random.randint(1, 6)
5

The number generated will be between the two arguments (inclusive)—in this case,
simulating a gaming dice.

Discussion
The numbers generated are not truly random, but are what is known as a pseudoran‐
dom number sequence; that is, they are a long sequence of numbers that, when taken
in a large enough quantity, show what statisticians call a random distribution. For
games, this is perfectly good enough, but if you were generating lottery numbers, you

7.12 Random Numbers | 167

would need to look at special randomizing hardware. Computers are just plain bad at
being random; it’s not really in their nature.

A common use of random numbers is to select something at random from a list. You
can do this by generating an index position and using that, but there is also a com‐
mand in the random module specifically for this. Try the following example:

>>> import random
>>> random.choice(['a', 'b', 'c'])
'a'
>>> random.choice(['a', 'b', 'c'])
'b'
>>> random.choice(['a', 'b', 'c'])
'a'

See Also
See the official reference for the random package for more information on this.

7.13 Making Web Requests from Python
Problem
You need to read the contents of a web page into a string using Python.

Solution
Python has an extensive library for making HTTP requests.

The following Python 2 example reads the contents of the Google home page into the
string contents:

import urllib2
contents = urllib2.urlopen("https://www.google.com/").read()
print(contents)

Discussion
If you are using Python 3 rather than Python 2, then you will need to change your
example to:

import urllib.request
response = urllib.request.urlopen('http://python.org/')
contents = response.read()
print(contents)

Having read the HTML, you are then likely to want to search it and extract the parts
of the text that you really want. For this, you will need to use the string manipulation
functions (see Recipes 5.14 and 5.15).

168 | Chapter 7: Advanced Python

See Also
For more Internet-related examples using Python, see Chapter 15.

7.14 Command-Line Arguments in Python
Problem
You want to run a Python program from the command line and pass it parameters.

Solution
Import sys and use its argv property, as shown in the following example. This
returns an array, the first element of which is the name of the program. The other
elements are any parameters (separated by spaces) that were typed on the command
line after the program name.

import sys

for (i, value) in enumerate(sys.argv):
 print("arg: %d %s " % (i, value))

Running the program from the command line, with some parameters after it, results
in the following output:

$ python cmd_line.py a b c
arg: 0 cmd_line.py
arg: 1 a
arg: 2 b
arg: 3 c

Discussion
Being able to specify command-line arguments can be useful for automating the run‐
ning of Python programs, either at startup (Recipe 3.21) or on a timed basis (Recipe
3.23).

See Also
For basic information on running Python from the command line, see Recipe 5.4.

In printing out argv, we used list enumerations (Recipe 6.8).

7.14 Command-Line Arguments in Python | 169

7.15 Running Linux Commands from Python
Problem
You want to run a Linux command or program from your Python program.

Solution
Use the system command.

For example, to delete a file called myfile.txt in the directory from which you started
Python, you could do the following:

import os
os.system("rm myfile.txt")

Discussion
Sometimes rather than just execute a command blindly as in the example above, you
need to capture the response of the command. Let’s say you wanted to use the
'hostname' command to find the IP address (see Recipe 2.2) of the Raspberry Pi. In
this case, you can use the check_output function in the subprocess library.

import subprocess
ip = subprocess.check_output(['hostname', '-I'])

In this case, the variable ip will contain the IP address of the Raspberry Pi. Unlike
system, check_output requires the command itself and any parameters to be sup‐
plied as separate elements of an array.

See Also
For documentation on the OS library, see http://www.pythonforbeginners.com/os/
pythons-os-module.

For more information on the subprocess library, see https://docs.python.org/3/
library/subprocess.html.

In Recipe 14.4, you will find an example using subprocess to display the IP address,
hostname, and time of your Raspberry Pi on an LCD screen.

7.16 Sending Email from Python
Problem
You want to send an email message from a Python program.

170 | Chapter 7: Advanced Python

Solution
Python has a library for the Simple Mail Transfer Protocol (SMTP) that you can use
to send emails:

import smtplib

GMAIL_USER = 'your_name@gmail.com'
GMAIL_PASS = 'your_password'
SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 587

def send_email(recipient, subject, text):
 smtpserver = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)
 smtpserver.ehlo()
 smtpserver.starttls()
 smtpserver.ehlo
 smtpserver.login(GMAIL_USER, GMAIL_PASS)
 header = 'To:' + recipient + '\n' + 'From: ' + GMAIL_USER
 header = header + '\n' + 'Subject:' + subject + '\n'
 msg = header + '\n' + text + ' \n\n'
 smtpserver.sendmail(GMAIL_USER, recipient, msg)
 smtpserver.close()

send_email('destination_email_address', 'sub', 'this is text')

To use this example to send an email to an address of your choice, first change the
variables GMAIL_USER and GMAIL_PASS to match your email credentials. If you are not
using Gmail, then you will also need to change the values of the SMTP_SERVER and
possibly SMTP_PORT.

You also need to change the destination email address in the last line.

Discussion
The send_email message simplifies the use of the smtplib library into a single func‐
tion that you can reuse in your projects.

Being able to send emails from Python opens up all sorts of project opportunities. For
example, you could use a sensor such as the PIR sensor to send an email when move‐
ment is detected.

See Also
For a similar example that uses the IFTTT web service to send emails, see Recipe
15.3.

For performing HTTP requests from the Raspberry Pi, see Recipe 7.13.

7.16 Sending Email from Python | 171

For more information on the smtplib, see http://docs.python.org/2/library/
smtplib.html.

For a whole load of Internet-related recipes, see Chapter 15.

7.17 Writing a Simple Web Server in Python
Problem
You need to create a simple Python web server, but don’t want to have to run a full
web server stack.

Solution
Use the bottle Python library to run a pure Python web server that will respond to
HTTP requests.

To install bottle, use the following command:

sudo apt-get install python-bottle

The following Python program (called bottle_test in the book resources) simply
serves up a message displaying what time the Pi thinks it is. Figure 7-1 shows the
page you see if you connect to the Raspberry Pi from a browser anywhere on your
network:

from bottle import route, run, template
from datetime import datetime

@route('/')
def index(name='time'):
 dt = datetime.now()
 time = "{:%Y-%m-%d %H:%M:%S}".format(dt)
 return template('Pi thinks the date/time is: {{t}}', t=time)

run(host='0.0.0.0', port=80)

To start the program, you need to run it with superuser privileges:

$ sudo python bottle_test.py

Figure 7-1. Browsing to a Python bottle web server

172 | Chapter 7: Advanced Python

This example requires a little explanation.

After the import commands, the @route command links the URL path / with the
handler function that follows it.

That handler function formats the date and time and then returns a string of the
HTML to be rendered by the browser. In this case, it uses a template into which val‐
ues can be substituted.

The final run line actually starts the web serving process. Port 80 is the default port
for web serving, so if you wish to use a different port, then you need to add the port
number with a : after the server address.

Discussion
You can define as many routes and handlers as you like within the program.

bottle is perfect for small, simple web server projects, and because it’s written in
Python, it’s very easy to write a handler function to control hardware in response to
the user interacting with the page in a browser. You will find other examples using
bottle in Chapter 15.

See Also
For more information, see the bottle project documentation.

For more on formatting dates and times in Python, see Recipe 7.2.

For a whole load of Internet-related recipes, see Chapter 15.

7.18 Doing More Than One Thing at a Time
Problem
Your Python program is busy doing one thing, and you want it to do something else
at the same time.

Solution
Use the Python thread library.

The following example, which you can download from the Downloads section of
the Raspberry Pi Cookbook website, sets a thread running that will interrupt the
counting of the main thread.

7.18 Doing More Than One Thing at a Time | 173

import thread, time, random

def annoy(message):
 while True:
 time.sleep(random.randint(1, 3))
 print(message)

thread.start_new_thread(annoy, ('BOO !!',))

x = 0
while True:
 print(x)
 x += 1
 time.sleep(1)

The output on the console will look something like this:

$ python thread_test.py
0
1
BOO !!
2
BOO !!
3
4
5
BOO !!
6
7
8

When you start a new thread of execution using the Python thread library, you must
specify a function that is to be run as that thread. In this example, the function is
called annoy and it contains a loop that will continue indefinitely printing out a mes‐
sage after a random interval of between 1 and 3 seconds.

To start the thread, the start_new_thread function in the thread module is called.
This function expects two parameters: the first is the name of the function to run (in
this case annoy) and the second is a tuple that contains any parameters that are to be
passed to the function (in this case 'BOO !!').

You can see that the main thread that is just happily counting will be interrupted
every few seconds by the thread running in the annoy function.

Discussion
Threads like these are also sometimes called lightweight processes because they are
similar in effect to having more than one program or process running at the same
time. They do, however, have the advantage that threads running in the same pro‐

174 | Chapter 7: Advanced Python

gram have access to the same variables, and when the main thread of the program
exits, so do any threads that are started in it.

See Also
For a good introduction to threading in Python, see http://www.tutorialspoint.com/
python/python_multithreading.htm.

7.19 Doing Nothing in Python
Problem
You want Python to kill time for a while. You might want to do this, say, to delay
between sending messages to the terminal.

Solution
Use the sleep function in the time library as illustrated in the following code exam‐
ple that you can find with the downloads for the book called sleep_test.py.

import time

x = 0
while True:
 print(x)
 time.sleep(1)
 x += 1

The main loop of the program will delay for a second before printing the next
number.

Discussion
The function time.sleep takes a number of seconds as its parameter. But if you want
shorter delays, you can specify decimals. For example, to delay for a millisecond, you
would use time.sleep(0.001).

Its a good idea to put a short delay in any loop that continues indefinitely, or even just
continues for more than a fraction of a second, because when sleep is being called, the
processor is freed up to allow other processes to do some work.

See Also
For an interesting discussion of how time.sleep can reduce the CPU load of your
Python program, see http://raspberrypi.stackexchange.com/questions/8077/how-can-i-
lower-the-usage-of-cpu-for-this-python-program.

7.19 Doing Nothing in Python | 175

7.20 Using Python with Minecraft Pi Edition
Problem
Now that you know some Python, you want to use it with Minecraft.

Solution
Use the Python interface that comes with Minecraft Pi edition to interact with Mine‐
craft Pi while it is running.

Although you can switch back and forth between an LXTerminal session and the
Minecraft game, the game will pause each time the window loses focus, so it is a lot
easier to connect to the Raspberry Pi by using SSH on a second computer (Recipe
2.7). This has the added benefit that you get to see the Python script in action, live in
the game.

The following example, which you can download from the Downloads section of
the Raspberry Pi Cookbook website, builds a staircase at your current location
(Figure 7-2):

from mcpi import minecraft, block
mc = minecraft.Minecraft.create()

mc.postToChat("Lets Build a Staircase!")

x, y, z = mc.player.getPos()

for xy in range(1, 50):
 mc.setBlock(x + xy, y + xy, z, block.STONE)

The Python library comes pre-installed in Raspbian, so if it’s not there, you should
probably update your system (Recipe 1.5).

After the library imports, the variable mc is assigned to a new instance of the
Minecraft class.

The postToChat method sends a message to the player’s screen telling him or her that
the staircase is about to be built.

The variables x, y, and z are bound to the player’s position and then the for loop
increments both the x and y (y is height) repeatedly to build the staircase using the
setBlock method (Figure 7-2).

176 | Chapter 7: Advanced Python

Figure 7-2. Building a staircase in Minecraft Pi with Python

Discussion
The mcpi library does not just allow you to post to chat, find the player’s location, and
place a block, it also provides a whole load of other methods that allow you to:

• Find the ID of the block at the coordinates specified
• Find out who’s playing and teleport them perhaps?
• Set the position of a player
• Get the direction a player is facing

There is no definitive documentation for the class other than this useful blog post.

See Also
For more information on the Minecraft Pi Edition, see Recipe 4.7.

To learn about running a Minecraft server on a Raspberry Pi, see Recipe 4.8.

7.20 Using Python with Minecraft Pi Edition | 177

CHAPTER 8

Computer Vision

8.0 Introduction
Computer vision (CV) allows your Raspberry Pi to see things. In practical terms, this
means that your Raspberry Pi can analyze an image, looking for items of interest and
even recognizing faces and text.

If you link this with a camera to supply the images, all sorts of possibilities open up.

8.1 Installing SimpleCV
Problem
You want to install SimpleCV computer vision software on your Raspberry Pi.

Solution
To install SimpleCV, first install the prerequisite packages using these commands:

$ sudo apt-get update
$ sudo apt-get install ipython python-opencv python-scipy
$ sudo apt-get install python-numpy python-setuptools python-pip
$ sudo pip install svgwrite

Then install SimpleCV itself using the command:

$ sudo pip install https://github.com/sightmachine/SimpleCV/zipball/master

Once installation is complete, you can check that everything worked by running this
command:

179

$ simplecv
+---+
 SimpleCV 1.3.0 [interactive shell] - http://simplecv.org
+---+
Commands:
 "exit()" or press "Ctrl+ D" to exit the shell
 "clear()" to clear the shell screen
 "tutorial()" to begin the SimpleCV interactive tutorial
 "example()" gives a list of examples you can run
 "forums()" will launch a web browser for the help forums
 "walkthrough()" will launch a web browser with a walkthrough

This will open the SimpleCV console. This is a Python console, with extra features for
SimpleCV.

Discussion
SimpleCV is a Python wrapper around the OpenCV computer vision software. Sim‐
pleCV, as the name suggests, simplifies the use of OpenCV. If you want to unleash the
full power of OpenCV, take a look at http://opencv.org/.

Computer vision is both processor- and memory-intensive, so although SimpleCV
and OpenCV will work on an older Raspberry Pi, it can be frustratingly slow on any‐
thing earlier than a Raspberry Pi 3 or 2.

See Also
For information on OpenCV, see http://opencv.org/.

The home page for the SimpleCV project is http://simplecv.org.

The first recipe in this chapter to use SimpleCV is Recipe 8.4 and you will find useful
details for getting started with SimpleCV there.

8.2 Setting Up a USB Camera for Computer Vision
Problem
You want to set up a USB webcam for use in computer vision projects.

Solution
Use a USB webcam that is compatible with the Raspberry Pi (see http://elinux.org/
RPi_USB_Webcams). Choose a good quality camera, and if you are working on a
project where you need the camera close to the subject, select one that has a manual
focus option. For getting really close to the subject, a low-cost USB endoscope can be
useful.

180 | Chapter 8: Computer Vision

Depending on your CV project, you may wish to set up a well-lighted area for your
CV project. Figure 8-1 shows a simple light box made from a translucent plastic stor‐
age box illuminated from the sides and top to give even lighting. The webcam is
attached to a hole in the top of the box. This arrangement is used in Recipe 8.4.

Figure 8-1. Using a homemade “light tent” for even illumination

You can also buy commercial light tents designed for photography that work well.

You may need a little trial and error to get your system brightly and evenly illumina‐
ted. Shadows can be particularly problematic.

Discussion
You can test out your USB camera from the SimpleCV console. Start SimpleCV and
then enter the commands shown below in bold:

SimpleCV:1> c = Camera()
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument

SimpleCV:2> i = c.getImage()

8.2 Setting Up a USB Camera for Computer Vision | 181

SimpleCV:3> i
SimpleCV:3: <SimpleCV.Image Object size:(640, 480), filename: (None),
at memory location: (0x2381af8)>
SimpleCV:4> i.show()

Don’t worry about the Invalid argument messages.

When you issue the command i.show(), a second window opens showing the image
just captured from the camera.

Although you can use the Raspberry Pi Camera module (Recipe 8.3) with SimpleCV,
it has a very short lead to the Raspberry Pi and you will probably find that you prefer
working with a high-quality webcam.

See Also
To use a Raspberry Pi Camera Module with SimpleCV, see Recipe 8.3.

8.3 Using a Raspberry Pi Camera Module for Computer
Vision
Problem
You want to use a Raspberry Pi Camera Module that connects directly to your Rasp‐
berry Pi with Simple CV.

Solution
The Raspberry Pi Camera Module does not automatically show up as a camera
device. The easiest way to make the module work with SimpleCV is to use the
picamera Python module to capture an image with the camera.

The following code fragment will use picamera to capture an image, save it to a tem‐
porary file, and then load it as an Image suitable for use with SimpleCV.

import picamera
from SimpleCV import *

def get_camera_image():
 with picamera.PiCamera() as camera:
 camera.capture('tmp.jpg')
 return Image('tmp.jpg')

In Recipe 8.4, the program assumes a USB webcam. A second version of the program
using the function above for the Raspberry Pi camera module is also provided in the
file coin_count_pi_cam.py.

182 | Chapter 8: Computer Vision

Discussion
It may seem inefficient to write a file each time an image is captured, and indeed it is,
but any processing that you apply to the image with SimpleCV on a Raspberry Pi is
likely to take a lot longer than the time taken to load and save the image.

The picamera module allows you to set various features of the camera. Most usefully,
you can control the resolution, automatic exposure, and white-balance adjustments,
which can make it easier to get consistent results with CV.

The native resolution of the camera is 2592×1944, which will make for pretty slow
image processing, so you may want to set the resolution to something closer to
1024×768 and turn off auto-white balance. The get_camera_image function can be
modified to include these settings, as shown here:

import picamera
from SimpleCV import *

def get_camera_image():
 with picamera.PiCamera() as camera:
 camera.resolution = (1024, 768)
 camera.awb_mode = 'off'
 camera.capture('tmp.jpg')
 return Image('tmp.jpg')

See Also
See Recipe 1.14 for information on installing the Raspberry Pi camera module.

For information on the picamera Python module, see http://picamera.readthe‐
docs.org/.

To use a USB camera with SimpleCV, see Recipe 8.2.

8.4 Counting Coins
Problem
You want to use computer vision to count the number of coins under your webcam.

Solution
Use SimpleCV and its findCircle function to provide a real-time count of the num‐
ber of coins placed under the webcam.

This is one use of CV where you really need good lighting and a camera fixed in posi‐
tion. I used the setup shown in Figure 8-1.

8.4 Counting Coins | 183

Before writing a Python program that will simply tell you the number of coins your
Raspberry Pi can see, you need to experiment with the SimpleCV console to get the
parameters for circle recognition right.

Start SimpleCV by using the command simplecv and then enter the commands
below to start the camera, capture an image, and then display it in a separate window.

SimpleCV:1> c = Camera()
SimpleCV:2> i = c.getImage()
SimpleCV:3> i.show()

This should open up an image of your coins that looks something like Figure 8-2.

Figure 8-2. A basic image of some coins

Circle detection needs the image to be inverted, or you can use a black background.
To invert the image and then display it, run the commands below:

SimpleCV:4> i2 = i.invert()
SimpleCV:5> i2.show()

This command makes an inverted copy of i that looks like Figure 8-3.

184 | Chapter 8: Computer Vision

Figure 8-3. An inverted image of some coins

Your image is now prepared, so the next step is to have SimpleCV search for circles
using the findCircle command. This command takes three parameters that you will
need to tune to prevent misidentification. The parameters are:

canny

This is the threshold for edge detection. In CV terms, an edge is the line between
significant changes in the image pixel colors. The default for this parameter is
100, and if you decrease this value, you will find more edges. This might not
result in more circles being found because those extra edges might corrupt the
good circle shapes. In the case of a coin, the edges could be writing or graphics
on the coin.

thresh

Having found edges, the circle detection then needs to decide which are strong
enough to represent the circles. Decreasing this value will result in more circles
being found.

distance

This parameter sets the required gap (in pixels) between adjacent circles.

Run the following command to find some circles:

8.4 Counting Coins | 185

SimpleCV:6> coins = i2.findCircle(canny=100, thresh=70, distance=15)
SimpleCV:7> coins
 SimpleCV.Features.Detection.Circle at (237,297),
 SimpleCV.Features.Detection.Circle at (307,323),
 SimpleCV.Features.Detection.Circle at (373,305),
 SimpleCV.Features.Detection.Circle at (305,261),
 SimpleCV.Features.Detection.Circle at (385,253),
 SimpleCV.Features.Detection.Circle at (243,231),
 SimpleCV.Features.Detection.Circle at (307,383),
 SimpleCV.Features.Detection.Circle at (407,371),
 SimpleCV.Features.Detection.Circle at (235,373)]

If you don’t get any coins back, try decreasing the canny and thresh parameters. If
you get too many, then increase thresh. We can check that SimpleCV is actually find‐
ing coins by superimposing the coin circles onto the original image using the follow‐
ing command.

SimpleCV:8> coins.draw(width=4)
SimpleCV:9> coins.show()

This will show the circles superimposed on the actual coins (Figure 8-4).

Figure 8-4. Coins found!

186 | Chapter 8: Computer Vision

Try moving the coins around and adding and removing coins before capturing
another photo and repeating the steps above to make sure things are reliable. You can
tweak the parameters until you get the results you want.

We can bundle the commands that we used in the SimpleCV console into a Python
program that will (as fast as the Raspberry Pi can) print out the number of coins
detected. The program can be found with the other downloads for the book in the file
coin_count.py.

from SimpleCV import *

c = Camera()

while True:
 i = c.getImage().invert()
 coins = i.findCircle(canny=100, thresh=70, distance=1)
 print(len(coins))

After importing the SimpleCV library, the commands are the same as the ones you
typed into the console. The only difference is that rather than displaying the coins,
the len function is used to display the count.

$ sudo python count_coins.py
9
9
9
10
10

Try adding a coin and moving the coins around to see how well the project works.

Discussion
After the initial delay while the library loads and the camera is set up, I found I could
get about two “countings” per second using a Raspberry Pi B+. Using a Raspberry Pi
2, this increased to about five readings per second.

Although not something that you would want to put into a vending machine, it
would be an interesting project to use the diameter of the coins to identify their mon‐
etary value and add up the value of the coins on the table.

You can access the diameter by using the diameter method on one of the coins like
this:

SimpleCV:10> coins[0].diameter()
SimpleCV:11> 60

See Also
For information on installing SimpleCV, see Recipe 8.1.

8.4 Counting Coins | 187

For information on setting up a camera, see Recipe 8.2.

8.5 Face Detection
Problem
You want to find the coordinates of faces in a photograph or webcam image.

Solution
Use the Haar-like feature detection in SimpleCV to analyze an image and pick out the
faces.

If you have not already done so, install SimpleCV (see Recipe 8.1). Open the Sim‐
pleCV console and load an image containing faces. You will find a suitable file with
the downloads for the book called faces.jpg. Then run the following commands:

SimpleCV:1> i=Image("faces.jpg")
SimpleCV:2> faces = i.findHaarFeatures('face.xml', min_neighbors=5)
SimpleCV:3> faces.draw(width=4)
SimpleCV:4> i.show()

This opens the image viewing window with the faces marked with rectangles, as
shown in Figure 8-5.

Discussion
As well as interfacing with a camera, you can also load existing files into SimpleCV. In
the previous example, the image i is loaded from the file faces.jpg. The method find
HaarFeatures has one mandatory file, which is the type of feature that is being
searched for. These features are called haar features and are described by an XML file.
SimpleCV comes preloaded with some of these files, but you can also find more spe‐
cific haar files on the Internet.

The second parameter used in this example (min_neighbors) will tune the haar func‐
tion. Decreasing min_neighbors increases the number of false positives. When you
see the false positives, they often have a face-ish element to them (mouth, nose, and
eyes).

There are many built-in haar features. You can list them all by using the command:

SimpleCV:5> i.listHaarFeature()
SimpleCV:4> fullbody.xml', 'face4.xml', 'face.xml',
'upper_body.xml', 'right_ear.xml', 'eye.xml', 'lower_body.xml',
'two_eyes_small.xml', 'nose.xml', 'face2.xml', 'lefteye.xml',
'right_eye.xml', 'two_eyes_big.xml', 'face3.xml', 'mouth.xml',
'glasses.xml', 'profile.xml', 'left_ear.xml', 'left_eye2.xml',
'upper_body2.xml', 'right_eye2.xml', 'face_cv2.xml'

188 | Chapter 8: Computer Vision

As you can see, they are all associated with parts of the body.

Finding haar features takes a few seconds, even on a Raspberry Pi 3.

Figure 8-5. Detecting faces

See Also
For information on installing SimpleCV, see Recipe 8.1.

For information on setting up a camera, see Recipe 8.2.

For a whole load of interesting Haar files, take a look at https://github.com/Itseez/
opencv/tree/master/data/haarcascades.

8.6 Motion Detection
Problem
You want to use a camera connected to your Raspberry Pi to detect something mov‐
ing in its field of view.

8.6 Motion Detection | 189

Solution
Use SimpleCV to detect changes between successive frames from the camera.

The program below compares each captured image with the previous image. It then
detects any blobs (areas of similar color) in the difference image and if there are any
larger than MIN_BLOB_SIZE, it prints out a message saying that movement was detec‐
ted.

from SimpleCV import *

MIN_BLOB_SIZE = 1000

c = Camera()

old_image = c.getImage()

while True:
 new_image = c.getImage()
 diff = new_image - old_image
 blobs = diff.findBlobs(minsize=MIN_BLOB_SIZE)
 if blobs :
 print("Movement detected")
 old_image = new_image

Discussion
Successive frames of the image might look like Figures 8-6 and 8-7. When the first
image is subtracted from the first, the resulting image will look like Figure 8-8. Run‐
ning blob detection on it will result in the outlined blobs shown in Figure 8-9.

190 | Chapter 8: Computer Vision

Figure 8-6. Movement detection frame 1

Figure 8-7. Movement detection frame 2

8.6 Motion Detection | 191

Figure 8-8. Movement detection, the difference image

Figure 8-9. Movement detection blobs

192 | Chapter 8: Computer Vision

Using a Raspberry Pi 2, the motion detection program above will process about five
frames per second.

See Also
For information on installing SimpleCV, see Recipe 8.1 . For information on setting
up a camera, see Recipe 8.2.

An alternative way to detect movement is to use a Passive Infrared (PIR) sensor; see
Recipe 12.9.

8.7 Optical Character Recognition
Problem
You want to be able to convert an image containing text to actual text.

Solution
Use the tesseract Optical Character Recognition (OCR) software to extract text
from the image.

To install tesseract, run the following commands:

$ sudo apt-get install python-distutils-extra tesseract-ocr tesseract-ocr-eng
libopencv-dev libtesseract-dev libleptonica-dev python-all-dev swig
libcv-dev python-opencv python-numpy python-setuptools
build-essential subversion
$ sudo apt-get install tesseract-ocr-eng tesseract-ocr-dev libleptonica-dev
python-all-dev swig libcv-dev
$ sudo svn checkout
http://python-tesseract.googlecode.com/svn/python-tesseract-0.7.4/
$ cd python-tesseract-0.7.4
$ sudo python setup.py build
$ sudo python setup.py install

To try out tesseract, you will need an image file that contains some text. You will
find one called ocr_example.png with the downloads for the book.

To convert the image to text, run the command:

$ tesseract ocr_example.png found
Tesseract Open Source OCR Engine v3.02 with Leptonica
$ more found.txt
The quick brown fox jumped over
the lazy dogs back.
$

8.7 Optical Character Recognition | 193

Discussion
The tesseract library will work with most image types, including PDF, PNG, and
JPG files.

See Also
For more information on the tesseract library, see https://github.com/tesseract-ocr/
tesseract/wiki/TrainingTesseract.

194 | Chapter 8: Computer Vision

CHAPTER 9

Hardware Basics

9.0 Introduction
This chapter contains some basic recipes for setting up and using the Raspberry Pi’s
general-purpose input/output (GPIO) connector. This connector allows you to con‐
nect all sorts of interesting electronics to your Raspberry Pi.

9.1 Finding Your Way Around the GPIO Connector
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You need to connect electronics to the GPIO connector, but first you need to know
more about what all the pins do.

Solution
There have actually been three versions of the Raspberry Pi GPIO connector. Two 26-
pin layouts for the original Raspberry Pi and one 40-pin layout that came in with the
Raspberry Pi “+” models.

Figure 9-1 shows the GPIO pinout for revisions 1 and 2 of the original Raspberry Pi
Model B. The quick way to distinguish the boards is knowing that if you have one of
the very first revision 1 boards, it has a black audio socket. The revision 2 boards have
a blue audio socket.

195

Figure 9-1. The GPIO pinout (26-pin models)

There were three changes to the GPIO connector between revision 1 and revision 2.
These are highlighted in Figure 9-1. First, the I2C port was swapped. The two pins
SDA and SCL are still SDA and SCL but use a different internal I2C interface. This
means that if you’re using the pins as GPIO rather than I2C, then you will refer to
them as 2 and 3 on a revision 2 board. Also, GPIO 21 was replaced by GPIO 27 on
revision 2.

At the top of the connector, there are 3.3V and 5V power supplies. The GPIO uses
3.3V for all inputs and outputs. Any pin with a number next to it can act as a GPIO
pin. Those that have another name after them also have some other special purpose,
so 14 TXD and 15 RXD are the transmit and receive pins of the serial interface. SDA
and SCL form the I2C interface, and MOSI, MISO, and SCKL from the SPI interface.

Figure 9-2 shows the current 40-pin layout, which is the same for all 40-pin GPIO
Raspberry Pi models.

The top 26 pins are the same as the 26 pins of the original Raspberry Pi Model B revi‐
sion 2. This allows the 40-pin Raspberry Pi models to use hardware and software
designed for the earlier 26-pin Raspberry Pi designs. The extra pins of the 40-pin
connector are made up of three useful extra GND connections and 9 GPIO pins. The
ID_SD and ID_SC pins are intended for use in communicating with a special serial
memory chip, which can be included on interface boards that conform to the Hard‐
ware At Top (HAT) standard and allows the Raspberry Pi to identify the board (see
Discussion, next).

196 | Chapter 9: Hardware Basics

Figure 9-2. The GPIO pinout (40-pin models)

Discussion
Working out which pin is which on a Raspberry Pi is quite error-prone if you rely on
counting down the pin connector to find the pin you need. A better way of finding
the right pin is to use a GPIO template like the Raspberry Leaf shown in Figure 9-3.

This paper template fits over the GPIO pins telling you which is which. Other GPIO
templates include the Pi GPIO Reference Board.

The Hardware At Top standard is an interface standard that you can use with the
Raspberry Pi 2, B+ and A+. This standard does not in any way stop you from just
using GPIO pins directly; however, interface boards that conform to the HAT stan‐
dard can call themselves HATs and differ from regular Raspberry Pi interface boards
in that a HAT must contain a little Electrically Erasable Programmable Read-Only
Memory (EEPROM) chip that is used to identify the HAT so that ultimately the
Raspberry Pi can auto-install necessary software. At the time of writing, HATs have
not quite met that level of sophistication, but the idea is a good one. The pins ID_SD
and ID_SC are used to communicate with a HAT EEPROM.

9.1 Finding Your Way Around the GPIO Connector | 197

Figure 9-3. The Raspberry Leaf

See Also
The Raspberry Pi GPIO connector only has digital inputs and outputs; it does not
have the analog inputs found on some similar boards. You can get around this short-
coming by using a separate ADC chip (Recipe 13.5) or using resistive sensors (Recipe
13.1).

198 | Chapter 9: Hardware Basics

For an example of a HAT, see the Sense HAT described in Recipe 9.16.

9.2 Keeping Your Raspberry Pi Safe When Using the
GPIO Connector
Problem
You want to connect external electronics to your Raspberry Pi but don’t want to acci‐
dentally damage or break it.

Solution
Obey these simple rules to reduce the risk of damaging your Raspberry Pi when using
the GPIO connector:

• Do not put more than 3.3V on any GPIO pin being used as an input.
• Do not draw more than 16mA per output and keep the total for all outputs below

50mA in total for an older 26-pin Raspberry Pi, and below 100mA on a 40-pin
Raspberry Pi.

• When using LEDs, 3mA is enough to light a red LED reasonably brightly with a
470Ω series resistor.

• Do not poke at the GPIO connector with a screwdriver or any metal object when
the Pi is powered up.

• Do not power the Pi with more than 5V.
• Do not draw more than a total of 250mA from the 5V supply pins.

Discussion
There is no doubt about it, the Raspberry Pi is a little fragile when it comes to adding
external electronics. The newer Raspberry Pi models are a little more robust but still
quite easy to break. Exercise caution and check what you have done before you power
up the Raspberry Pi, or you run the risk of having to replace your Raspberry Pi.

See Also
Read this very good discussion of the Raspberry Pi’s GPIO output capabilities.

9.2 Keeping Your Raspberry Pi Safe When Using the GPIO Connector | 199

9.3 Setting Up I2C
Problem
You have an I2C device that you want to use with your Raspberry Pi, but you don’t
know how.

Solution
In the latest versions of Raspbian, enabling I2C is simply a matter of using the Rasp‐
berry Pi Configuration tool that you will find on the main menu under Preferences
(Figure 9-4). Just check the box for I2C and click OK. You will be prompted to restart.

Figure 9-4. Enabling I2C using the Pi Configuration tool

On older versions of Raspbian, the raspi-config tool does the same job.

200 | Chapter 9: Hardware Basics

Start raspi-config using the following command:

$ sudo raspi-config

Then select Advanced from the menu and scroll down to I2C (Figure 9-5).

Figure 9-5. Enabling I2C using raspi-config

You will then be asked “Would you like the ARM I2C interface to be enabled?”, to
which you should say “Yes.” You will also be asked if you want the I2C module load‐
ing at startup, to which you should also say “Yes.”

At this point, you will probably also want to install the Python I2C library by using
the command:

$ sudo apt-get install python-smbus

You will then need to reboot the Raspberry Pi for the changes to take effect.

Discussion
Using I2C modules is actually a really good way of interfacing with the Pi. It reduces
the number of wires that you need to connect everything (to just four), and there are
some really neat I2C modules available.

However, don’t forget to calculate the total of the current used by the I2C modules
and make sure that it doesn’t exceed those specified in Recipe 9.2.

Figure 9-6 shows a selection of I2C modules available from Adafruit. Other suppliers,
such as SparkFun, also have I2C devices. From left to right, there are LED matrix dis‐
plays; a four-digit, seven-segment LED display; a 16-channel PWM/servo controller;
and a real-time clock module.

9.3 Setting Up I2C | 201

Figure 9-6. I2C modules

Other I2C modules include FM radio transmitters, ultrasonic rangefinders, OLED
displays, and various types of sensors.

See Also
See some of the I2C recipes in this book, including Recipes 11.3, 14.1, 14.2, and 14.4.

9.4 Using I2C Tools
Problem
You have an I2C device attached to your Raspberry Pi, and you want to check that it’s
attached and find its I2C address.

Solution
Install and use i2c-tools.

On newer distributions, you may find that i2c-tools is already
installed.

From a Terminal window on your Pi, type the following commands to fetch and
install the i2c-tools:

$ sudo apt-get install i2c-tools

202 | Chapter 9: Hardware Basics

Attach your I2C device to the Pi and run the command:

$ sudo i2cdetect -y 1

Note that if you are using a very old Raspberry Pi revision 1 board, you need to
change 1 to 0 in the preceding line of code.

If I2C is available, you will see some output like that shown in Figure 9-7. This shows
that two I2C addresses are in use—0x68 and 0x70.

Figure 9-7. i2C-tools

Discussion
i2cDetect is a useful diagnostic tool and one that is worth running the first time you
use a new I2C device.

See Also
See some of the I2C recipes in this book, including Recipes 11.3, 14.1, 14.2, and 14.4.

For more information on installing with apt-get, see Recipe 3.16.

9.5 Setting Up SPI
Problem
You have a Serial Peripheral Interface (SPI) bus that you want to use with your Rasp‐
berry Pi.

9.5 Setting Up SPI | 203

Solution
By default, Raspbian is not configured for the Raspberry Pi’s SPI interface to be
enabled. To enable it, the procedure is almost the same as Recipe 9.3. Use the Rasp‐
berry Pi Configuration tool that you will find on the main menu under Preferences,
or on older versions of Raspbian, use the raspi-config using the command:

$ sudo raspi-config

Then select Advanced, followed by SPI, and then Yes before rebooting your Rasp‐
berry Pi. After the reboot, SPI will be available.

Discussion
SPI allows serial transfer of data between the Raspberry Pi and peripheral devices,
such as analog-to-digital converter (ADC) and port expander chips, among other
devices.

You may come across some examples of interfacing to SPI that do not use the SPI
interface but instead use an approach called bit banging, where the RPi.GPIO library is
used to interface with the four GPIO pins used by the SPI interface.

See Also
We use a SPI analog-to-digital converter chip in Recipe 13.5.

9.6 Installing PySerial for Access to the Serial Port from
Python
Problem
You want to use the serial port (Rx and Tx pins) on the Raspberry Pi using Python.

Solution
Install the PySerial library:

$ sudo apt-get install python-serial

Discussion
The library is pretty easy to use. Creating a connection uses the following syntax:

ser = serial.Serial(DEVICE, BAUD)

Where DEVICE is the device for the serial port (/dev/ttyAMA0) and BAUD is the baud
rate as a number, not a string. For example:

204 | Chapter 9: Hardware Basics

ser = serial.Serial('/dev/ttyAMA0', 9600)

Once a connection is established, you can send data over serial like this:

ser.write('some text')

Listening for a response normally involves a loop that reads and prints, as illustrated
in this example:

while True:
 print(ser.read())

See Also
You will need to use this technique in recipes that connect hardware to the serial port,
such as Recipe 12.10.

9.7 Installing Minicom to Test the Serial Port
Problem
You want to send and receive serial commands from a Terminal session.

Solution
Install Minicom:

$ sudo apt-get install minicom

Once Minicom is installed, you can start a serial communications session with a serial
device connected to the RXD and TXD pins of the GPIO connector by using this
command:

$ minicom -b 9600 -o -D /dev/ttyAMA0

The parameter after -b is the baud rate, and after -D, the serial port. Remember to use
the same baud rate as the one on the device you are communicating with.

This will start a Minicom session. One of the first things you want to do is turn on
local echo so you can see the command that you are typing. To do this, press Ctrl-A
and then Z; you’ll see the command list shown in Figure 9-8. Press E to turn on local
echo.

9.7 Installing Minicom to Test the Serial Port | 205

Figure 9-8. Minicom commands

Now anything you type will be sent to the serial device, and all messages coming from
the device will also be displayed.

Discussion
Minicom is a great tool for checking out the messages coming from a serial device or
making sure that it’s working.

See Also
Check out the Minicom documentation.

If you want to write a Python program to handle the serial communications, you will
need the Python serial library (Recipe 9.6).

9.8 Using a Breadboard with Jumper Leads
Problem
You want to do some electronic prototyping using your Raspberry Pi and solderless
breadboard.

206 | Chapter 9: Hardware Basics

Solution
Use male-to-female jumper wires and a GPIO pin label template like the Raspberry
Leaf (Figure 9-9).

Figure 9-9. Connecting Pi to breadboard using male-to-female jumper wires

Discussion
It’s not always easy to identify the pins you want on a bare Raspberry Pi board. You
can greatly simplify this by printing out a template, like the Raspberry Leaf, to fit over
the pins.

It is also useful to have a selection of male-to-male jumper wires for making connec‐
tions from one part of the breadboard to another.

Female-to-female jumper wires are useful for connecting modules with male header
pins directly to the Raspberry Pi, when no other components might warrant the use
of a breadboard.

9.8 Using a Breadboard with Jumper Leads | 207

A good way of getting a breadboard, Raspberry Leaf, and set of jumper wires is to buy
a starter kit based around a breadboard like the Electronics Starter Kit for Raspberry
Pi from MonkMakes (see Appendix A).

See Also
This approach works well when you have a small number of connections. When you
have more to make, a Pi Cobbler is better (see Recipe 9.9).

9.9 Using a Breadboard with a Pi Cobbler
Problem
You want to do some electronic prototyping using a Raspberry Pi and solderless
breadboard.

Solution
Use an Adafruit Pi Cobbler, a device consisting of a small printed circuit board (PCB)
with header pins that are designed to fit into a solderless breadboard like a dual inline
package (DIL) chip. The pins are all labeled and the PCB has a header socket. The
supplied ribbon cable is used to link the Cobbler to the Raspberry Pi (see
Figure 9-10).

The Pi Cobbler shown in Figure 9-10 is the 26-pin version of the product. There is
also a 40-pin version designed for the newer Raspberry Pis, but this leaves little room
on the breadboard for other components, so if you have enough GPIO pins for your
project in the top 26 pins of the GPIO connector, then it can sometimes be better to
use the 26-pin version of the Pi Cobbler even with a 40-pin Raspberry Pi.

Discussion
A great advantage of the Cobbler is that you can assemble the components onto the
breadboard and then plug in the ribbon cable when it’s ready.

Make sure that the red edge of the ribbon cable is toward the SD card edge of the
Raspberry Pi. The cable only fits into the socket on the Pi Cobbler the correct way
around.

Once you have built your breadboard prototype, you might decide to make a soldered
version of the prototype. A great way to do this is to use an Adafruit Perma-Proto
board like the ones shown in Figure 9-11.

208 | Chapter 9: Hardware Basics

Figure 9-10. Connecting Pi to a breadboard using a Pi Cobbler

Figure 9-11. Adafruit Perma-Proto boards

9.9 Using a Breadboard with a Pi Cobbler | 209

These boards are ready-made Printed Circuit Boards (PCB) that have the same layout
of tracks and holes as a breadboard. This allows you to transfer your breadboard
design to the Perma-Proto board without having to redesign it. The board comes
complete with a socket to accept the cable and plug of the Cobbler.

See Also
If you want to make a board that will fit directly onto the Raspberry Pi, see Recipes
9.19 and 9.20.

9.10 Using a Raspberry Squid
Problem
You want to connect an RGB LED to your Raspberry Pi without having to build
something on breadboard.

Solution
Use a Raspberry Squid RGB LED (Figure 9-12).

The Raspberry Squid is an RGB LED with built-in series resistors and female header
leads, so that it can be plugged directly onto the GPIO pins of a Raspberry Pi. The
Squid has color-coded leads. The black lead goes to one of the GPIO GND pins and
the red, green, and blue leads go to GPIO pins used for the red, green, and blue chan‐
nels. The red, green, and blue outputs can be simple digital outputs or PWM outputs
(Recipe 10.3) that allow you to mix different colors.

Instructions for making your own Squid can be found at https://github.com/simon‐
monk/squid, but you can also buy ready-made Squid from http://monkmakes.com.

The Squid has a Python library that is installed using the following commands:

$ git clone https://github.com/simonmonk/squid.git
$ cd squid
$ sudo python setup.py install

210 | Chapter 9: Hardware Basics

Figure 9-12. A Raspberry Squid

Inside the example folder, you will find the program test_led.py, which tells you pretty
much all you need to know about using the Raspberry Squid.

from squid import *
import time

rgb = Squid(18, 23, 24)
rgb.set_color(RED)
time.sleep(2)
rgb.set_color(GREEN)
time.sleep(2)
rgb.set_color(BLUE)
time.sleep(2)
rgb.set_color(WHITE)
time.sleep(2)
rgb.set_color(WHITE, 300)
time.sleep(2)

Having imported the squid library, you can create a new Squid object, supplying the
three pins to be used for its red, green, and blue channels (in this case, 18, 23, and
24). You can then set the color by using the set_color method, which takes either the

9.10 Using a Raspberry Squid | 211

name of a color constant (RED, GREEN, WHITE, etc.) or a tuple of three values each
between 0 and 100 for the red, green, and blue channels. The optional second param‐
eter to set_color is the overall brightness.

After the color is set, time.sleep(2) is used to create a two-second delay before the
next color change.

Discussion
You do not need to use all three color channels of a Squid, and it can be quite handy
to just check that a GPIO pin is turning on and off as you expect before attaching
some other electronics to it.

See Also
For information on the Squid library, see https://github.com/simonmonk/squid.

For information on the Squid Button, see Recipe 9.11.

Recipe 10.10 is an example project that controls an RGB LED (Squid or breadboard-
based).

9.11 Using a Raspberry Squid Button
Problem
You want to connect a push switch to your Raspberry Pi without having to build
something on a breadboard.

Solution
Use a Squid Button.

The Squid Button (Figure 9-13) is a push button with female header leads connected
to the contacts so that you can plug it directly into the GPIO connector of a Rasp‐
berry Pi. The Squid Button also includes a low-value resistor that limits the current
that would flow if the Squid Button were to be accidentally connected to a digital out‐
put rather than a digital input.

212 | Chapter 9: Hardware Basics

Figure 9-13. A Squid Button

The Squid Button is a natural companion to the Squid RGB LED and shares the same
Python library (see Recipe 9.10 to install this library).

The Squid Button could be used directly with the RPi.GPIO library, but the squid
library provides key debouncing (see https://github.com/simonmonk/squid) to prevent
accidental multiple presses of the button. The file test_button.py in the examples
folder of the squid library illustrates the use of the button.

from button import *
import time

b = Button(7)

while True:
 if b.is_pressed():
 print(time.time())

The number (in this case, 7) indicates the GPIO pin that the button is connected to.
The other pin is connected to GND.

Discussion
The Squid button is useful for testing projects that use a digital input, but since the
button is suitable for panel mounting, you can also build it into more permanent
projects.

See Also
For information on the squid library, see https://github.com/simonmonk/squid.

9.11 Using a Raspberry Squid Button | 213

For more information on using switches, see Recipes 12.1, 12.2, 12.3, 12.4, 12.5, and
12.6.

For information on the Squid RGB LED, see Recipe 9.10.

9.12 Converting 5V Signals to 3.3V with Two Resistors
Problem
The Raspberry Pi operates at 3.3V, but you want to know how to connect the 5V out‐
put of a module to a GPIO pin on the Pi without damaging it.

Solution
Use a pair of resistors as a potential divider to reduce the output voltage.
Figure 9-14 shows how you might use the 5V serial connection of an Arduino to a
Raspberry Pi.

To make this recipe, you will need:

• 270Ω resistor (see “Resistors and Capacitors” on page 474 in Appendix A)
• 470Ω resistor (see “Resistors and Capacitors” on page 474 in Appendix A)

Figure 9-14. Using resistors to convert a 5V signal to 3.3V

214 | Chapter 9: Hardware Basics

The TXD signal from the Pi is a 3.3V output. This can be connected directly to a 5V
input on the Arduino without any problem. The Arduino module will recognize any‐
thing over about 2.5V as being high.

The problem arises when you need to connect the 5V output of the Arduino module
to the RXD pin of the Pi. This must not be connected directly to the RXD input. The
5V signal could damage the Pi. Instead, the two resistors shown in Figure 9-14 are
used.

Discussion
The resistors used here will draw a current of 6mA. Given that the Pi uses a fairly
hefty 500mA, this will not noticeably affect the current consumption of the Pi.

If you want to minimize the current used by the potential divider, then use larger
value resistors, scaled proportionally—for example, 27kΩ and 47kΩ, which will draw
a miserly 60 µA.

See Also
For more information on connecting Raspberry Pi to Arduino, see Chapter 16.

If you have multiple signals to convert between 3.3V and 5V, then it’s probably best to
use a multichannel level converter module—see Recipe 9.13.

9.13 Converting 5V Signals to 3.3V with a Level Converter
Module
Problem
The Raspberry Pi operates at 3.3V. You want to connect a number of 5V digital pins
to GPIO pins on the Pi without damaging it.

Solution
Use a bidirectional level converter module, such as the ones shown in Figure 9-15.

These modules are very easy to use. One side has the power supply at one voltage and
a number of channels that can be either inputs or outputs at that voltage. The pins on
the other side of the module have a power pin at the second voltage, and all the inputs
and outputs on that side are automatically converted to the voltage level for that side.

9.13 Converting 5V Signals to 3.3V with a Level Converter Module | 215

Figure 9-15. Level converter modules

Discussion
These level converters are available with differing numbers of channels. The two
shown in Figure 9-15 have four and eight channels.

Sources for such level converters can be found in Appendix A.

See Also
See Recipe 9.12, especially if you have only one or two levels to convert.

Normally 5V logic inputs will accept 3.3V outputs without a problem, however in
some cases, such as when using LED strips (Recipe 14.7), this may not be the case, in
which case a transistor or one of the modules described above can be used to raise the
logic level.

9.14 Powering a Raspberry Pi with Batteries
Problem
You want to attach your Raspberry Pi to a robot and power it using alkaline batteries.

216 | Chapter 9: Hardware Basics

Solution
A typical project using a Raspberry Pi requires 5V at up to about 600mA (see Recipe
1.3). The requirement for 5V is strict. You should not try to power your Pi from more
or less than 5V. In practice, this means you are most likely to use a battery at a higher
voltage than 5V—say, 9V—and use a voltage regulator to drop the voltage to 5V.

The relatively high power requirement of the Pi makes it unsuitable for powering
from, say, a small 9V battery or even a set of AAA batteries. Most suitable would be a
pack made up of six rechargeable AA batteries and a voltage regulator.

Figure 9-16 shows how you can use a voltage regulator with a battery pack to power a
Pi through the 5V pin on the GPIO connector.

Figure 9-16. Powering a Raspberry Pi with AA batteries

The 7805 voltage regulator will get pretty hot. If it gets too hot, its thermal cutout will
kick in and the voltage at its output will drop, probably causing the Pi to reset. A heat
sink that clips onto the integrated circuit (IC) will help with this.

An alternative solution, and a cooler one, is to use a RasPiRobot Board V3 (Recipe
9.18), as shown in Figure 9-17.

9.14 Powering a Raspberry Pi with Batteries | 217

Figure 9-17. Powering a Raspberry Pi using a RasPiRobot Board V3

As well as being a motor driver, the RasPiRobot Board V3 has a built-in switched-
mode power supply that will take an input of between 7V and 12V and supply the
Raspberry Pi with 5V. Because the RasPiRobot Board V3 power supply is an efficient
switching power supply rather than a linear regulator like the 7805, it will not get hot
under normal use of the Raspberry Pi.

Discussion
The 7805 requires the input voltage to be at least 2V above 5V. You can also buy low
dropout (LDO) regulators, such as the LM2940. The LM2940 has the same pinout as
the 7805 but only requires the input to be 0.5V above the 5V output. However,
remember that nominally, 1.5V AA cells soon drop to about 1.2V. So a pack of four of
them is unlikely to provide enough voltage for more than a few minutes. A pack of
six will be fine.

218 | Chapter 9: Hardware Basics

The example above uses a 9V battery pack, but if you want to fit your Raspberry Pi
into an automobile or RV’s 12V supply, this recipe will still work. You will also need
to use a small monitor that can be powered from direct current (DC). Such devices
are fairly easily found, as they are commonly used with closed-circuit camera
systems.

See Also
Another way to power your Raspberry Pi from a battery is to use a ready-made cell‐
phone charger that accepts AA batteries. Make sure that it can cope with 600mA or
more.

Recipe 9.15 shows you how to power a Raspberry Pi from a LiPo battery pack.

For more information on using the RasPiRobot Board V3, see Recipe 9.18.

9.15 Powering a Raspberry Pi with a LiPo Battery
Problem
You want to attach your Raspberry Pi to a robot and power it from a 3.7V LiPo
battery.

Solution
Use a boost regulator module (Figure 9-18). The module shown is from SparkFun,
but similar designs are available on eBay more cheaply.

As always with such low-cost purchases from eBay, you should test the module thor‐
oughly before using it. They do not always work exactly as advertised, and quality can
be quite variable.

The advantage of this kind of module is that it acts as both a voltage regulator to sup‐
ply 5V to the Pi and also has a USB socket of its own to supply power to its charging
circuit. If you plug the Pi’s power adapter into the socket on the charger, the Pi will be
powered and the battery charged, allowing you to unplug the USB power and use the
Pi on the battery for as long as it has enough power.

With a 1300mA LiPo battery, you could expect the Pi to be powered for two or three
hours.

9.15 Powering a Raspberry Pi with a LiPo Battery | 219

Figure 9-18. Powering a Raspberry Pi with a 3.7V LiPo battery

Discussion
If you plan to handle the charging of the battery elsewhere, you can just go for a boost
converter module, without the charger, at a lower cost.

See Also
You can also find ready-made USB LiPo battery packs, often with a high-capacity
LiPo battery, that will power your Pi for hours.

9.16 Getting Started with the Sense HAT
Problem
You want to know how to use a Raspberry Pi Sense HAT.

220 | Chapter 9: Hardware Basics

Solution
The Raspberry Pi Sense HAT (Figure 9-19) is a useful and somewhat confusingly
named interface board for the Raspberry Pi. Yes, it includes sensors—in fact, it can
measure temperature, relative humidity, and atmospheric pressure (Recipe 13.10). It
also has an accelerometer, gyroscope (Recipe 13.13), and magnetometer (Recipe
13.14) for navigation type projects. It also has a full-color 8×8 LED matrix display
(Recipe 14.3).

Figure 9-19. The Raspberry Pi Sense HAT

The Sense HAT requires a Raspberry Pi with a 40-pin GPIO header, so you will not
be able to use it on an older Raspberry Pi with a 26-pin header.

The Sense HAT requires some software to be installed before you can use it. The pro‐
cess is not complicated, but it can take quite a while.

Note that by the time you read this, you might find that Raspbian already includes all
the software that you need for the Sense HAT. If this is the case, running these com‐
mands will not cause any problems; the installer will just tell you that it has nothing
to do.

Install the Sense HAT Python library by using the command:

$ sudo apt-get install sense-hat

9.16 Getting Started with the Sense HAT | 221

This installer will actually enable I2C automatically, so you do not need to follow the
usual I2C setup (Recipe 9.3).

The Sense HAT’s display uses a graphics library called Python Image Library (PIL),
which must be installed by using the command:

$ sudo pip-3.2 install pillow

Installation will take a while, after which you should reboot if I2C was not already
enabled.

Discussion
There are more recipes that use the Sense HAT in this book, but for now, you can just
check that everything is working by opening a Python console using:

$ sudo python

Then enter the following commands into the Python console:

>>> from sense_hat import SenseHat
>>> hat = SenseHat()
>>> hat.show_message('The Raspberry Pi Cookbook')

The LED matrix should then display the text of the message above, scrolling it across
the screen.

See Also
The programming reference for the Sense HAT, at https://pythonhosted.org/sense-hat/
api/.

To measure temperature, humidity, and atmospheric pressure, see Recipe 13.10.

To use the Sense HAT’s accelerometer and gyroscope, see Recipe 13.13.

To use the magnetometer to detect north and detect the presence of a magnet, see
Recipes 13.14 and 13.16, respectively.

9.17 Getting Started with the Explorer HAT Pro
Problem
You want to know how to get started with the Pimoroni Explorer HAT Pro.

Solution
Plug the HAT into your Raspberry Pi and install the Explorer HAT Pro Python
library.

222 | Chapter 9: Hardware Basics

Figure 9-20 shows a Pimoroni Explorer HAT Pro on a Raspberry Pi B+. Note that
this HAT will only work on a 40-pin Raspberry Pi.

Figure 9-20. A Pimoroni Explorer HAT Pro

The Explorer HAT Pro has some useful input/output options as well as an area where
a small solderless breadboard can be attached. Its features include:

• 4 LEDs
• 4 buffered inputs
• 4 buffered outputs (up to 500mA)
• 4 analog inputs
• 2 low-power motor drivers (max 200mA)
• 4 capacitative touch pads
• 4 capacitative crocodile clip pads

To install the Python library for the Explorer HAT Pro, run the following command:

$ sudo pip install explorerhat

9.17 Getting Started with the Explorer HAT Pro | 223

Once the library is installed, you can try a little experiment to make the built-in red
LED blink.

import explorerhat, time

while True:
 explorerhat.light.red.on()
 time.sleep(0.5)
 explorerhat.light.red.off()
 time.sleep(0.5)

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can download the program from the Code section of
the Raspberry Pi Cookbook website, where it is called explorer_blink.py.

Discussion
The Explorer HAT Pro provides four buffered inputs and outputs—that is inputs and
outputs that are not connected directly to the Raspberry Pi, but to chips on the
Explorer HAT Pro. This means that if you accidentally connect things incorrectly, the
Explorer HAT Pro will be damaged rather than your Raspberry Pi.

See Also
You can use the Explorer HAT for capacitative touch sensing (Recipe 13.18).

9.18 Getting Started with a RaspiRobot Board
Problem
You want to know how to use a RaspiRobot board.

Solution
Figure 9-21 shows the RaspiRobot board (version 3). The board has a dual-motor
controller that can be used for two DC motors or a single stepper motor. It can supply
5V power to the Raspberry Pi by using its built-in switched-mode voltage regulator.
The board has two switch inputs and two high-current (2A) outputs, and provides
easy connections to a HC-SR04 rangefinder and the I2C interfaces of the Raspberry
Pi.

224 | Chapter 9: Hardware Basics

Figure 9-21. The RaspiRobot board V3

The RaspiRobot Board V3 has its own Python library that you need to download and
install, using the following commands:

$ git clone https://github.com/simonmonk/raspirobotboard3.git
$ cd raspirobotboard3/python
$ sudo python setup.py install

Discussion
Fit your RasPiRobot V3 onto your Raspberry Pi and then power up the Raspberry Pi.
You can try out a few commands with the RaspiRobot board, using just the Python
console without attaching external power or motors to the RaspiRobot board. Since
the RaspiRobot board library uses the GPIO port, you will need to start Python as a
superuser by using this command:

$ sudo python

When you first power up, you should find that both LEDs on the RaspiRobot board
will be lit. Now enter the following commands, and both LEDs should turn off as the
library is initialized:

>>> from raspirobotboard import *
>>> rr = RRB3()

9.18 Getting Started with a RaspiRobot Board | 225

Try turning one of the LEDs on and off, using these commands:

>>> rr.set_led1(1)
>>> rr.set_led1(0)

The RaspiRobot board has two pairs of pins, each designed to be connected to a
switch. These are labeled SW1 and SW2 on the board. You can test whether SW1 is
closed by using the command:

>>> print(rr.sw1_closed())
False

Shorting the two pins of SW1 together with a screwdriver and issuing the command
again will return True.

Other commands are available to set the two open collector outputs (set_oc1 and
set_oc2) and motor control commands (forward, reverse, left, right, and stop).
See http://www.raspirobot.com for the full command reference.

See Also
To learn how to use this board to make a roving robot, see Recipe 11.10.

To use the RaspiRobot board to control a bipolar stepper motor, see Recipe 11.9.

9.19 Using a Pi Plate Prototyping Board
Problem
You want to know how to use a Pi Plate prototyping board.

Solution
The Pi Plate (Figure 9-22) is a prototyping board rather than an interface board like
the RaspiRobot board (Recipe 9.18). In other words, it does not include any electron‐
ics—it is designed for you to solder your own components to a prototyping area.

The board has an area where a 16-pin, surface-mount chip can be used, and a row of
four holes, spaced more widely, where a screw terminal can be soldered in place.

The board has screw terminals on two sides, which are connected to all the GPIO
pins. You can ignore the prototyping area entirely and just use the screw terminals to
attach wires to the GPIO pins.

226 | Chapter 9: Hardware Basics

Figure 9-22. The Pi Plate

Discussion
The board design has a grid of holes at a pitch of the standard 0.1 inch used by most
through-hole components, including DIL ICs. You solder components to the board
by pushing the leads through the holes at the top and soldering the connections
underneath.

The tracks that connect the holes are clearly visible on the top of the board, and the
board is divided into several zones. There is an area with central power busses
intended for DIL ICs, as well as a general prototyping area and areas for a surface-
mount chip and extra screw terminals.

Having soldered the components into place, you will need extra wires to link every‐
thing together. These can be run on the bottom or top of the board, or both if the
design is complicated.

It’s a good idea to plan out the layout before you start soldering.

In the following instructions, you will build an RGB LED onto a Pi Plate, using the
layout shown in Figure 9-23. This recipe is a version of Recipe 10.10, which is the
same except that the design is built onto a solderless breadboard.

9.19 Using a Pi Plate Prototyping Board | 227

Figure 9-23. Board layout for an RGB LED on a Pi Plate

228 | Chapter 9: Hardware Basics

The first step is to solder the resistors into place. Bend the leads and push them
through the appropriate holes in the board. Then flip the board over and touch the
soldering iron to where the leads emerge from the holes for a second or so before
applying the solder, which should flow around the lead (Figure 9-24).

Figure 9-24. Soldering a resistor to the Pi Plate

When you have soldered both ends, snip off the excess lead and repeat for the other
two resistors (Figure 9-25).

Now solder the LED into place, taking care to get it facing the right way. The longest
lead is the common cathode and should be the only LED lead attached to the strip of
holes that is not connected to any resistor. Very occasionally, you will find LEDs
where the longer lead is not the positive lead. This is often the case with infrared
LEDs. If you aren’t sure, check the datasheet for the LED or the supplier’s information
page.

9.19 Using a Pi Plate Prototyping Board | 229

Figure 9-25. Resistors soldered to the Pi Plate

You will also need to solder a short length of wire from that row to the GND connec‐
tion on the Pi Plate (Figure 9-26).

Figure 9-26. Soldering the link wire to the Pi Plate

230 | Chapter 9: Hardware Basics

When the board is complete, it should look like Figure 9-27.

Figure 9-27. The finished RGB LED on a Pi Plate

You can try out the LED using the Python program from Recipe 10.10.

See Also
There is more information about this product at the Adafruit website.

9.20 Making a Hardware At Top (HAT)
Problem
You want to create a prototype Raspberry Pi interface board that conforms to the
HAT standard.

Solution
Use a Perma-Proto Pi HAT (Figure 9-28).

9.20 Making a Hardware At Top (HAT) | 231

Figure 9-28. A Perma-Proto Pi HAT

With the advent of the Raspberry Pi B+ with a 40-pin GPIO header, a new standard
for add-on boards for the Raspberry Pi was defined, called HAT (Hardware At Top).
You do not have to stick to this standard, especially if you are just making a one-off
product for yourself, but if you are designing a product to sell, then it may make
sense for you to conform to the HAT standard.

The HAT standard defines the size and shape of the PCB and also mandates that the
PCB has an Electrically Erasable Read-Only Memory (EEPROM) chip soldered onto
the board. This chip is connected to the ID_SD and ID_SC pins of the GPIO header,
and in the future will allow some configuration of the Pi and even automatic loading
of software to occur when the Raspberry Pi is booted up with a HAT attached.

The prototyping area of the board is made up of some power rails and a breadboard
format layout of two rows of five holes plus power rails down both sides of the board.

If you don’t care about programming the EEPROM, then you can stop here. However,
if you want to add your own custom information onto the HAT’s EEPROM, then
read on to the Discussion next.

232 | Chapter 9: Hardware Basics

Discussion
The HAT standard makes a lot of sense. However, at the time of writing, Raspbian
does not make use of any information written in the HAT’s EEPROM. This is likely to
change in the future and leads to the exciting possibility of HATs automatically doing
things like enabling I2C and installing Python libraries for their hardware, just by
being present on the Raspberry Pi.

To write data into the EEPROM, you first need to enable the hidden I2C port used by
the ID_SD and ID_SC pins that are used to read and write to the EEPROM. To do
that, you will need to edit /boot/config.txt by adding in or uncommenting the line:

dtparam=i2c_vc=on

Once this is done, reboot your Raspberry Pi, and you should then be able to detect
that the I2C EEPROM is attached to the I2C bus using i2c tools (Recipe 9.4).

$ i2cdetect -y 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

You can see from the result of the i2cdetect command that the EEPROM has an I2C
address of 50. Note that the option -y 0 rather than the usual -y 1 is used because
this is not the normal I2C bus on pins 2 and 3, but rather the I2C bus dedicated to the
HAT EEPROM.

To read and write the EEPROM, you need to download some tools by using the com‐
mands below:

$ git clone https://github.com/raspberrypi/hats.git
$ cd hats/eepromutils
$ make

Writing the EEPROM is a three-step process. First, you must edit the file eeprom_set‐
tings.txt. Change at least the product_id, product_version, vendor, and product fields to
be your company name and product name. Note that there are lots of other options
in this file, which is well-documented. They include specifying back-powering
options, GPIO pins used, etc.

Second, after editing the file, run the command below to convert the text file into a
file suitable for writing to the EEPROM (rom_file.eep).

$./eepmake eeprom_settings.txt rom_file.eep
Opening file eeprom_settings.txt for read

9.20 Making a Hardware At Top (HAT) | 233

UUID=7aa8b587-9c11-4177-bf14-00e601c5025e
Done reading
Writing out...
Done.

Finally, copy rom_file.eep onto the EEPROM by running the command below:

sudo ./eepflash.sh -w -f=rom_file.eep -t=24c32
This will disable the camera so you will need to REBOOT after this...
This will attempt to write to i2c address 0x50. Make sure there is...
This script comes with ABSOLUTELY no warranty. Continue only if you...
Do you wish to continue? (yes/no): yes
Writing...
0+1 records in
0+1 records out
127 bytes (127 B) copied, 2.52071 s, 0.1 kB/s
Done.
pi@raspberrypi ~/hats/eepromutils $

Once writing is complete, you can read the ROM back using the commands below:

$ sudo ./eepflash.sh -r -f=read_back.eep -t=24c32
$./eepdump read_back.eep read_back.txt
$ more read_back.txt

See Also
You can find the Raspberry Pi HAT design guide here: https://github.com/raspberrypi/
hats.

There are many ready-made HATs on the market, including the Stepper Motor
(Recipe 11.8), Capacitative Touch (Recipe 13.18), and 16-Channel PWM (Recipe
11.1) HATs from Adafruit, as well as the Pimoroni Explorer HAT Pro (Recipe 9.16).

9.21 The Pi Compute Module
Problem
You want to create a product that uses Raspberry Pi Technology, but you don’t want
to have to include an entire Raspberry Pi.

Solution
Use a Raspberry Pi Compute module.

The Raspberry Pi Compute module (shown on the left of Figure 9-29 next to its IO
board on the right) is a board containing the Raspberry Pi System on a Chip (SoC)
with 512 MB RAM in the form factor of a SODIMM memory module such as you
would fit into a laptop when upgrading its memory.

234 | Chapter 9: Hardware Basics

Figure 9-29. The Raspberry Pi Compute module and IO Board

The hardware is based on the original Raspberry Pi, but instead of an SD card slot,
there is a 4GB Flash chip built onto the board.

The idea behind this board is that product developers can create their own PCB with
a SODIMM socket on it into which the Pi Compute module could be plugged. The
companion IO board is just there for you to prototype your designs using the com‐
pute board.

Discussion
This board was released before the Raspberry Pi Zero (Recipe 9.22), and at the time
of writing seems somewhat redundant as it is more expensive than the Zero, does not
perform as well, and is only slightly smaller. It also lacks any of the connectors
present on the Pi Zero, which may be just what you need in your product without
having to design your own PCB.

A smattering of products have been produced that use the Compute module, but
without a hardware refresh and/or big price drop, this board may have an uncertain
future.

9.21 The Pi Compute Module | 235

See Also
For full information on the Pi Compute module, see https://www.raspberrypi.org/blog/
raspberry-pi-compute-module-new-product/.

9.22 The Pi Zero
Problem
You want to learn more about the Pi Zero and how to make use of it in electronics
projects.

Solution
The small size and extremely low cost of the Pi Zero make it the ideal choice for
embedding in electronics projects.

Figure 9-30 shows a Raspberry Pi Zero.

Figure 9-30. The Raspberry Pi Zero

The Pi Zero is supplied without header pins attached, so your first job is likely to be
to solder pins to it. Suitable header pins are available in Pi Zero starter kits, such as
the one supplied by Pi Hut.

You can also use the easier-to-find single-row header pins, just by soldering two
lengths side by side.

236 | Chapter 9: Hardware Basics

Discussion
With only one USB connector—and a micro USB OTG (on the go) connector at that,
you will need a USB adapter and USB hub to be able to plug in a USB WiFi dongle,
keyboard, and mouse in order to set up the Pi Zero.

Alternatively, you can use a console cable as described in Recipe 2.6 to set up WiFi by
editing /etc/network/interfaces as described in Recipe 2.5. Once that is set up, you can
connect to the Pi Zero wirelessly using SSH (Recipe 2.7).

See Also
For a comparison of the Raspberry Pi models available, see Recipe 1.1.

9.22 The Pi Zero | 237

CHAPTER 10

Controlling Hardware

10.0 Introduction
In this chapter, you come to grips with the control of electronics through the Rasp‐
berry Pi’s GPIO connector.

Most of the recipes require the use of solderless breadboard and male-to-female and
male-to-male jumper wires (see Recipe 9.8). To maintain compatibility with older 26-
pin Raspberry Pi models, all the breadboard examples here only use the top 26 pins
common to both GPIO layouts (see Recipe 9.1).

10.1 Connecting an LED
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to know how to connect an LED to the Raspberry Pi.

Solution
Connect an LED to one of the GPIO pins using a 470Ω or 1kΩ series resistor to limit
the current. To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 470Ω resistor (see “Resistors and Capacitors” on page 474)

239

• LED (see “Opto-Electronics” on page 476)

Figure 10-1 shows how you can wire this LED using a solderless breadboard and
male-to-female jumper leads.

Figure 10-1. Connecting an LED to a Raspberry Pi

Having connected the LED, we need to be able to turn it on and off using commands
from Python.

Start a Python console from the Terminal with superuser access and enter these com‐
mands:

$ sudo python
>>> import RPi.GPIO as GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(18, GPIO.OUT)
>>> GPIO.output(18, True)
>>> GPIO.output(18, False)

This will turn your LED on and off.

Discussion
LEDs are a very useful, cheap, and efficient way of producing light, but you do have to
be careful how you use them. If they are connected directly to a voltage source (such
as a GPIO output) that is greater than about 1.7 volts, they will draw a very large cur‐
rent. This can often be enough to destroy the LED or whatever is providing the cur‐
rent—which is not good if your Raspberry Pi is providing the current.

You should always use a series resistor with an LED because the series resistor is
placed between the LED and the voltage source, which limits the amount of current
flowing through the LED to a level that is safe for both the LED and the GPIO pin
driving it.

240 | Chapter 10: Controlling Hardware

Raspberry Pi GPIO pins are only guaranteed to provide about 3mA or 16mA of cur‐
rent (depending on the board and number of pins in use)—see Recipe 9.2. LEDs will
generally illuminate with any current greater than 1mA, but will be brighter with
more current. Use Table 10-1 as a guide to selecting a series resistor based on the type
of LED; the table also indicates the approximate current that will be drawn from the
GPIO pin.

Table 10-1. Selecting series resistors for LEDs and a 3.3V GPIO pin
LED type Resistor Current (mA)
Red 470Ω 3.5

Red 1kΩ 1.5

Orange, yellow, green 470Ω 2

Orange, yellow, green 1kΩ 1

Blue, white 100Ω 3

Blue, white 270Ω 1

As you can see, in all cases, it is safe to use a 470Ω resistor. If you are using a blue or
white LED, you can reduce the value of the series resistor considerably without risk of
damaging your Raspberry Pi.

If you want to extend the experiments that you made in the Python console into a
program that makes the LED blink on and off repeatedly, you could paste the follow‐
ing code into the IDLE (Recipe 5.2) or nano (Recipe 3.6) editors. Save the file as
led_blink.py. You can also download the program from the Downloads section on the
Raspberry Pi Cookbook website.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

while (True):
 GPIO.output(18, True)
 time.sleep(0.5)
 GPIO.output(18, False)
 time.sleep(0.5)

Remember that to run the program, you must have superuser privileges for the
RPi.GPIO library, so you need to use this command:

$ sudo python led_blink.py

See Also
Check out this handy series resistor calculator.

10.1 Connecting an LED | 241

For more information on using breadboard and jumper wires with the Raspberry Pi,
see Recipe 9.8.

10.2 Leaving the GPIO Pins in a Safe State
Problem
You want all the GPIO pins to be set to inputs whenever your program exits so that
there is less of a chance of an accidental short on the GPIO header, which could dam‐
age your Raspberry Pi.

Solution
Use a try: finally: construction and the GPIO.cleanup method.

The blink example from Recipe 10.1 can be rewritten to exit safely as shown below.
The file for the code is called led_blink_safe.py.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

try:
 while (True):
 GPIO.output(18, True)
 time.sleep(0.5)
 GPIO.output(18, False)
 time.sleep(0.5)
finally:
 print("Cleaning Up!")
 GPIO.cleanup()

Now, when you Ctrl-C the program to close it, GPIO.cleanup will be called before the
program exits.

Discussion
If cleanup is not called or the Pi is not rebooted, then pins set to be outputs will
remain as outputs after the program has finished. If you were to start wiring up a new
project, unaware of this problem, your new circuit might accidentally short a GPIO
output to one of the supply rails or another GPIO pin in the opposite state.

A typical scenario where this might happen would be if you were to connect a push
switch, connecting a GPIO pin that you had configured as an output and HIGH to
GND, such as in Recipe 12.1.

242 | Chapter 10: Controlling Hardware

In summary, either be careful when swapping hardware or use GPIO.cleanup as
shown earlier, or reboot your Pi. In any case, its a good idea to power down your Pi
while you are connecting new hardware to it.

See Also
For more information on exception handling in Python, see Recipe 7.10.

10.3 Controlling the Brightness of an LED
Problem
You want to vary the brightness of an LED from a Python program.

Solution
The RPi.GPIO library has a pulse-width modulation (PWM) feature that allows you
to control the power to an LED and its brightness.

To try it out, connect an LED as described in Recipe 10.2 and run this test program
(led_brightness.py):

import RPi.GPIO as GPIO

led_pin = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(led_pin, GPIO.OUT)

pwm_led = GPIO.PWM(led_pin, 500)
pwm_led.start(100)

while True:
 duty_s = raw_input("Enter Brightness (0 to 100):")
 duty = int(duty_s)
 pwm_led.ChangeDutyCycle(duty)

If you are using Python 3 rather than Python 2, change the command raw_input to
input.

Run the Python program, and you will be able to change the brightness by entering a
number between 0 and 100:

pi@raspberrypi ~ $ sudo python led_brightness.py
Enter Brightness (0 to 100):0
Enter Brightness (0 to 100):20
Enter Brightness (0 to 100):10
Enter Brightness (0 to 100):5
Enter Brightness (0 to 100):1
Enter Brightness (0 to 100):90

10.3 Controlling the Brightness of an LED | 243

Exit the program by pressing Ctrl-C.

Discussion
PWM is a clever technique where you vary the length of pulses while keeping the
overall number of pulses per second (the frequency in Hz) constant. Figure 10-2 illus‐
trates the basic principle of PWM.

Figure 10-2. Pulse-width modulation

At high frequencies, the measured PWM frequency varies somewhat from the fre‐
quency supplied as an argument. This might change in later versions of the PWM
feature of RPi.GPIO.

You can change the PWM frequency by modifying this line:

pwm_led = GPIO.PWM(led_pin, 500)

The value is in Hz, so in this case, the frequency is set to 500 Hz.

Table 10-2 compares frequencies specified in the second parameter to GPIO.PWM to
the actual frequency on the pin measured with an oscilloscope.

244 | Chapter 10: Controlling Hardware

Table 10-2. Requested frequency against actual frequency
Requested frequency Measured frequency
50 Hz 50 Hz

100 Hz 98.7 Hz

200 Hz 195 Hz

500 Hz 470 Hz

1 kHz 890 Hz

10 kHz 4.4 kHz

I also found that as the frequency increased, its stability decreased. This means that
this PWM feature is no good for audio but plenty fast enough for controlling the
brightness of LEDs or the speed of motors.

See Also
For more information on PWM, see Wikipedia.

Recipe 10.10 uses PWM to change the color of an RGB LED, and Recipe 11.4 uses
PWM to control the speed of a DC motor.

For more information on using breadboard and jumper wires with the Raspberry Pi,
see Recipe 9.8. You can also control the brightness of the LED with a slider control—
see Recipe 10.9.

For another approach to controlling the color of an RGB LED using the Squid RGB
LED library, see Recipe 9.10.

10.4 Make a Buzzing Sound
Problem
You want to make a buzzing sound with the Raspberry Pi.

Solution
Use a piezo-electric buzzer connected to a GPIO pin.

Most small piezo buzzers work just fine using the arrangement shown in Figure 10-3.
The one I used is an Adafruit-supplied component (see “Miscellaneous” on page 477).
You can connect the buzzer pins directly to the Raspberry Pi using female-to-female
headers (see “Prototyping Equipment” on page 474).

These buzzers use very little current. However, if you have a large buzzer or just want
to play it safe, then put a 470Ω resistor between the GPIO pin and the buzzer lead.

10.4 Make a Buzzing Sound | 245

Figure 10-3. Connecting a piezo buzzer to a Raspberry Pi

Paste the following code into the IDLE (Recipe 5.2) or nano (Recipe 3.6) editors.
Save the file as buzzer.py. You can also download the program from the Downloads
section of the Raspberry Pi Cookbook website.

import RPi.GPIO as GPIO
import time

buzzer_pin = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(buzzer_pin, GPIO.OUT)

def buzz(pitch, duration):
 period = 1.0 / pitch
 delay = period / 2
 cycles = int(duration * pitch)
 for i in range(cycles):
 GPIO.output(buzzer_pin, True)
 time.sleep(delay)
 GPIO.output(buzzer_pin, False)
 time.sleep(delay)

while True:

246 | Chapter 10: Controlling Hardware

 pitch_s = raw_input("Enter Pitch (200 to 2000): ")
 pitch = float(pitch_s)
 duration_s = raw_input("Enter Duration (seconds): ")
 duration = float(duration_s)
 buzz(pitch, duration)

When you run the program, it will first prompt you for the pitch in Hz and then the
duration of the buzz in seconds:

$ sudo python buzzer.py
Enter Pitch (2000 to 10000): 2000
Enter Duration (seconds): 20

Discussion
Piezo buzzers don’t have a wide range of frequencies, nor is the sound quality
remotely good. However, you can vary the pitch a little. The frequency generated by
the code is very approximate.

The program works by simply toggling the GPIO pin 18 on and off with a short delay
in between. The delay is calculated from the pitch. The higher the pitch (frequency),
the shorter the delay needs to be.

See Also
You can find the datasheet for the piezo buzzer here: http://bit.ly/Iwkv2R.

10.5 Switching a High-Power DC Device Using a Transistor
Problem
You want to control the power to a high-power, low-voltage DC device such as a 12V
LED module.

Solution
These high-power LEDs use far too much current to light directly from a GPIO pin.
They also require 12V rather than the 3.3V. To control such a high-power load, you
need to use a transistor.

In this case, you will use a high-power type of transistor called a metal–oxide–semi‐
conductor field-effect transistor (MOSFET), which costs less than a dollar but can
handle loads up to 30 amps—many times more than is required for the high-power
LEDs. The MOSFET used is a FQP30N06L (see “Transistors and Diodes” on page
475).

Figure 10-4 shows how you can connect a MOSFET on a breadboard. Make sure that
you correctly identify the positive and negative supply leads for the LED module.

10.5 Switching a High-Power DC Device Using a Transistor | 247

Figure 10-4. Controlling large currents with a MOSFET

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• FQP30N06L N-Channel MOSFET or TIP120 Darlington transistor (see “Transis‐

tors and Diodes” on page 475)
• 12V power adapter
• 12V DC LED module

The Python code to turn the LED panel on and off is exactly the same as if we were
controlling a single low-power LED without the MOSFET (see Recipe 10.1).

You can also use PWM with the MOSFET to control the brightness of the LED mod‐
ule (see Recipe 10.3).

Discussion
Whenever you need to power anything significant using the GPIO connector, use
batteries or an external power adapter. The GPIO connector can only supply rela‐
tively low currents (Recipe 9.2). In this case, you’ll use a 12V DC power adapter to
provide the power to the LED panel. Pick a power adapter that has sufficient power
handling. Therefore, if the LED module is 5W, then you need at least a 12V 5W
power supply (6W would be better). If the power supply specifies a maximum current
rather than power, then you can calculate its power by multiplying the voltage by the
maximum current. Therefore, a 500mA 12V power supply can provide 6W of power.

248 | Chapter 10: Controlling Hardware

The resistor is necessary to ensure that the peak currents that occur as the MOSFET
switches from off to on and vice versa do not overload the GPIO pin. The MOSFET
switches the negative side of the LED panel, so the positive supply is connected
directly to the positive side of the LED panel, and the negative side of the LED panel
is connected to the drain of the MOSFET. The source connection of the MOSFET is
connected to GND, and the MOSFET’s gate pin controls the flow of current from the
drain to the source. If gate voltage is above 2V or so, the MOSFET will turn on and
current flows through both it and the LED module.

The MOSFET used here is a FQP30N06L. The L at then end means that it is a logic-
level MOSFET whose gate threshold voltage is suitable for use with 3.3V digital out‐
puts. The non-L version of this MOSFET is also likely to work just fine, but you can‐
not guarantee it as the specified range of gate threshold voltages is 2V to 4V. There‐
fore, if you were unlucky and got a MOSFET at the 4V end, it would not switch well.

An alternative to using a MOSFET is to use a power Darlington transistor like the
TIP120. This has a compatible pinout with the FQP30N06L, so you can keep the
same breadboard layout.

This circuit is suitable for controlling the power to other low-voltage DC devices. The
only real exceptions are motors and relays, which require some extra treatment (see
Recipe 10.6).

See Also
Check out the datasheet for the MOSFET.

If you would like to create a graphical user interface with which to control your LED
module, see Recipe 10.8 for simple on/off control, and Recipe 10.9 for variable con‐
trol of the brightness with a slider.

10.6 Switching a High-Power Device Using a Relay
Problem
You want to turn devices on and off that may not be suitable for switching with a
MOSFET.

Solution
Use a relay and small transistor.

Figure 10-5 shows how you can connect a transistor and relay on a breadboard. Make
sure that both the transistor and diode are placed the right way. The diode has a stripe
at one end, and the transistor used here has one side flat and one curved.

10.6 Switching a High-Power Device Using a Relay | 249

Figure 10-5. Using a relay with a Raspberry Pi

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• Transistor 2N3904 (see “Transistors and Diodes” on page 475)
• 1N4001 diode (see “Transistors and Diodes” on page 475)
• 5V relay (see “Miscellaneous” on page 477)
• Multimeter

You can use the same LED blink program that you used in Recipe 10.1. If all is well,
you’ll hear a click from the relay each time the contacts are closed. However, relays
are slow mechanical devices, so don’t try to use them with PWM. It may damage the
relay.

250 | Chapter 10: Controlling Hardware

Discussion
Relays have been around since the early days of electronics and have the great advan‐
tage of being easy to use, plus they’ll work in any situation where a switch would
normally work—for example, when you’re switching AC (alternating current) or in
situations where the exact wiring of the device being switched is unknown.

If the relay contacts are asked to exceed their specifications, then the relay’s life will be
shortened. There will be arcing, and the contacts may eventually fuse together. There
is also the possibility of the relay becoming dangerously hot. When in doubt, over‐
specify the relay contacts.

Figure 10-6 shows the schematic symbol, pin layout, and package of a typical relay.

Figure 10-6. The workings of a relay

A relay is essentially a switch whose contacts are closed when an electromagnet pulls
them together. Since the electromagnet and switch are not connected electrically in
any way, this protects the circuit driving the relay coil from any high voltages on the
switch side.

The downside of relays is that they are slow to operate and will eventually wear out
after many hundreds of thousands of operations. This means they are only suitable
for slow on/off control, and not for fast switching like PWM.

The coil of a relay requires about 50mA to close the connections. Because a Rasp‐
berry Pi GPIO pin is only capable of supplying about 3mA, you need to use a small
transistor as a switch. You don’t need to use a high-power MOSFET like you did in
Recipe 10.5, but instead you can just use a small transistor. This has three connec‐
tions. The base (middle lead) is connected to the GPIO pin via a 1kΩ resistor to limit
the current. The emitter is connected to GND, and the collector is connected to one
side of the relay. The other side of the relay is connected to 5V on the GPIO connec‐
tor. The diode is used to suppress any high-voltage pulses that occur when the tran‐
sistor rapidly switches the power to the relay’s coil.

10.6 Switching a High-Power Device Using a Relay | 251

Although relays can be used to switch 110V or 240V AC, this volt‐
age is very dangerous and should not be used on a breadboard. If
you want to switch high voltages, use Recipe 10.7 instead.

See Also
For switching DC using a power MOSFET, see Recipe 10.5.

10.7 Controlling High-Voltage AC Devices
Problem
You want to switch 110 or 240V AC, using a Raspberry Pi.

Solution
Use a PowerSwitch Tail II (see Figure 10-7). This handy device makes it really easy to
switch AC equipment on and off from a Raspberry Pi. It has an AC socket on one end
and a plug on the other, like an extension cable; the only difference is that the control
box in the middle of the lead has three screw terminals. By attaching terminal 2 to
GND and terminal 1 to a GPIO pin, the device acts like a switch to turn the appliance
on and off.

You can use the same Python code that you did in Recipe 10.1 to use the PowerSwitch
Tail, as shown in Figure 10-7.

Discussion
The PowerSwitch Tail uses a relay, but to switch the relay, it uses a component called
an opto-isolator, which has an LED shining onto a photo-TRIAC (a high-voltage,
light-sensitive switch); when the LED is illuminated, the photo-TRIAC conducts,
supplying current to the relay coil.

The LED inside the opto-isolator has its current limited by a resistor so that only
3mA flows through it when you supply it with 3.3V from a GPIO pin.

You will also find similar but cheaper devices to the PowerSwitch Tail for sale on eBay
and Amazon.

252 | Chapter 10: Controlling Hardware

Figure 10-7. Using a PowerSwitch Tail with Raspberry Pi

See Also
For switching DC using a power MOSFET, see Recipe 10.5; and for switching using a
relay on a breadboard, see Recipe 10.6.

A 240V version of the PowerSwitch Tail is available as a kit.

10.8 Making a User Interface to Turn Things On and Off
Problem
You want to make an application to run on the Raspberry Pi that has a button for
turning things on and off.

Solution
Using the Tkinter user interface framework, write a Python program that uses a
checkbox to turn the GPIO pin on and off (Figure 10-8).

10.8 Making a User Interface to Turn Things On and Off | 253

Figure 10-8. A user interface for turning things on and off

You’ll need to connect an LED or some other kind of output device to GPIO pin 18.
Using an LED (Recipe 10.1) is the easiest option to start with.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_switch.py.

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 self.check_var = BooleanVar()
 check = Checkbutton(frame, text='Pin 18',
 command=self.update,
 variable=self.check_var, onvalue=True, offvalue=False)
 check.grid(row=1)

 def update(self):
 GPIO.output(18, self.check_var.get())

root = Tk()
root.wm_title('On / Off Switch')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

Note that you will need to run it with sudo because the RPi.GPIO requires you to have
superuser privileges to access the GPIO hardware:

$ sudo python gui_switch.py

In Python 3, the Tkinter library has been renamed tkinter with a
lowercase t.

254 | Chapter 10: Controlling Hardware

Discussion
The example program defines a class called App that contains most of the application
code. Its initializer function creates a member variable called check_var that contains
an instance of BooleanVar that is then supplied as the variable option to the check‐
box. This ensures that every time the checkbox is clicked, the value in this variable
will be changed. The command option runs the update command every time such a
change occurs.

The update function simply writes the value in check_var to the GPIO output.

See Also
You can use this program to control an LED (Figure 10-8), a high-power DC device
(Recipe 10.5), a relay (Recipe 10.6), or a high-voltage AC device (Recipe 10.7).

10.9 Making a User Interface to Control PWM Power for
LEDs and Motors
Problem
You want to make an application to run on the Raspberry Pi that has a slider to con‐
trol power to a device using PWM.

Solution
Using the Tkinter user interface framework, write a Python program that uses a slider
to change the PWM duty cycle between 0 and 100 percent (Figure 10-9).

Figure 10-9. User interface for controlling PWM power

You will need to connect an LED or some other kind of output device to GPIO pin 18
that is capable of responding to a PWM signal. Using an LED (Recipe 10.1) is the
easiest option to start with.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_slider.py.

10.9 Making a User Interface to Control PWM Power for LEDs and Motors | 255

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
pwm = GPIO.PWM(18, 500)
pwm.start(100)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 scale = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.update)
 scale.grid(row=0)

 def update(self, duty):
 pwm.ChangeDutyCycle(float(duty))

root = Tk()
root.wm_title('PWM Power Control')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

Note that you will need to run it with sudo because the RPi.GPIO requires you to have
superuser privileges to access the GPIO hardware.

$ sudo python gui_slider.py

Discussion
The example program defines a class called App that contains most of the application
code. The command option runs the update command every time the value of the
slider is changed. This updates the duty cycle of the output pin.

See Also
You can use this program to control an LED (Recipe 10.1), a DC motor (Recipe 11.4),
or a high-power DC device (Recipe 10.5).

10.10 Changing the Color of an RGB LED
Problem
You want to control the color of an RGB LED.

256 | Chapter 10: Controlling Hardware

Solution
Use PWM to control the power to each of the red, green, and blue channels of an
RGB LED.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Three 470Ω resistors (see “Resistors and Capacitors” on page 474)
• RGB common cathode LED (“Opto-Electronics” on page 476)
• A Perma-Proto (Recipe 9.9) or Pi Plate (see Recipe 9.19) to make a more perma‐

nent project (optional)

Figure 10-10 shows how you can connect your RGB LED on a breadboard. Make sure
that the LED is the correct way around; the longest lead should be the second lead
from the top of the breadboard. This connection is called the common cathode, as the
negative connections (cathodes) of the red, green, and blue LEDs within the LED case
have all their negative sides connected together to reduce the number of pins needed
in the package.

Figure 10-10. Using a RGB LED with a Raspberry Pi

An alternative to using a breadboard is to use a Raspberry Squid (see Recipe 9.10).

The upcoming program has three sliders to control the red, green, and blue channels
of the LED (Figure 10-11).

10.10 Changing the Color of an RGB LED | 257

Figure 10-11. Using a user interface to control an RGB LED

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_sliderRGB.py.

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(24, GPIO.OUT)

pwmRed = GPIO.PWM(18, 500)
pwmRed.start(100)

pwmGreen = GPIO.PWM(23, 500)
pwmGreen.start(100)

pwmBlue = GPIO.PWM(24, 500)
pwmBlue.start(100)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 Label(frame, text='Red').grid(row=0, column=0)
 Label(frame, text='Green').grid(row=1, column=0)
 Label(frame, text='Blue').grid(row=2, column=0)
 scaleRed = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateRed)
 scaleRed.grid(row=0, column=1)
 scaleGreen = Scale(frame, from_=0, to=100,

258 | Chapter 10: Controlling Hardware

 orient=HORIZONTAL, command=self.updateGreen)
 scaleGreen.grid(row=1, column=1)
 scaleBlue = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateBlue)
 scaleBlue.grid(row=2, column=1)

 def updateRed(self, duty):
 pwmRed.ChangeDutyCycle(float(duty))

 def updateGreen(self, duty):
 pwmGreen.ChangeDutyCycle(float(duty))

 def updateBlue(self, duty):
 pwmBlue.ChangeDutyCycle(float(duty))

root = Tk()
root.wm_title('RGB LED Control')
app = App(root)
root.geometry("200x150+0+0")
root.mainloop()

Discussion
The code is similar in operation to the control for a single PWM channel, described
in Recipe 10.9. However, in this case, you need three PWM channels and three slid‐
ers, one for each color.

The type of RGB LED used here is a common cathode. If you have the common
anode type, then you can still use it, but connect the common anode to the 3.3V pin
on the GPIO connector. You will then find that the slider becomes reversed, so a set‐
ting of 100 becomes off and 0 becomes full on.

When you are selecting an LED for this project, LEDs labeled diffused are best
because they allow the colors to be mixed better.

See Also
If you just want to control one PWM channel, see Recipe 10.9.

For another approach to controlling the color of an RGB LED using the Squid RGB
LED library, see Recipe 9.10.

10.10 Changing the Color of an RGB LED | 259

10.11 Using Lots of LEDs (Charlieplexing)
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to control lots of LEDs using as few GPIO pins as possible.

Solution
The way to do this is to use a technique called Charlieplexing. The name comes from
the inventor, Charlie Allen of the company Maxim, and the technique takes advan‐
tage of the feature of GPIO pins that allows them to be changed from outputs to
inputs while a program is running. When a pin is changed to be an input, not enough
current will flow through it to light an LED or influence other pins connected to the
LED that are set as outputs.

Figure 10-12 shows the schematic for controlling six LEDs with three pins.

Figure 10-12. Charlieplexing

Figure 10-13 shows the breadboard layout for the LEDs and resistors.

To make this recipe, you will need:

260 | Chapter 10: Controlling Hardware

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Three 470Ω resistors (see “Resistors and Capacitors” on page 474)
• Six LEDs (see “Opto-Electronics” on page 476)

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called charlieplexing.py.

Figure 10-13. Charlieplexing breadboard layout

This example code prompts you to enter a number between 0 and 5, which then lights
one of the six LEDs:

import RPi.GPIO as GPIO

pins = [18, 23, 24]

pin_led_states = [
 [1, 0, -1], # A
 [0, 1, -1], # B
 [-1, 1, 0], # C
 [-1, 0, 1], # D
 [1, -1, 0], # E
 [0, -1, 1] # F
]

GPIO.setmode(GPIO.BCM)

def set_pin(pin_index, pin_state):
 if pin_state == -1:
 GPIO.setup(pins[pin_index], GPIO.IN)
 else:
 GPIO.setup(pins[pin_index], GPIO.OUT)
 GPIO.output(pins[pin_index], pin_state)

10.11 Using Lots of LEDs (Charlieplexing) | 261

def light_led(led_number):
 for pin_index, pin_state in enumerate(pin_led_states[led_number]):
 set_pin(pin_index, pin_state)

set_pin(0, -1)
set_pin(1, -1)
set_pin(2, -1)

while True:
 x = int(raw_input("Pin (0 to 5):"))
 light_led(x)

Discussion
To understand how Charlieplexing works, imagine that you want to light LED A in
Figure 10-12. An LED will only light when its positive lead is high and its negative
lead is low. If the voltage is the other way around, it will not light. To light LED A, you
need its lead connected to GPIO 18 (via a resistor) to be high, and the other lead to
LED A, connected to GPIO 23 by a resistor, to be low. However, you must also make
sure that GPIO 24 is set to be an input; otherwise, LED C or D will also light depend‐
ing on whether GPIO 24 is high or low.

The array pin_led_states holds the settings for each GPIO for each of the six LEDs. If
the value is 0, the pin is low; 1 means high and -1 means set to be an input.

The number of LEDs that can be controlled per GPIO pin is given by the formula:

LEDs = n2 - n

Using four pins, you can have 16, 4, or 12 LEDs, whereas 10 pins would give you a
massive 90 LEDs.

In this example, you’re lighting only one LED at a time. To light more than one at a
time, you need to run a refresh loop that keeps the desired state of the LEDs in an
array and refreshes the display, turning on the LEDs that need to be on before moving
on to the next. It must do this fast enough so that it appears that more than one of the
LEDs is on at the same time.

The more LEDs you use when it comes to making it appear that more than one LED
is on at a time, the less time the LED will actually be lit, and the dimmer the LEDs
will become.

See Also
For more information about Charlieplexing, see Wikipedia.

262 | Chapter 10: Controlling Hardware

10.12 Using an Analog Meter as a Display
Problem
You want to connect an analog panel volt meter to a Raspberry Pi.

Solution
Assuming you have a 5V volt meter, you can use a PWM output to drive the meter
directly, connecting the negative side of the meter to ground and the positive side to a
GPIO pin (Figure 10-14). If the meter is the common 5V kind, you’ll only be able to
display voltages up to 3.3V.

Figure 10-14. Connecting a volt meter directly to a GPIO pin

10.12 Using an Analog Meter as a Display | 263

If you want to use almost the full range of a 5V volt meter, you will need a transistor
to act as a switch for the PWM signal and a 1kΩ resistor to limit the current to the
base of the transistor.

To make this recipe, you will need:

• 5V panel meter (“Miscellaneous” on page 477)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Two 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• Transistor 2N3904 (see “Transistors and Diodes” on page 475)

The breadboard layout for this is shown in Figure 10-15.

Figure 10-15. Using a 5V panel meter with 3.3V GPIO

Discussion
To test the volt meter, use the same program as you did for controlling the brightness
of the LED in Recipe 10.9.

You will probably notice that the needle gives a steady reading at either end of the
scale, but everywhere else it jitters a bit. This is a side effect of the way the PWM sig‐
nals are generated. For a steadier result, you can use external PWM hardware like the
16-channel module used in Recipe 11.3.

See Also
For more information about how old-fashioned volt meters work, see Wikipedia.

264 | Chapter 10: Controlling Hardware

For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

10.13 Programming with Interrupts
Problem
You want to respond to some event, such as a button push, without having to contin‐
ually poll the input pin to see if its state has changed.

Solution
Use the add_event_detect function of the RPi.GPIO library.

The upcoming example shows how you can attach an interrupt service routine to be
triggered when a button is pressed.

Wire the switch onto a breadboard, as shown in Figure 10-16. Alternatively, you
could use a Squid Button (Recipe 9.11).

Figure 10-16. Connecting a switch to a GPIO input to demonstrate interrupts

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can download the program from the Code section of
the Raspberry Pi Cookbook website, where it is called interrupts.py.

This example code continually updates a count in seconds and displays a message
when the button is pressed:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

10.13 Programming with Interrupts | 265

def my_callback(channel):
 print('You pressed the button')

GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.add_event_detect(18, GPIO.FALLING, callback=my_callback)

i = 0
while True:
 i = i + 1
 print(i)
 time.sleep(1)

Try running the program with superuser privileges—you should see something like
this happen when you press the button:

$ sudo python interrupts.py
1
2
3
You pressed the button
4
You pressed the button
5
You pressed the button
You pressed the button
6

Discussion
You could detect when a button has been pressed or a GPIO input has changed by
simply checking repeatedly in a loop; for example:

while True:
 if GPIO.input(18) == False:
 # put the code to be actioned here
 time.sleep(0.1)

The disadvantage here is that you can’t do much else while you are checking for but‐
ton presses. A second disadvantage is that if the button press is very quick, it could
come and go before you can register it with the GPIO.input. This approach is called
polling.

Interrupts work differently. They allow you to associate a function with one of the
pins so that when the voltage at the input changes either from low to high or vice
versa, you can trigger the function to be run.

You can see how this works in the preceding example program. First, define a func‐
tion called my_callback that takes a single argument. This argument specifies the
input that triggered the interrupt, allowing you to use the same handler function for a
number of interrupts.

266 | Chapter 10: Controlling Hardware

def my_callback(channel):
 print('You pressed the button')

In this case, the callback function just displays a message.

The line of code that does the actual linking is:

GPIO.add_event_detect(18, GPIO.FALLING, callback=my_callback)

The first parameter specifies the pin (18). The second can be GPIO.FALLING or
GPIO.RISING. If this is set to FALLING, the function will only be called if the GPIO pin
goes from high to low. This is the case in this example, as the switch pulls the input
low against the internal pull-up resistor. If, on the other hand, the second argument is
set to RISING, the function will only be called when the input goes from low to high
(when the switch is released).

The event handler function does not stop the main counting loop while it runs; it
actually runs in its own separate thread of execution.

Switches often bounce when pressed. This means they don’t always transition cleanly
from open to closed but bounce between the two, possibly several times, making it
appear that the button was pressed multiple times in very rapid succession when
actually it was pressed only once.

If you keep pressing the button, you’ll probably see this reflected in the output as the
message appearing more than once for one button press.

The library actually has an option to stop bounce from being a problem, by prevent‐
ing the interrupt from being triggered again within a certain amount of time. To
make use of this feature, just add the extra optional parameter bouncetime to the
add_event_detect call. The value of bouncetime is in milliseconds.

GPIO.add_event_detect(18, GPIO.FALLING, callback=my_callback, bouncetime=100)

See Also
For more information on using switches with the Raspberry Pi, see Recipe 12.1.

10.13 Programming with Interrupts | 267

CHAPTER 11

Motors

11.0 Introduction
In this chapter, you will investigate the use of different types of motors with the Rasp‐
berry Pi.

11.1 Controlling Servo Motors
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to use a Raspberry Pi to control the position of a servo motor.

Solution
Use PWM to control the width of pulses to a servo motor to change its angle.
Although this will work, the PWM generated is not completely stable, so there will be
a little bit of jitter with the servo. For an alternative solution that produces much
more stable pulse timing using the ServoBlaster device driver software, see Recipe
11.2.

If you have an older Raspberry Pi 1, you should also power the servo from a separate
5V power supply because peaks in the load current are very likely to crash or over‐
load the Raspberry Pi. If you have a Raspberry Pi B+ or newer, then improvements in

269

the onboard voltage regulation mean that you may get away with powering small ser‐
vos directly from the 5V pin on the GPIO port.

Figure 11-1 shows a small 9g servo (see “Miscellaneous” on page 477) working quite
happily with a Raspberry Pi B+.

Figure 11-1. Direct connection of a small servo to a Raspberry Pi B+

The leads of the servo are usually 5V wire as red, the ground brown, and the control
lead orange. The 5V and ground leads are connected to the GPIO header 5V and
GND pins, and the control lead is connected to pin 18. The connections are made
with female-to-male header leads.

If you are using a separate power supply, then a breadboard is a good way of keeping
all the leads together.

In this case, you will need:

• 5V servo motor (see “Miscellaneous” on page 477)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• 5V 1A power supply or 4.8V battery pack (see “Miscellaneous” on page 477)

270 | Chapter 11: Motors

The breadboard layout for this is shown in Figure 11-2.

Figure 11-2. Controlling a servo motor

The 1kΩ resistor is not essential, but it does protect the GPIO pin from unexpectedly
high currents in the control signal, which could occur if a fault developed on the
servo.

You can, if you prefer, power the servo from a battery pack rather than a power sup‐
ply. Using a four-cell AA battery holder with rechargeable batteries will provide
around 4.8V and work well with a servo. Using four alkali AA cells to provide 6V will
be fine for many servos, but check the datasheet of your servo to make sure it is OK
with 6V.

The user interface for setting the angle of the servo is based on the gui_slider.py pro‐
gram intended for controlling the brightness of an LED (Recipe 10.9). However, you
can modify it so that the slider sets the angle to be between 0 and 180 degrees
(Figure 11-3).

Figure 11-3. User interface for controlling a servo motor

11.1 Controlling Servo Motors | 271

Open an editor (nano or IDLE) and paste in the following code. As with all the
program examples in this book, you can also download the program from the Code
section of the Raspberry Pi Cookbook website, where it is called servo.py.

Note that this program uses a graphical user interface, so you cannot run it from SSH.

You must run it from the windowing environment on the Pi itself or via remote con‐
trol using VNC (Recipe 2.8) or RDP (Recipe 2.9). You also need to run it as super‐
user, so run it with the command sudo python servo.py:

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
pwm = GPIO.PWM(18, 100)
pwm.start(5)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 scale = Scale(frame, from_=0, to=180,
 orient=HORIZONTAL, command=self.update)
 scale.grid(row=0)

 def update(self, angle):
 duty = float(angle) / 10.0 + 2.5
 pwm.ChangeDutyCycle(duty)

root = Tk()
root.wm_title('Servo Control')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

Discussion
Servo motors are used in remote control vehicles and robotics. Most servo motors are
not continuous; that is, they cannot rotate all the way around but rather just over an
angle of about 180 degrees.

The position of the servo motor is set by the length of a pulse. The servo expects to
receive a pulse at least every 20 milliseconds. If that pulse is high for 1 millisecond,
the servo angle will be zero; if it is 1.5 milliseconds, it will be at its center position;
and if it is 2 milliseconds, it will be at 180 degrees (Figure 11-4).

272 | Chapter 11: Motors

Figure 11-4. Servo motors

The example program sets the PWM frequency to 100 Hz, which will send a pulse to
the servo every 10 milliseconds. The angle is converted into a duty cycle between 0
and 100.

See Also
If you have a lot of servos to control, or require greater stability and precision, then
you can use a dedicated servo controller module, as described in Recipe 11.3.

Adafruit has developed another method of servo control.

For an alternative solution that produces much more stable pulse timing using the
ServoBlaster device driver software, see Recipe 11.2.

11.2 Controlling Servo Motors Precisely
Problem
The PWM function of the RPi.GPIO library are not precise or jitter-free for your
servo application.

Solution
Install the Servo Blaster device driver.

11.2 Controlling Servo Motors Precisely | 273

The Servo Blaster software crated by Richard Hurst uses Raspberry Pi CPU hardware
to generate pulses with much more accurate timings than are possible using the
RPi.GPIO library. Install this using the following commands and then reboot your
Raspberry Pi.

git clone git://github.com/richardghirst/PiBits.git
cd PiBits/ServoBlaster/user
sudo make
sudo make install

The program from Recipe 11.1 can be modified to use the Servo Blaster code. The
modified program can be found in the file servo_blaster.py and assumes that the servo
control pin is connected to GPIO 18.

from Tkinter import *
import os
import time

servo_min = 500 # uS
servo_max = 2500 # uS

servo = 2 # GPIO 18

def map(value, from_low, from_high, to_low, to_high):
 from_range = from_high - from_low
 to_range = to_high - to_low
 scale_factor = float(from_range) / float(to_range)
 return to_low + (value / scale_factor)

def set_angle(angle):
 pulse = int(map(angle, 0, 180, servo_min, servo_max))
 command = "echo {}={}us > /dev/servoblaster".format(servo, pulse)
 os.system(command)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 scale = Scale(frame, from_=0, to=180,
 orient=HORIZONTAL, command=self.update)
 scale.grid(row=0)

 def update(self, angle):
 set_angle(float(angle))

root = Tk()
root.wm_title('Servo Control')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

274 | Chapter 11: Motors

The user interface code is just the same as Recipe 11.1. The differences are in the
set_angle function. The set_angle function first uses a utility function called map
that converts the angle into a pulse duration using the constants servo_min and
servo_max. set_angle. Then it constructs a command that will be run as if from the
command line. The format of this line starts with the echo command followed by the
servo number to be controlled, then an equals sign, and then a pulse duration in
microseconds. This string part of the command will be directed to the device /dev/
servoblaster. The servo will then adjust its angle.

Killing ServoBlaster

When ServoBlaster, or more specifically, the service servo.d, is run‐
ning, you will not be able to use the servo pins for anything and
audio on the Raspberry Pi will not work. So when you need to use
the pins for something else, use the following commands to disable
ServoBlaster and then reboot your Pi.

$ sudo update-rc.d servoblaster disable
$ sudo reboot

When your Raspberry Pi restarts, ServoBlaster will no longer have
control of your pins. You can always turn ServoBlaster back on
again using:

$ sudo update-rc.d servoblaster enable
$ sudo reboot

Discussion
The ServoBlaster driver is actually very powerful and can be configured to allow you
to use pretty much all the GPIO pins to control servos. Its default setup defines eight
GPIO pins to act as servo control pins. These are each given a channel number, as
shown in Table 11-1.

Table 11-1. Servo channel default pin allocation for ServoBlaster
Servo Channel GPIO Pin
0 4
1 17
2 18
3 27
4 22
5 23
6 24
7 25

11.2 Controlling Servo Motors Precisely | 275

Connecting so many servos can result in jumper-lead spaghetti. A board like the
MonkMakes Servo Six greatly simplifies the wiring of the servos to your Raspberry
Pi.

See Also
You can find the full documentation for Servo Blaster at https://github.com/richard‐
ghirst/PiBits/tree/master/ServoBlaster.

If you do not need the precise timing of Servo Blaster, the RPi.GPIO library can also
generate pulses for your servo, as described in Recipe 11.1.

11.3 Controlling Many Servo Motors
Problem
You need to control lots of servos with high precision.

Solution
Although the Servo Blaster code (see Recipe 11.2) allows you to control lots of servos
accurately, it does not solve the problem of wiring up all those servos. You can do this
with a breadboard, but it’s messy and wires are quite likely to become loose.

To make connection easy, use a servo motor HAT like the one shown in Figure 11-5.

This HAT allows you to control up to 16 servos or PWM channels using the I2C
interface of the Raspberry Pi. The servos just plug straight into the HAT.

Power is supplied to the logic circuits of the module from the 3.3V connection of the
Raspberry Pi. This is entirely separate from the power supply for the servo motors,
which comes from an external 5V power adapter.

You can, if you prefer, power the servos from a battery pack rather than a power sup‐
ply. Using a four-cell AA battery holder with rechargeable batteries provides around
4.8V and works well with most servos. Using four alkali AA cells to provide 6V will
be fine for many servos, but check the datasheet of your servo to make sure it is OK
with 6V.

The pin headers for connecting servos are conveniently arranged so that the servo
lead fits directly onto the pins. Be careful to get them facing the right way.

276 | Chapter 11: Motors

Figure 11-5. Adafruit Servo Motor HAT

To use the Adafruit software for this module, you will need to set up I2C on the Rasp‐
berry Pi (Recipe 9.3).

The Adafruit library isn’t really a proper library that contains an installation script,
but rather just a directory that contains a number of files. So, when using it, you need
to be in the directory to which they are downloaded or your program will not find
them.

To download all the Adafruit software libraries for Raspberry Pi, enter the following:

$ git clone https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git
$ cd Adafruit-Raspberry-Pi-Python-Code
$ cd Adafruit_PWM_Servo_Driver

The last two lines set the current directory to the directory containing the code for
PWM as well as an example program supplied by Adafruit, which you can run with
the command:

$ sudo python Servo_Example.py

An alternative example next modifies the example program from Recipe 10.2 so that
you can use a slider to set the servo position to be between 0 and 180 degrees. The
program file must be saved in the Adafruit_PWM_Servo_Driver directory. The slider

11.3 Controlling Many Servo Motors | 277

will change the servo positions of both channels 0 and 1 at the same time, so both
servos will follow the position of the slider.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called servo_module.py. Note
that this program uses a graphical user interface, so you can’t run it from SSH. You
must run it from the windowing environment on the Pi itself or via remote control
using VNC (Recipe 2.8) or RDP (Recipe 2.9).

from Tkinter import *
from Adafruit_PWM_Servo_Driver import PWM
import time

pwm = PWM(0x40)
pwm.setPWMFreq(50)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 scale = Scale(frame, from_=0, to=180,
 orient=HORIZONTAL, command=self.update)
 scale.grid(row=0)

 def update(self, angle):
 pulse_len = int(float(angle) * 500.0 / 180.0) + 110
 pwm.setPWM(0, 0, pulse_len)
 pwm.setPWM(1, 0, pulse_len)

root = Tk()
root.wm_title('Servo Control')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

Discussion
The first line after the import creates a new instance of PWM using the I2C address
specified as its argument—in this case, 0×40. The module has solder pad connections
that allow you to change the I2C address if this conflicts with another I2C device you
are using, or you want to use more than one of these modules.

The next line sets the PWM frequency to 50 Hz, which will provide an update pulse
every 20 milliseconds.

278 | Chapter 11: Motors

The line that actually sets the PWM for a particular channel is:

pwm.setPWM(0, 0, pulse_len)

The first argument is the PWM channel whose duty cycle is to be changed. Each cycle
of PWM is divided into 4,096 ticks, and the second argument is the tick at which the
pulse should start. This will always be 0. The third argument is the tick at which the
pulse should end. The constants of 500.0 and 110 in the following line were tweaked
with a little trial and error to provide a standard servo with as close to 180 degrees of
movement as possible:

pulse_len = int(float(angle) * 500.0 / 180.0) + 110

When selecting a power supply for this module, remember that a standard remote
control servo can easily draw 400mA while it’s moving, and more if it’s under load. So
if you plan to have a lot of large servos moving at the same time, you will need a big
power adapter.

See Also
A Servo HAT is great if your Raspberry Pi is right by the servo motors, but if your
servos are distant from where you want the Raspberry Pi to be, then Adafruit also
sells a servo module (product ID 815) that has the same servo controller hardware as
the servo HAT, but just has four pins to connect the I2C interface of the board to the
Raspberry Pi’s I2C interface.

See the Adafruit documentation for its Raspberry Pi library.

11.4 Controlling the Speed of a DC Motor
Problem
You want to control the speed of a DC motor using your Raspberry Pi.

Solution
You can use the same design as Recipe 10.5. It is, however, a good idea to place a
diode across the motor to prevent voltage spikes from damaging the transistor or
even the Raspberry Pi. The 1N4001 is a suitable diode for this. The diode has a stripe
at one end, so make sure that this is facing the right way.

11.4 Controlling the Speed of a DC Motor | 279

Figure 11-6. Controlling a high-power motor

You will need:

• 3V to 12V DC motor
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• MOSFET Transistor FQP30N06L (see “Transistors and Diodes” on page 475)
• Diode 1N4001 (see “Transistors and Diodes” on page 475)
• Power supply with voltage to match the motor

To control the speed of the motor, you can download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_slider.py. Note that
this program uses a graphical user interface, so you can’t run it from SSH. You must
run it from the windowing environment on the Pi itself or via remote control using
VNC (Recipe 2.8) or RDP (Recipe 2.9).

Discussion
If you are only using a low-power DC motor (less than 200mA), you can use a
smaller (and cheaper) transistor such as the 2N3904 (see “Transistors and Diodes” on
page 475). The breadboard layout to use a 2N3904 is shown in Figure 11-7.

280 | Chapter 11: Motors

You can probably get away with powering a small motor from the 5V supply line on
the GPIO connector. If you find that the Raspberry Pi crashes, use an external power
supply, as shown in Figure 11-6.

Figure 11-7. Controlling a low-power motor

See Also
This design only controls the motor’s speed. It can’t control its direction. For that, you
need to see Recipe 11.5.

For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

11.5 Controlling the Direction of a DC Motor
Problem
You want to control both the speed and direction of a small DC motor.

Solution
Use an H-Bridge chip or module.

You have two recipes to choose from for controlling a motor. The first, the “DIY
approach,” uses a solderless breadboard and a L293D chip. The second design uses a
ready-made H-Bridge module from SparkFun, connecting it directly to the Rasp‐
berry Pi with jumper leads.

11.5 Controlling the Direction of a DC Motor | 281

Both the L293D and the SparkFun module are capable of driving two motors without
any extra hardware. The Discussion also mentions a few other options for controlling
DC motors.

Option 1: L293D chip and breadboard
If you take the L293D route, you will need:

• 3V to 12V DC motor
• Breadboard and jumper wires (male to female; see “Prototyping Equipment” on

page 474)
• L293D chip (see “Integrated Circuits” on page 475)
• Power supply with voltage to match the motor

The breadboard layout is shown in Figure 11-8.

Figure 11-8. Using a L293D chip to control a motor

282 | Chapter 11: Motors

Make sure the chip is facing the right way: there is a notch in its top, which is the end
that should be at the top of the breadboard.

Option 2: Motor controller module
If you decide to use the SparkFun motor controller, or a similar motor controller
module, you will need the following:

• 3V to 12V DC motor
• Jumper wires (female to female; see “Prototyping Equipment” on page 474)
• Header pins (see “Integrated Circuits” on page 475)
• SparkFun motor driver 1A dual (see “Modules” on page 476)
• Power supply with voltage to match the motor

The layout is shown in Figure 11-9. Note that the motor shown is just a DC motor on
its own. If the project is driving wheels, then you will typically use a gearmotor, which
combines a motor and gearbox to reduce the RPM and increase the torque.

Figure 11-9. Wiring a SparkFun motor controller

The motor controller module comes without header pins attached, so you will need
to add these to the board before you get started. The connections are made using
female-to-female header leads.

Figure 11-10 shows the module wired up to a small DC gearmotor, as per the wiring
diagram of Figure 11-9.

11.5 Controlling the Direction of a DC Motor | 283

Figure 11-10. Using a SparkFun motor controller with a gearmotor

Software
Whichever hardware option you decided upon, you can use the same program to try
out the motor. This allows you to enter a letter f or r and then a single digit between
0 and 9. The motor will then either go forward or backward, at a speed specified by
the digit—0 for stopped, 9 for full speed.

$ sudo python motor_control.py
Command, f/r 0..9, E.g. f5 :f5
Command, f/r 0..9, E.g. f5 :f1
Command, f/r 0..9, E.g. f5 :f2
Command, f/r 0..9, E.g. f5 :r2

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called motor_control.py. This
program uses the command line, so you can run it from SSH.

If you’re using Python 3, change the command raw_input to just input:

import RPi.GPIO as GPIO
import time

enable_pin = 18
in1_pin = 23
in2_pin =24

284 | Chapter 11: Motors

GPIO.setmode(GPIO.BCM)
GPIO.setup(enable_pin, GPIO.OUT)
GPIO.setup(in1_pin, GPIO.OUT)
GPIO.setup(in2_pin, GPIO.OUT)

pwm = GPIO.PWM(enable_pin, 500)
pwm.start(0)

def clockwise():
 GPIO.output(in1_pin, True)
 GPIO.output(in2_pin, False)

def counter_clockwise():
 GPIO.output(in1_pin, False)
 GPIO.output(in2_pin, True)

while True:
 cmd = raw_input("Command, f/r 0..9, E.g. f5 :")
 direction = cmd[0]
 if direction == "f":
 clockwise()
 else:
 counter_clockwise()
 speed = int(cmd[1]) * 10
 pwm.ChangeDutyCycle(speed)

Discussion
Before you look at how the program operates, you need to understand a little more
about how an H-Bridge works.

Figure 11-11 shows how one works, using switches rather than transistors or a chip.
By reversing the polarity across the motor, an H-Bridge also reverses the direction the
motor turns.

In Figure 11-11, S1 and S4 are closed and S2 and S3 are open. This allows current to
flow through the motor, with terminal A being positive and terminal B being nega‐
tive. If we were to reverse the switches so that S2 and S3 are closed and S1 and S4 are
open, then B would be positive and A would be negative, and the motor would turn
in the opposite direction.

However, you may have spotted a danger with this circuit. If by some chance S1 and
S2 are both closed, then the positive supply will be directly connected to the negative
supply and you will have a short-circuit. The same is true if S3 and S4 are both closed
at the same time.

11.5 Controlling the Direction of a DC Motor | 285

Figure 11-11. An H-Bridge

Although you can use individual transistors to make an H-Bridge, it is simpler to use
an H-Bridge IC such as the L293D. This chip actually has two H-Bridges in it, so you
can use it to control two motors.

The L293 has three control pins for each of the two motor control channels. The
Enable pin just enables or disables the channel as a whole. In the example program,
this is connected to a PWM output to control the speed of the motor. The other two
pins (IN1 and IN2) control the direction in which the motor will be driven. You can
see the use of these two control pins in the functions clockwise and counter_clock
wise:

def clockwise():
 GPIO.output(in1_pin, True)
 GPIO.output(in2_pin, False)

def counter_clockwise():
 GPIO.output(in1_pin, False)
 GPIO.output(in2_pin, True)

If IN1 is high and IN2 is low, the motor will turn in one direction. If those two pins
are reversed, the motor will turn in the opposite direction.

As an alternative to using an L293D on a breadboard, very low-cost modules are
available from eBay that include a L293D on a PCB with screw terminals to attach
motors and header pins to link directly to the Raspberry Pi GPIO connector. If you
need a higher-power motor controller module, then you can find motor controller

286 | Chapter 11: Motors

modules that operate on the same principles but at much higher currents, even up to
20A or more. Polulu has an impressive range of such motor controller boards.

See Also
The Adafruit Stepper Motor HAT (Recipe 11.8) and RaspiRobot board (Recipe 11.9)
can also be used to control the speed and direction of a DC motor.

Check out the L293D datasheet and the SparkFun Motor Driver Module product
page.

For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

11.6 Using a Unipolar Stepper Motor
Problem
You want to drive a five-lead unipolar stepper motor using a Raspberry Pi.

Solution
Use a ULN2803 Darlington driver chip on breadboard.

Stepper motors fit somewhere between DC motors and servo motors in the world of
motor technologies. Like a regular DC motor, they can rotate continuously, but you
can also very accurately position them by moving them a step at a time in either
direction.

To make this recipe, you will need:

• 5V, five-pin unipolar stepper motor (see “Miscellaneous” on page 477)
• ULN2803 Darlington driver IC (see “Integrated Circuits” on page 475)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)

Figure 11-12 shows the wiring diagram for using a ULN2803. Note that the chip can
be used to drive two such motors. To drive a second stepper motor, you will need to
connect four more control pins from the GPIO connector to pins 5 to 8 of the
ULN2803, and connect the second motor’s four pins to pins 11 to 14 of the ULN2803.

11.6 Using a Unipolar Stepper Motor | 287

Figure 11-12. Using a ULN2803 to control a unipolar stepper motor

The 5V supply from the GPIO connector may work OK with a small stepper motor.
If you experience problems with the Raspberry Pi crashing or need to use a bigger
stepper motor, then use a separate supply for the power to the motor (pin 10 of the
ULN2803).

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called stepper.py. This program
uses the command line, so you can run it from SSH.

If you’re using Python 3, change the command raw_input to just input:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

coil_A_1_pin = 18
coil_A_2_pin = 23
coil_B_1_pin = 24
coil_B_2_pin = 17

GPIO.setup(coil_A_1_pin, GPIO.OUT)
GPIO.setup(coil_A_2_pin, GPIO.OUT)
GPIO.setup(coil_B_1_pin, GPIO.OUT)
GPIO.setup(coil_B_2_pin, GPIO.OUT)

forward_seq = ['1010', '0110', '0101', '1001']
reverse_seq = list(forward_seq) # to copy the list
reverse_seq.reverse()

def forward(delay, steps):
 for i in range(steps):
 for step in forward_seq:

288 | Chapter 11: Motors

 set_step(step)
 time.sleep(delay)

def backwards(delay, steps):
 for i in range(steps):
 for step in reverse_seq:
 set_step(step)
 time.sleep(delay)

def set_step(step):
 GPIO.output(coil_A_1_pin, step[0] == '1')
 GPIO.output(coil_A_2_pin, step[1] == '1')
 GPIO.output(coil_B_1_pin, step[2] == '1')
 GPIO.output(coil_B_2_pin, step[3] == '1')

while True:
 set_step('0000')
 delay = raw_input("Delay between steps (milliseconds)?")
 steps = raw_input("How many steps forward? ")
 forward(int(delay) / 1000.0, int(steps))
 set_step('0000')
 steps = raw_input("How many steps backwards? ")
 backwards(int(delay) / 1000.0, int(steps))

When you run the program, you will be prompted for a delay between steps. This
should be 2 or more. You will then be prompted for the number of steps in each
direction:

$ sudo python stepper.py
Delay between steps (milliseconds)?2
How many steps forward? 100
How many steps backwards? 100
Delay between steps (milliseconds)?10
How many steps forward? 50
How many steps backwards? 50
Delay between steps (milliseconds)?

Discussion
Stepper motors use a cogged rotor and electromagnets to nudge the wheel around a
step at a time (Figure 11-13). Note that the colors of the leads will vary.

Energizing the coils in a certain order drives the motor around. The number of steps
that the stepper motor has in a 360-degree rotation is actually the number of teeth on
the rotor.

11.6 Using a Unipolar Stepper Motor | 289

Figure 11-13. A stepper motor

The example program uses a list of strings to represent each of the four energization
stages that make up a single step:

forward_seq = ['1010', '0110', '0101', '1001']

The sequence for rotating the motor in the opposite direction is just the reverse of the
sequence for moving forward.

You can use the forward and backward functions in your programs to step the motor
back and forth. The first argument to either function is the delay in milliseconds
between each part of the step sequence. This minimum value for this depends on the
motor you use. If it’s too small, the motor will not turn. Typically, two milliseconds or
more will be fine. The second parameter is the number of steps to take.

def forward(delay, steps):
 for i in range(steps):
 for step in forward_seq:
 set_step(step)
 time.sleep(delay)

The forward function has two nested for loops. The outer one repeats for the num‐
ber of steps and the inner one iterates over the sequence of motor activations, calling
setStep for each in sequence.

def set_step(step):
 GPIO.output(coil_A_1_pin, step[0] == '1')
 GPIO.output(coil_A_2_pin, step[1] == '1')
 GPIO.output(coil_B_1_pin, step[2] == '1')
 GPIO.output(coil_B_2_pin, step[3] == '1')

290 | Chapter 11: Motors

The set_step function sets each of the control pins to high or low, depending on the
pattern supplied as its argument.

The main loop sets the step to 0000 between moving forward and backward, to set
the outputs all to zero when the motor is not actually turning. Otherwise, one of the
coils may be left on, causing the motor to draw current unnecessarily.

See Also
If you have a four-wire bipolar stepper motor, see Recipe 11.7.

For more information on stepper motors, the different types, and how they work, see
Wikipedia, where you will also find a nice animated explanation of the activation pat‐
tern for driving the motor.

For information on using servo motors, see Recipe 11.1; for controlling DC motors,
see Recipes 7.16 and 7.18.

For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

11.7 Using a Bipolar Stepper Motor
Problem
You want to drive a four-lead bipolar stepper motor using a Raspberry Pi.

Solution
Use a L293D H-Bridge driver chip. An H-Bridge is required to drive a bipolar stepper
motor because, as the word bipolar suggests, the direction of current across the wind‐
ings needs to be reversed, rather like driving a DC motor in both directions (see
Recipe 11.5).

To make this recipe, you will need:

• 12V, four-pin bipolar stepper motor (see “Miscellaneous” on page 477)
• L293D H-Bridge IC (see “Integrated Circuits” on page 475)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)

The motor used here, a 12V, is somewhat larger than the previous unipolar stepper
motor example. The power for the motor itself is therefore supplied from an external
power supply rather than from the Raspberry Pi. See the wiring diagram in
Figure 11-14.

11.7 Using a Bipolar Stepper Motor | 291

Figure 11-14. Using a L293D to control a bipolar stepper motor

Discussion
You can use the exact same stepper.py program to control this stepper (see Recipe
11.6). The design uses both H-Bridges of the L293D, so you need one of these chips
for each motor you want to control.

See Also
If the type of stepper motor you have is a five-wire unipolar stepper motor, see Recipe
11.6.

For more information on stepper motors—the different types and how they work—
see Wikipedia, where you will also find a nice animated explanation of the activation
pattern for driving the motor.

For information on using servo motors, see Recipe 11.1 and for controlling DC
motors, see Recipes 7.16 and 7.18.

292 | Chapter 11: Motors

For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

You can also drive a stepper motor by using the RasPiRobot board (Recipe 11.9).

11.8 Using a Stepper Motor HAT to Drive a Bipolar Stepper
Motor
Problem
You want to control multiple bipolar stepper motors using a single interface board.

Solution
Use an Adafruit Stepper Motor HAT (Figure 11-15).

Figure 11-15. Using an Adafruit stepper motor HAT to control a bipolar stepper motor

This board is capable of driving two bipolar stepper motors. Figure 11-15 shows the
board with one bipolar stepper motor with one coil connected to the M1 terminals
and the other coil to the M2 terminals. The power for the motors is supplied sepa‐
rately at the screw terminals on the right of Figure 11-15.

11.8 Using a Stepper Motor HAT to Drive a Bipolar Stepper Motor | 293

This HAT uses I2C so make sure that you have I2C enabled (Recipe 9.3).

To make it easy to use the HAT, Adafruit has written a Python library. To install it,
enter the following commands:

$ git clone https://github.com/adafruit/Adafruit-Motor-HAT-Python-Library.git
$ sudo apt-get install python-dev
$ cd Adafruit-Motor-HAT-Python-Library/
$ sudo python setup.py install

The library includes a few examples, so change directory and then run the basic
example using the commands:

$ cd examples
$ sudo python StepperTest.py

I2C Busses

If you followed recipe Recipe 9.20 to make your own HAT and
enabled the I2C bus 0 as described there, then you will need to
reverse the change to /boot/config.txt because the Adafruit autode‐
tects the I2C bus to use and will detect the wrong one if bus 0 is
enabled.
In /boot/config.txt, delete or uncomment out the line:

dtparam=i2c_vc=on

Once this is done, reboot your Raspberry Pi.

Discussion
When you run the program, the motor will start to turn and the program will loop
round four different modes of stepping. You might like to try the simple example
below to control your stepper motor.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called stepper_hat.py. This pro‐
gram uses the command line, so you can run it from SSH.

from Adafruit_MotorHAT import Adafruit_MotorHAT
import time

HAT = Adafruit_MotorHAT
stepper_hat = Adafruit_MotorHAT()

stepper = stepper_hat.getStepper(200, 1) # 200 steps/rev, port 1 (M1, M2)

try:
 while True:
 speed = input("Enter stepper speed (rpm) ")

294 | Chapter 11: Motors

 stepper.setSpeed(speed)
 steps_forward = input("Steps forward ")
 stepper.step(steps_forward, HAT.FORWARD, HAT.SINGLE)
 steps_forward = input("Steps reverse ")
 stepper.step(steps_forward, HAT.BACKWARD, HAT.SINGLE)

finally:
 print("cleaning up")
 stepper_hat.getMotor(1).run(HAT.RELEASE)

After importing the Adafruit_MotorHAT module, it is assigned the name HAT just to
reduce the verbosity of the code on the lines that follow this.

The try/finally block is used to make sure that the power to the coils are released
when the program is stopped using Ctrl-C.

See Also
For a discussion of the HAT standard and how to make your own HAT, see Recipe
9.20.

For more information on using this HAT and its accompanying library, see https://
learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/.

To use a L293D to control a stepper motor, see Recipe 11.7; and for a RaspiRobot
board, see Recipe 11.9.

11.9 Using a RaspiRobot Board to Drive a Bipolar Stepper
Motor

Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to control a bipolar stepper motor by using one power supply for both the
motor and your Raspberry Pi.

Solution
Use a RaspiRobot board Version 3.

11.9 Using a RaspiRobot Board to Drive a Bipolar Stepper Motor | 295

The RaspiRobot board uses the power supply directly from its screw terminals as the
supply to the motor and regulates that same supply down to 5V to drive the Rasp‐
berry Pi. So in this case, the 12V power will be supplying both the 12V stepper motor
and the Raspberry Pi.

If you are using an earlier version of the RasPiRobot board (version
1 or 2), then do not power the Raspberry Pi through its USB con‐
nection at the same time as you power it through the RasPiRobot
board.
There is no problem powering it through both in version 3 of the
board.

Connect the stepper motor and power supply to the RaspiRobot board as shown in
Figure 11-16. The wire colors for the Adafruit 12V stepper motor are, in order from
left to right: yellow, red, gray, and green.

Figure 11-16. Using a RaspiRobot board to control a bipolar stepper motor

Before you can run the program, you will need to install the library for the RaspiRo‐
bot V3 using the following commands:

$ git clone https://github.com/simonmonk/raspirobotboard3.git
$ cd raspirobotboard3/python
$ sudo python setup.py install

296 | Chapter 11: Motors

Open an editor (nano or IDLE) and paste in the following code. As with all the
program examples in this book, you can also download the program from the Code
section of the Raspberry Pi Cookbook website, where it is called stepper_rrb.py. This
program uses the command line, so you can run it from SSH.

If you’re using Python 3, change the command raw_input to just input:

from rrb3 import *
import time

rr = RRB3(12.0, 12.0) # battery, motor

try:
 while True:
 delay = raw_input("Delay between steps (milliseconds)?")
 steps = raw_input("How many steps forward? ")
 rr.step_forward(int(delay) / 1000.0, int(steps))
 steps = raw_input("How many steps backwards? ")
 rr.step_reverse(int(delay) / 1000.0, int(steps))

finally:
 GPIO.cleanup()

Discussion
You will find that there is a minimum value of "Delay between steps", below which
the motor will just judder rather than turn.

See Also
You can find full documentation for the RaspiRobot board and other projects that use
it at the RaspiRobot website.

To drive a stepper motor using a L293D on a breadboard, see Recipe 11.7.

11.10 Building a Simple Robot Rover
Problem
You want to use a Raspberry Pi as the controller for a simple roving robot.

Solution
Use a RaspiRobot board V3 as an interface board to the Raspberry Pi to control two
motors and a robot chassis kit such as the Magician Chassis.

To make this recipe, you will need:

11.10 Building a Simple Robot Rover | 297

• RaspiRobot board V3 (see “Modules” on page 476)
• Gearmotor chassis such as the Magician Chassis (see “Miscellaneous” on page

477)
• 6×AA battery holder (see “Miscellaneous” on page 477)
• USB WiFi adapter

You can also buy a complete kit of parts for building this rover as the MonkMakes
RaspiRobot Rover Kit.

The first step in building the robot is to assemble the chassis. Most low-cost gearmo‐
tor chassis are supplied with a four-cell AA battery holder, but to provide power to
the Raspberry Pi, you really need a six-cell battery holder. When you get to that part
of the instructions supplied with the chassis, use a 6×AA battery box.

Follow the wiring instructions as shown in Figure 11-17.

Figure 11-17. Wiring a roving robot

The battery pack will supply power to the RaspiRobot board, which in turn supplies
5V to the Raspberry Pi. So only one power supply is required.

The finished rover should look something like Figure 11-18, which also has a range‐
finder on the front for good measure.

298 | Chapter 11: Motors

Figure 11-18. The finished robot

To drive the robot, you are going to use a control program that allows you to steer the
rover using keys on a laptop or other computer connected to your Raspberry Pi over
SSH. If you have not already done so, set up your Raspberry Pi to use WiFi and SSH,
using Recipe 2.5 and Recipe 2.7.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called rover.py.

from rrb3 import *
import sys
import tty
import termios

rr = RRB3(9.0, 6.0) # battery, motor

UP = 0
DOWN = 1
RIGHT = 2
LEFT = 3

11.10 Building a Simple Robot Rover | 299

print("Use the arrow keys to move the robot")
print("Press Ctrl-C to quit the program")

These functions allow the program to read your keyboard
def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 if ch == '0x03':
 raise KeyboardInterrupt
 return ch

def readkey(getchar_fn=None):
 getchar = getchar_fn or readchar
 c1 = getchar()
 if ord(c1) != 0x1b:
 return c1
 c2 = getchar()
 if ord(c2) != 0x5b:
 return c1
 c3 = getchar()
 return ord(c3) - 65 # 0=Up, 1=Down, 2=Right, 3=Left arrows

This will control the movement of your robot and display on your screen
try:
 while True:
 keyp = readkey()
 if keyp == UP:
 rr.forward(1)
 print 'forward'
 elif keyp == DOWN:
 rr.reverse(1)
 print 'backward'
 elif keyp == RIGHT:
 rr.right(1)
 print 'clockwise'
 elif keyp == LEFT:
 rr.left(1)
 print 'anti clockwise'
 elif keyp == LEFT:
 rr.left(1)
 print 'anti clockwise'
 elif ord(keyp) == 3:
 break

except KeyboardInterrupt:
 GPIO.cleanup()

300 | Chapter 11: Motors

To be able to intercept keypresses, this program uses the termios library and the two
functions readchar and readkey.

After the import commands, a new instance of RRB3 is created. The two parameters
to this are the battery voltage and the motor voltage (in this case, 9V and 6V respec‐
tively). If your chassis has different voltage motors, then change the second parame‐
ter.

The main loop just checks for keypresses and then sends the appropriate commands
of forward, reverse, left, or right to the RRB3 library.

Discussion
You can make the rover more interesting by adding peripherals to it. You could, for
example, attach a webcam and set up web streaming so that your roving robot
becomes a roving spycam (Recipe 4.5).

The RRB3 library also supports the HC-SR04 rangefinders that can be plugged into a
socket on the RaspiRobot board V3. You can use this to detect obstacles, and you will
find example software for this in the RRB3 library.

See Also
You can find out more about the RaspiRobot board and the RRB3 library on GitHub.

11.10 Building a Simple Robot Rover | 301

CHAPTER 12

Digital Inputs

12.0 Introduction
In this chapter, you look at recipes for using digital inputs, such as switches and key‐
pads. This chapter also covers modules that have a digital output that can be connec‐
ted to a Raspberry Pi GPIO input.

Most of the recipes require the use of a solderless breadboard and jumper wires (see
Recipe 9.8).

12.1 Connecting a Push Switch
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to connect a switch to your Raspberry Pi so that when you press it, some
Python code is run.

Solution
Connect a switch to a GPIO pin and use the RPi.GPIO library in your Python pro‐
gram to detect the button press.

To make this recipe, you will need:

303

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Tactile push switch (see “Miscellaneous” on page 477)

Figure 12-1 shows how to connect a tactile push switch using a breadboard and
jumper wires.

Figure 12-1. Connecting a push switch to a Raspberry Pi

An alternative to using a breadboard and tactile switch is to use a Squid Button
(Figure 12-2). This is a push switch with female header leads soldered to the end,
which can be connected directly to a the GPIO connector (Recipe 9.11).

Figure 12-2. A Squid Button

304 | Chapter 12: Digital Inputs

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called switch.py.

This example code displays a message when the button is pressed:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)

while True:
 input_state = GPIO.input(18)
 if input_state == False:
 print('Button Pressed')
 time.sleep(0.2)

You will need to run the program as superuser:

pi@raspberrypi ~ $ sudo python switch.py
Button Pressed
Button Pressed
Button Pressed
Button Pressed

Discussion
You will notice that the switch is wired so that when it is pressed, it will connect pin
18 configured as an input to GND. The input pin is normally pulled up to 3.3V by the
optional argument pull_up_down=GPIO.PUD_UP in GPIO.setup. This means that
when you read the input value using GPIO.input, False will be returned if the button
is pressed. This is a little counterintuitive.

Each GPIO pin has software-configurable pull-up and pull-down resistors. When
using a GPIO pin as an input, you can configure these resistors so that one, either, or
neither of the resistors is enabled, using the optional pull_up_down parameter to
GPIO.setup. If this parameter is omitted, then neither resistor will be enabled. This
leaves the input floating, which means that its value cannot be relied upon and it will
drift between high and low depending on what it picks up in the way of electrical
noise.

If it is set to GPIO.PUD_UP, the pull-up resistor is enabled; if it is set to GPIO.PUD_DOWN,
the pull-down resistor is enabled.

You might expect the push switch to have just two connections, which are either open
or closed. While some of these tactile push switches do have just two connections,
most have four. Figure 12-3 shows how these connections are arranged.

12.1 Connecting a Push Switch | 305

Figure 12-3. A tactile push switch

Actually, there are really only two electrical connections because inside the switch
package, pins B and C are connected together, as are A and D.

See Also
For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

To use a switch to trigger an interrupt, see Recipe 10.13.

To debounce a switch, see Recipe 12.5.

To use external pull-up or pull-down resistors, see Recipe 12.6.

12.2 Toggling with a Push Switch
Problem
You want to turn something on and off with a push switch so that it toggles between
on and off each time you press it.

Solution
Record the last state of the button and invert that value each time the button is
pressed.

The following example toggles an LED on and off as you press the switch.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Tactile push switch (see “Miscellaneous” on page 477)
• LED (see “Opto-Electronics” on page 476)
• 470Ω resistor (see “Resistors and Capacitors” on page 474)

306 | Chapter 12: Digital Inputs

Figure 12-4 shows how to connect a tactile push switch and LED, using a breadboard
and jumper wires.

Figure 12-4. Connecting a push switch and LED to a Raspberry Pi

In addition to the male-to-female jumper wires connecting the Raspberry Pi to the
breadboard, you will also need one male-to-male jumper wire or solid core wire.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it’s called switch_on_off.py:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

switch_pin = 18
led_pin = 23

GPIO.setup(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(led_pin, GPIO.OUT)

led_state = False
old_input_state = True # pulled-up

while True:
 new_input_state = GPIO.input(switch_pin)
 if new_input_state == False and old_input_state == True:
 led_state = not led_state
 old_input_state = new_input_state
 GPIO.output(led_pin, led_state)

12.2 Toggling with a Push Switch | 307

Discussion
The variable led_state contains the current state of the LED (True for on and False
for off). Whenever the button is pressed, the following line is run:

led_state = not led_state

The not command inverts the value of led_state, so if led_state is True, it becomes
False and vice versa.

The variable old_input_state is used to remember the button position so that a but‐
ton press is defined as occurring only when the input state changes from being True
(switch not pressed) to False (switch pressed).

See Also
You will find that sometimes when you press the button, it does not seem to toggle
the LED. This is because of switch bounce. You can find other techniques for avoiding
switch bounce in Recipe 12.5.

12.3 Using a Two-Position Toggle or Slide Switch
Problem
You want to connect a two-position toggle or slide switch to your Raspberry Pi, and
be able to find the position of the switch in your Python program.

Solution
Use the switch as you would a tactile push switch (Recipe 12.1): just connect the cen‐
ter and one end contact (Figure 12-5).

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Miniature toggle or slide switch (see “Miscellaneous” on page 477)

The same code you used in Recipe 12.1 works with this arrangement.

308 | Chapter 12: Digital Inputs

Figure 12-5. Connecting a slide switch to a Raspberry Pi

Discussion
These type of slide switches are useful because you can see the position they are set to
without the need for some additional indicator like an LED. However, they are more
fragile and a little more expensive than the tactile push switches that are used more
and more in consumer electronics because they can sit behind a nicer-looking plastic
button.

See Also
To use a three-position switch, with a center-off position, see Recipe 12.4.

12.4 Using a Center-Off Toggle or Slide Switch
Problem
You want to connect a three-position (center-off) toggle switch to your Raspberry Pi,
and be able to find the position of the switch in your Python program.

Solution
Connect the switch to two GPIO pins, as shown in Figure 12-6, and use the RPi.GPIO
library in your Python program to detect the position of the switch.

12.4 Using a Center-Off Toggle or Slide Switch | 309

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Miniature center-off three-position toggle switch (see “Miscellaneous” on page

477)

Figure 12-6. Connecting a three-position switch to a Raspberry Pi

The common (center) connection of the switch is connected to ground, and each of
the two ends of the switch are connected to a GPIO pin with the internal pull-up
resistor enabled.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called switch_2_pos.py:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

top_input = 18
bottom_input = 23

310 | Chapter 12: Digital Inputs

GPIO.setup(top_input, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(bottom_input, GPIO.IN, pull_up_down=GPIO.PUD_UP)

switch_position = "unknown"

while True:
 top_state = GPIO.input(top_input)
 bottom_state = GPIO.input(bottom_input)
 new_switch_position = "unknown"
 if top_state == False:
 new_switch_position = "up"
 elif bottom_state == False:
 new_switch_position = "down"
 else:
 new_switch_position = "center"
 if new_switch_position != switch_position:
 switch_position = new_switch_position
 print(switch_position)

Run the program, and as you move the switch from top to center to bottom, the posi‐
tion of the switch will be reported every time it changes:

$ sudo python switch_3_pos.py
up
center
down

Discussion
The program sets up two inputs with pull-up resistors enabled. The variable
switch_position is used to record the current position of the switch.

Inside the loop, both GPIO inputs are read and the three conditions of the if, elif,
and else structure determine the position of the switch, assigning the value to a vari‐
able called new_switch_position. If this differs from the previous value, then the
switch position is printed.

You will find a wide range of types of toggle switches. Some will be described as
DPDT, SPDT, SPST, or SPST, momentary on, and so on. The meaning of these letters
is as follows:

• D: Double
• S: Single
• P: Pole
• T: Throw

12.4 Using a Center-Off Toggle or Slide Switch | 311

A DPDT switch is double pole, double throw. The word pole refers to the number of
separate switch contacts that are controlled from the one mechanical lever. So, a dou‐
ble pole switch can switch two things on and off independently. A single throw switch
can only open or close a single contact (or two contacts if it is double pole). However,
a double throw switch can connect the common contact to one of two other contacts.

Figure 12-7 shows the most common types of switch.

Figure 12-7. Types of toggle switches

See Also
For more information on how if statements work, see Recipe 5.18. For the most
basic switch recipe, see Recipe 12.1.

312 | Chapter 12: Digital Inputs

12.5 Debouncing a Button Press
Problem
Sometimes when you press the button on a switch, the expected action happens more
than once, because the switch contacts bounce. In that case, you want to write code to
de-bounce the switch.

Solution
There are a number of solutions to this problem. To explore them, build the bread‐
board setup from Recipe 12.2.

The original code for this example, without any attempt at debouncing, looks like
this:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

switch_pin = 18
led_pin = 23

GPIO.setup(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(led_pin, GPIO.OUT)

led_state = False
old_input_state = True # pulled-up

while True:
 new_input_state = GPIO.input(switch_pin)
 if new_input_state == False and old_input_state == True:
 led_state = not led_state
 old_input_state = new_input_state
 GPIO.output(led_pin, led_state)

The problem is that if the switch contacts bounce, it is just as if the switch were
pressed more than once in very rapid succession. If they bounce an odd number of
times, then things will seem to be OK. But if they bounce an even number of times,
the two events will toggle the LED on and then straight back off again.

You need to ignore any changes after the switch is pressed for a short amount of time,
while the switch finishes bouncing.

The quick and easy way to do this is to introduce a short sleep after the button press
is detected by adding a time.sleep command of, say, 0.2 seconds. This delay is prob‐
ably much higher than necessary, strictly speaking. You may find that you can reduce
this considerably.

12.5 Debouncing a Button Press | 313

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

switch_pin = 18
led_pin = 23

GPIO.setup(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(led_pin, GPIO.OUT)

led_state = False
old_input_state = True # pulled-up

while True:
 new_input_state = GPIO.input(switch_pin)
 if new_input_state == False and old_input_state == True:
 led_state = not led_state
 time.sleep(0.2)
 old_input_state = new_input_state
 GPIO.output(led_pin, led_state)

Discussion
This solution is OK in most situations, but you might also consider using the switch
pin with an interrupt (Recipe 10.13).

Switch bouncing occurs on most switches and can be quite severe on some switches,
as the oscilloscope trace in Figure 12-8 shows.

Figure 12-8. Contact bounce with a poor switch

314 | Chapter 12: Digital Inputs

You can see that there is contact bounce both as the switch closes and when it is
released. Most switches are not as bad as this one.

See Also
For the basics of connecting a button, see Recipe 12.1.

The Squid Button library debounces button presses, using a similar approach to that
described here; see Recipe 9.11 for details about the Squid Button.

12.6 Using an External Pull-up Resistor
Problem
You want to run a long wire from the Raspberry Pi to the switch, but you are getting
some false readings on the input pin.

Solution
The internal pull-up resistors are quite weak (about 40kΩ). If you run a long lead to
the switch or operate in an electrically noisy environment, you may get false trigger‐
ings on the digital input. You can overcome this by turning off the internal pull-up
and pull-down resistors and using an external pull-up resistor.

Figure 12-9 shows the use of an external pull-up resistor.

To test out this hardware, you can use the program switch.py; see Recipe 12.1.

Discussion
The lower the resistance of the resistor, the longer the range of your switch. However,
when you press the button, a current flows from 3.3V through the resistor to ground.
A 100Ω resistor draws a current of 3.3V/100Ω = 33mA. This is within the safe limit
for the 3.3V supply of 50mA or a Raspberry Pi 1, so don’t use a lower value than this
if you have an older Raspberry Pi. If you are using a newer 40-pin GPIO Raspberry
Pi, then you could drop this value even further to perhaps 47Ω.

In almost all cases, a 1kΩ resistor will provide a long range with no problems.

12.6 Using an External Pull-up Resistor | 315

Figure 12-9. Using an external pull-up resistor

See Also
For the basics of connecting a button, see Recipe 12.1.

12.7 Using a Rotary (Quadrature) Encoder
Problem
You want to detect rotation by using a rotary encoder.

Solution
Use a rotary (quadrature encoder) connected to two GPIO pins, as shown in
Figure 12-10.

316 | Chapter 12: Digital Inputs

Figure 12-10. Connecting a rotary encoder

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Rotary encoder (quadrature type; see “Miscellaneous” on page 477)

This type of rotary encoder is called a quadrature encoder, and it behaves like a pair of
switches. The sequence in which they open and close as the rotary encoder’s shaft is
turned determines the direction of rotation.

The rotary encoder shown has the center lead as the common lead and the two leads
on either side as A and B. Not all rotary encoders use this layout, so check the pinout
on the datasheet for the rotary encoder that you are using. The issue is often confused
further because many rotary encoders include a push switch, which will have a sepa‐
rate pair of contacts.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called rotary_encoder.py.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

input_A = 18
input_B = 23

GPIO.setup(input_A, GPIO.IN, pull_up_down=GPIO.PUD_UP)

12.7 Using a Rotary (Quadrature) Encoder | 317

GPIO.setup(input_B, GPIO.IN, pull_up_down=GPIO.PUD_UP)

old_a = True
old_b = True

def get_encoder_turn():
 # return -1, 0, or +1
 global old_a, old_b
 result = 0
 new_a = GPIO.input(input_A)
 new_b = GPIO.input(input_B)
 if new_a != old_a or new_b != old_b :
 if old_a == 0 and new_a == 1 :
 result = (old_b * 2 - 1)
 elif old_b == 0 and new_b == 1 :
 result = -(old_a * 2 - 1)
 old_a, old_b = new_a, new_b
 time.sleep(0.001)
 return result

x = 0

while True:
 change = get_encoder_turn()
 if change != 0 :
 x = x + change
 print(x)

The test program simply counts up as you turn the rotary encoder clockwise, and
counts down when you rotate it counterclockwise.

pi@raspberrypi ~ $ sudo python rotary_encoder.py
1
2
3
4
5
6
7
8
9
10
9
8
7
6
5
4

318 | Chapter 12: Digital Inputs

Discussion
Figure 12-11 shows the sequence of pulses that you will get from the two contacts, A
and B. You can see that the pattern repeats itself after four steps (hence the name
quadrature encoder).

Figure 12-11. How quadrature encoders work

When rotating clockwise (left to right in Figure 12-11), the sequence will be:

Phase A B
1 0 0

2 0 1

3 1 1

4 1 0

When rotating in the opposite direction, the sequence of phases will be reversed.

Phase A B
4 1 0

3 1 1

2 0 1

1 0 0

The Python program listed previously implements the algorithm for determining the
rotation direction in the function get_encoder_turn. The function will return 0 (if
there has been no movement), 1 for a rotation clockwise, or -1 for a rotation counter‐
clockwise. It uses two global variables, old_a and old_b, to store the previous states of
the switches A and B. By comparing them with the newly read values, it can deter‐
mine (using a bit of clever logic) which direction the encoder is turning.

The sleep period of 1 millisecond is to ensure that the next new sample does not
occur too soon after the previous sample; otherwise, the transitions can give false
readings.

The test program should work reliably no matter how fast you twiddle the knob on
the rotary encoder; however, try to avoid doing anything time-consuming in the
loop, or you may find that turn steps are missed.

12.7 Using a Rotary (Quadrature) Encoder | 319

See Also
You can also measure the rotated position of a knob by using a variable resistor with
the step response method (Recipe 13.1) or by using an analog-to-digital converter
(Recipe 13.5).

12.8 Using a Keypad
Problem
You want to interface a keypad with your Raspberry Pi.

Solution
Keypads are arranged in rows and columns, with a push switch on the intersection of
each row or column. To find out which key is pressed, you first connect all the row
and column connections to Raspberry Pi GPIO pins. So, for a 4×3 keypad, you will
need four + three pins. By scanning each column in turn (setting it to output high)
and reading the value of each of the row inputs, you can determine which (if any) key
is pressed.

Note that keypads show considerable variation in their pinouts.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 4×3 keypad (see “Miscellaneous” on page 477)
• Seven male header pins (see “Miscellaneous” on page 477)

Figure 12-12 shows the wiring diagram for the project using the SparkFun keypad lis‐
ted in “Miscellaneous” on page 477. The keypad is supplied without header pins,
which must be soldered onto the keypad.

320 | Chapter 12: Digital Inputs

Figure 12-12. Keypad wiring diagram

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called keypad.py.

Before you run the program, make sure that the row and column
pins are correct for the keypad that you are using, and if necessary
change the values in the variables rows and cols. If you do not do
this, then it is possible that pressing a key could short one GPIO
output to another, where one is high and the other is low. This
would likely damage your Raspberry Pi.

The row and columns defined here are correct for the SparkFun keypad listed in
“Miscellaneous” on page 477 in Appendix A. The first row is connected to GPIO pin
17, the second to 25, and so on. The wiring of the row and column to the keypad con‐
nector is illustrated in Figure 12-13.

12.8 Using a Keypad | 321

Figure 12-13. Keypad pin connections

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

rows = [17, 25, 24, 23]
cols = [27, 18, 22]
keys = [
 ['1', '2', '3'],
 ['4', '5', '6'],
 ['7', '8', '9'],
 ['*', '0', '#']]

for row_pin in rows:
 GPIO.setup(row_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

for col_pin in cols:
 GPIO.setup(col_pin, GPIO.OUT)

def get_key():
 key = 0
 for col_num, col_pin in enumerate(cols):
 GPIO.output(col_pin, 1)
 for row_num, row_pin in enumerate(rows):
 if GPIO.input(row_pin):
 key = keys[row_num][col_num]
 GPIO.output(col_pin, 0)
 return key

while True:
 key = get_key()
 if key :
 print(key)
 time.sleep(0.3)

322 | Chapter 12: Digital Inputs

You must run the program with superuser privileges, as it accesses the GPIO. You can
see the trace from the program pressing each key in turn.

pi@raspberrypi ~ $ sudo python keypad.py
1
2
3
4
5
6
7
8
9
*
0
#

Discussion
The keys variable contains a map of the key name for each row and column position.
You can customize this for your keypad.

Because there are quite a lot of pins to initialize as inputs or outputs, both the row
and column pins are initialized in loops.

All the real action takes place in the get_key function. This enables each column in
turn, by setting it to high. An inner loop then tests each of the rows in turn. If one of
the rows is high, then the key name corresponding to that row and column is looked
up in the keys array. If no keypress is detected, then the default value of key (0) is
returned.

The main while loop just gets the key value and prints it. The sleep command just
slows down the output.

See Also
An alternative to adding a keyboard is simply to use a USB keypad. That way you can
just catch keystrokes as described in Recipe 12.11.

12.9 Detecting Movement
Problem
You want to trigger some action in Python when movement is detected.

Solution
Use a passive infrared (PIR) motion detector module.

12.9 Detecting Movement | 323

To make this recipe, you will need:

• Female-to-female jumper wires (see “Prototyping Equipment” on page 474)
• PIR motion detector module (see “Modules” on page 476)

Figure 12-14 shows how the sensor module is wired. This module expects a power
supply of 5V and has an output of 3.3V, making it ideal for use with a Raspberry Pi.

Make sure that the PIR module you use has a 3.3V output. If it has
5V output, you will need to use a pair of resistors to reduce this to
3.3V (see Recipe 13.6).

Figure 12-14. Wiring a PIR motion detector

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called pir.py.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(18, GPIO.IN)

324 | Chapter 12: Digital Inputs

while True:
 input_state = GPIO.input(18)
 if input_state == True:
 print('Motion Detected')
 time.sleep(1)

The program simply prints out the state of the GPIO input 18.

$ sudo python pir.py
Motion Detected
Motion Detected

Discussion
Once triggered, the output of the PIR sensor will stay high for a little while. You can
adjust this using one of the trimpots on its circuit board. The second trimpot (if
present) will set the threshold of light level that will disable the sensor. This is useful
when the sensor is being used to control a light, turning it on when detecting move‐
ment, but only when its dark.

See Also
You could combine this recipe with Recipe 7.16 to send an email when an intruder is
detected or integrate it with If This Then That (IFTTT) to provide a whole load of
possible ways of being notified (see Recipe 15.3).

To detect movement using computer vision and a webcam, see Recipe 8.6.

12.10 Adding GPS to the Raspberry Pi
Problem
You want to connect a serial GPS module to a mobile Raspberry Pi and access the
data, using Python.

Solution
A 3.3V serial GPS module can be connected directly to Raspberry Pi’s RXD connec‐
tion.

Figure 12-15 shows how the module is wired. The RXD of the Raspberry Pi connects
to Tx of the GPS module. The only other connections are for GND and 5V, so we can
easily just use three female-to-female headers.

12.10 Adding GPS to the Raspberry Pi | 325

Figure 12-15. Wiring a GPS to a Raspberry Pi

GPS messages require some decoding. Fortunately, there is a good suite of tools to
help us do this. Install the following packages:

$ sudo apt-get install gpsd
$ sudo apt-get install gpsd-clients

The most important of these is gpsd. This is a tool that reads GPS data from a serial or
USB connection as well as other sources and makes it available for client programs to
use by providing a local web service on port 2748.

To start the gpsd service running, issue the following command:

$ sudo gpsd /dev/ttyAMA0

You can see if it is working by entering the command:

$ cgps -s

The -s is optional; it just suppresses the display of the raw data (see Figure 12-16).

The third package that we installed (python-gps) is, as you might expect, a Python
library for accessing the GPS data in a nice, convenient form. You will use python_gps
with a short test program to display just the latitude, longitude, and time.

326 | Chapter 12: Digital Inputs

Figure 12-16. Testing GPS with cgps

Open an editor (nano or IDLE) and paste in the following code. Do not call the file
gps.py, or it will conflict with the Python GPS library. As with all the program exam‐
ples in this book, you can also download the program from the Code section of the
Raspberry Pi Cookbook website, where it is called gps_test.py.

from gps import *
session = gps()
session.stream(WATCH_ENABLE|WATCH_NEWSTYLE)

while True:
 report = session.next()
 if report.keys()[0] == 'epx' :
 lat = float(report['lat'])
 lon = float(report['lon'])
 print("lat=%f\tlon=%f\ttime=%s" % (lat, lon, report['time']))
 time.sleep(0.5)

Run the program, and you should see some trace like this:

$ python gps_test.py
lat=53.710257 lon=-2.664245 time=2013-08-01T08:06:24.960Z
lat=53.710258 lon=-2.664252 time=2013-08-01T08:06:25.960Z
lat=53.710258 lon=-2.664252 time=2013-08-01T08:06:25.960Z
lat=53.710248 lon=-2.664243 time=2013-08-01T08:06:26.960Z
lat=53.710248 lon=-2.664243 time=2013-08-01T08:06:26.960Z
lat=53.710248 lon=-2.664250 time=2013-08-01T08:06:27.960Z

12.10 Adding GPS to the Raspberry Pi | 327

Discussion
The program creates a session and then establishes a stream of data to be read. The
GPS will repeatedly spit out messages in different formats. The if command selects
just the messages you want; those that contain the positional information. The parts
of the message are stored in a dictionary from which the fields can be accessed and
displayed.

Besides using the GPS data with Python, you can also use the xgps tool to display the
GPS data (Figure 12-17). Just enter the command:

$ xgps

Figure 12-17. Viewing GPS with xgps

328 | Chapter 12: Digital Inputs

This utility requires a display, so you should run it from the Raspberry Pi itself or by
using VNC (Recipe 2.8) or RDP (Recipe 2.9).

See Also
You can use the same approach using a USB GPS module.

Find out more about gpsd.

12.11 Intercepting Keypresses
Problem
You want to intercept individual keypresses on a USB keyboard or numeric keypad.

Solution
There are at least two ways to solve this problem. The most straightforward is to use
the sys.stdin.read function. This has the advantage over the other method of not
requiring a graphical user interface to be running, so a program using it can be run
from an SSH session.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called keys_sys.py.

import sys, tty, termios

def read_ch():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

while True:
 ch = read_ch()
 if ch == 'x':
 break
 print("key is: " + ch)

The alternative to this is to use Pygame. Pygame is a Python library intended for writ‐
ing games. It can also be used to detect keypresses. You could then use this to perform
some action. This recipe must be made using Python 2 rather than Python 3, as
Pygame is not included with Python 3.

12.11 Intercepting Keypresses | 329

The following example program illustrates the use of Pygame to print out a message
each time a key is pressed. However, it only works if the program has access to the
windowing system, so you will need to run it using VNC (Recipe 2.8), RDP (Recipe
2.9), or directly on the Raspberry Pi. The example code is in the file keys_pygame.py
on the book’s website.

import pygame
import sys
from pygame.locals import *

pygame.init()
screen = pygame.display.set_mode((640, 480))
pygame.mouse.set_visible(0)

while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN:
 print("Code: " + str(event.key) + " Char: " + chr(event.key))

This opens a blank Pygame window, and keys will only be intercepted if the Pygame
window is selected. The program produces output in the Terminal window from
which the program is run.

If you press an arrow key or Shift key with the first stdin read approach, the program
will throw an error because those keys don’t have an ASCII value.

$python keys_pygame.py
Code: 97 Char: a
Code: 98 Char: b
Code: 99 Char: c
Code: 120 Char: x
Code: 13 Char:

In this case, Ctrl-C won’t stop this program from running. To stop the program, click
the X on the PyGame window.

Discussion
When you are using the Pygame approach, other keys have constant values defined
for them, which allows you to use the cursor and other non-ASCII keys (like the up
arrow key and Home) on the keyboard. This isn’t possible with the other approach.

See Also
Intercepting keyboard events can also be an alternative to using a matrix keypad
(Recipe 12.8).

330 | Chapter 12: Digital Inputs

12.12 Intercepting Mouse Movements
Problem
You want to detect mouse movements in Python.

Solution
The solution to this is very similar to that of using Pygame to intercept keyboard
events (Recipe 12.11).

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called mouse_pygame.py.

import pygame
import sys
from pygame.locals import *

pygame.init()
screen = pygame.display.set_mode((640, 480))
pygame.mouse.set_visible(0)

while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == MOUSEMOTION:
 print("Mouse: (%d, %d)" % event.pos)

The MOUSEMOTION event is triggered whenever the mouse moves within the Pygame
window. You can find the coordinates from the pos value of the event. The coordi‐
nates are absolute coordinates relative to the top-left corner of the window:

Mouse: (262, 285)
Mouse: (262, 283)
Mouse: (262, 281)
Mouse: (262, 280)
Mouse: (262, 278)
Mouse: (262, 274)
Mouse: (262, 270)
Mouse: (260, 261)
Mouse: (258, 252)
Mouse: (256, 241)
Mouse: (254, 232)

Discussion
Other events that you can intercept are MOUSEBUTTONDOWN and MOUSEBUTTONUP. These
can be used to detect when the left mouse button has been pressed or released.

12.12 Intercepting Mouse Movements | 331

See Also
The Pygame documentation for mouse can be found at the Pygame website.

12.13 Using a Real-Time Clock Module
Problem
You want your Raspberry Pi to remember the time, even when it has no network
connection.

Solution
Use an real-time clock (RTC) module.

A very common RTC chip is the DS1307. It has an I2C interface and can be bought as
a ready-to-use module that includes the chip itself, a quartz crystal for it to maintain
accurate timekeeping, and a battery holder for a 3V lithium cell.

To make this recipe, you will need:

• A DS1307 or compatible RTC module (see “Modules” on page 476)
• Female-to-female jumper wires (see “Prototyping Equipment” on page 474)

The RTC module that you are using must be 3.3V-compatible. That
means that its I2C interface should either have no pull-up resistors
at all, or they should pull up to 3.3V and not 5V. When using the
Adafruit model here, simply don’t include the two resistors when
soldering together the module. If you have a ready-made module,
carefully remove any pull-up resistors.

Assemble the RTC module if it is in kit form, remembering to omit pull-up resistors,
and then connect the module to the Raspberry Pi, as shown in Figure 12-18.

332 | Chapter 12: Digital Inputs

Figure 12-18. Connecting an RTC module

The DS1307 is an I2C module, so your Raspberry Pi must be set up to work with I2C
(see Recipe 9.3). You can check that the device is visible using I2C tools (Recipe 9.4).

$ sudo i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

The 68 in the table indicates that the RTC module is connected to the I2C bus at hex
address 68.

If you are using one of the original Raspberry Pi model B, revision 1, boards, then use
0 after the y option in the preceding line. The revision 1 boards were distinctive for
having a black audio socket.

You now need to run the following commands so that the RTC can be used with a
program called hwclock.

$ sudo modprobe rtc-ds1307
$ sudo bash
$ echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/new_device

Once again, if you are using a revision 1 board, change i2c-1 to i2c-0.

You can now access the RTC using the following command:

$ sudo hwclock -r
Sat 01 Jan 2000 00:08:08 UTC -0.293998 seconds

12.13 Using a Real-Time Clock Module | 333

As you can see, the clock is not currently set.

To set the time on the RTC module, you first need to make sure that your Raspberry
Pi has the right time. If your Pi is connected to the Internet, this should happen auto‐
matically. You can check this by using the date command:

$ date
Tue Aug 20 06:42:47 UTC 2013

If the time is wrong, you can also set it manually using date (Recipe 3.35). To transfer
the Raspberry Pi system time onto the RTC module, use the following command:

$ sudo hwclock -w

You can then read the time by using the -r option:

$ sudo hwclock -r
Wed 02 Jan 2013 03:11:43 UTC -0.179786 seconds

The RTC having the correct time is pointless unless it is used to set the correct system
time in Linux when it reboots. To arrange for this to happen, you need to make a few
configuration changes.

First, edit /etc/modules (using sudo nano /etc/modules) and add rtc-ds1307 to the
end of the list of modules. If you have already added some modules while setting up
I2C, SPI, and other options, your file might look something like this:

/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
Parameters can be specified after the module name.

snd-bcm2835
i2c-bcm2708
i2c-dev
spidev
rtc-ds1307

Next, you need two commands to run automatically during startup to set the system
time. So edit the file /etc/rc.local using the command sudo nano /etc/rc.local, and
just before the final exit 0 line, insert the following two lines. Remember to change
i2c-1 to i2c-0 if you are using a revision 1 Pi.

$ echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/new_device
$ sudo hwclock -s

334 | Chapter 12: Digital Inputs

When you finish, the file should look something like this:

#
In order to enable or disable this script, just change the execution
bits.
#
By default, this script does nothing.

Print the IP address
_IP=$(hostname -I) || true
if ["$_IP"]; then
 printf "My IP address is %s\n" "$_IP"
fi
echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/new_device
sudo hwclock -s
exit 0

Now, when you reboot, your Raspberry Pi should set its system time from the RTC.
However, if there is an Internet connection available, this will take precedence for set‐
ting the time.

Discussion
An RTC is not essential for a Raspberry Pi by any means, since a Raspberry Pi that is
connected to the Internet will automatically connect to a network time server and set
its own clock. However, you may not always be using the Pi when connected to a net‐
work, in which case a hardware RTC is a good option.

See Also
AB Electronics has a neat RTC that plugs directly into the GPIO socket. This is
shown in Figure 12-19.

This recipe is based on a tutorial from Adafruit.

12.13 Using a Real-Time Clock Module | 335

Figure 12-19. AB Electronics RTC module

336 | Chapter 12: Digital Inputs

CHAPTER 13

Sensors

13.0 Introduction
In this chapter, you will look at recipes for using sensors of various types that will
allow the Raspberry Pi to measure temperature, light, and more.

Compared to a board like the Arduino, the Raspberry Pi lacks analog inputs. This
means that for many sensors, it is necessary to use additional analog-to-digital (ADC)
converter hardware. Fortunately, this is relatively easy to do. It is also possible to use
resistive sensors with a capacitor and a couple of resistors.

Most of the recipes will require the use of a solderless breadboard and male-to-female
jumper wires (see Recipe 9.8).

13.1 Using Resistive Sensors
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to connect a variable resistor to a Raspberry Pi and measure its resistance
so that you can use the position of the variable resistor’s knob in your Python
program.

337

Solution
You can measure resistance on a Raspberry Pi using nothing more than a capacitor, a
couple of resistors, and two GPIO pins. In this case, you will be able to estimate the
position of the knob on a small variable resistor (trimpot) by measuring its resistance
from its slider contact to one end of the pot.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 10kΩ trimpot (see “Resistors and Capacitors” on page 474)
• Two 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• 330 nF capacitor (see “Resistors and Capacitors” on page 474)

Figure 13-1 shows the arrangement of components on the breadboard.

Figure 13-1. Measuring resistance on a Raspberry Pi

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called pot_step.py.

import RPi.GPIO as GPIO
import time, math

C = 0.36 # uF
R1 = 1000 # Ohms

GPIO.setmode(GPIO.BCM)

338 | Chapter 13: Sensors

Pin a charges the capacitor through a fixed 1k resistor
and the pot in series
Pin b discharges the capacitor through a fixed 1k resistor
a_pin = 18
b_pin = 23

Discharge the capacitor, leaving it ready to start filling up
def discharge():
 GPIO.setup(a_pin, GPIO.IN)
 GPIO.setup(b_pin, GPIO.OUT)
 GPIO.output(b_pin, False)
 time.sleep(0.1)

Return the time taken (uS) for the voltage on the capacitor
to count as a digital input HIGH
which is 1.65V or higher
def charge_time():
 GPIO.setup(b_pin, GPIO.IN)
 GPIO.setup(a_pin, GPIO.OUT)
 GPIO.output(a_pin, True)
 t1 = time.time()
 while not GPIO.input(b_pin):
 pass
 t2 = time.time()
 return (t2 - t1) * 1000000

Take an analog reading as the time taken to charge after
first discharging the capacitor
def analog_read():
 discharge()
 t = charge_time()
 discharge()
 return t

Convert the time taken to charge the cpacitor into a value of resistance
To reduce errors, do it 100 times and take the average
def read_resistance():
 n = 10
 total = 0;
 for i in range(1, n):
 total = total + analog_read()
 t = total / float(n)
 T = t * 0.632 * 3.3
 r = (T / C) - R1
 return r
try:
 while True:
 print(read_resistance())
 time.sleep(0.5)
finally:
 GPIO.cleanup()

13.1 Using Resistive Sensors | 339

When you run the program, you should see some output like this:

$ sudo python pot_step.py
10049.2157936
10105.1559448
10158.6098671
11331.0049375
10162.6154582
10156.8142573
9501.27855937
8216.17444356

The reading will vary as you rotate the knob of the trimpot. Ideally, the reading of
resistance would vary between 0 and 10,000Ω but in practice, there will be some
error. You might like to tweak the value of the constant C at the top of the program if
you want more accurate readings, but remember the value of C will probably have to
be changed if you put another capacitor in, even if the capacitor was nominally of the
same value.

Discussion
To explain how this program works, I first need to explain how the step response tech‐
nique can be used to measure the resistance of the variable resistor.

Figure 13-2 shows the schematic diagram for the recipe.

Figure 13-2. Measuring resistance using step response

This way of doing things is called step response because it works by seeing how the
circuit responds from the step change when an output is switched from low to high.

340 | Chapter 13: Sensors

You can think of a capacitor as a tank of electricity, and as it fills with charge, the volt‐
age across it increases. You can’t measure that voltage directly, because the Raspberry
Pi doesn’t have an Analog to Digital Converter (ADC). However, you can time how
long it takes for the capacitor to fill with charge to the extent that it gets above the
1.65V or so that constitutes a high digital input. The speed at which the capacitor fills
with charge depends on the value of the variable resistor (Rt). The lower the resist‐
ance, the faster the capacitor fills with charge and the voltage rises.

To be able to get a good reading, you must also be able to empty the capacitor each
time before you take a reading. In Figure 13-2, connection A is used to charge the
capacitor through Rc and Rt, and connection B is used to discharge (empty) the
capacitor through Rd. The resistors Rc and Rd are used to prevent too much current
from flowing as the capacitor is charged and discharged through the Raspberry Pi’s
relatively fragile GPIO pins.

The steps involved in taking a reading are first to discharge the capacitor through Rd
and then to let it charge through Rc and Rt.

To discharge it, connection A (GPIO 18) is set to be an input, effectively disconnect‐
ing Rc and Rt from the circuit. Connection B (GPIO 23) is then set to be an output
and low. This is held there for 100 milliseconds to empty the capacitor.

Now that the capacitor is empty, you can start to allow charge to flow into it by set‐
ting connection B to be an input (effectively disconnecting it) and then enabling con‐
nection A to be a high output at 3.3V. Capacitor C will now begin to charge through
Rc and Rt. The while loop will do nothing until the voltage at connection B switches
from being low to high at about 1.65V.

At that point, the time taken is returned.

Figure 13-3 shows how a resistor and capacitor in this kind of arrangement charge
and discharge as the voltage is toggled between high and low.

You can see that the voltage at the capacitor increases rapidly at first but then trails off
as the capacitor becomes full. Fortunately, you are interested in the area of the curve
up until the capacitor reaches about 1.65V, which is a fairly straight line, meaning that
the time taken for the voltage across the capacitor to rise to this point is roughly pro‐
portional to the resistance of Rt and hence the position of the knob.

This approach is not hugely accurate, but it is very low cost and easy to use. The inac‐
curacy is largely because capacitors of a suitably high value are only accurate to 10%.

13.1 Using Resistive Sensors | 341

Figure 13-3. Charging and discharging a capacitor

See Also
Using a step response works well with all kinds of resistive sensors for light (Recipe
13.2), temperature (Recipe 13.3), and even gas detection (Recipe 13.4).

For more accurate measurements of the trimpot position, see Recipe 13.5, where the
pot is used with an ADC converter.

13.2 Measuring Light
Problem
You want to measure light intensity with a Raspberry Pi and a photoresistor.

Solution
Use the same basic recipe and code as Recipe 13.1, but replace the trimpot with a
photoresistor.

342 | Chapter 13: Sensors

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Photoresistor (see “Resistors and Capacitors” on page 474)
• Two 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• 330 nF capacitor (see “Resistors and Capacitors” on page 474)

All these parts are included in the Electronics Starter Kit for Raspberry Pi from Monk
Makes (see “Prototyping Equipment” on page 474).

Figure 13-4 shows the arrangement of components on the breadboard.

Figure 13-4. Measuring light on a Raspberry Pi

Using the same program as Recipe 13.1 (pot_step.py), you will see the output vary as
you move your hand over the photoresistor to cut out some of the light.

This solution provides relatively reliable readings of light levels. As an adaptation of
the general solution for using resistive sensors (Recipe 13.1), it also copes with meas‐
uring a resistance of 0Ω without any risk of damaging the GPIO pins of the Rasp‐
berry Pi. Since a photoresistor is never going to dip to zero resistance, you can take a
few shortcuts and do away with both 1kΩ resistors and one of the GPIO pins and
make the simpler schematic shown in Figure 13-5.

13.2 Measuring Light | 343

Figure 13-5. A simplified light sensor

In this variation, the same GPIO pin will be used to charge and discharge the capaci‐
tor and check to see if it is above the input HIGH threshold. The program can be
found in photoresistor_step.py.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

pin = 18

def discharge():
 GPIO.setup(pin, GPIO.OUT)
 GPIO.output(pin, False)
 time.sleep(0.1)

Return the time taken for the capacitor to go HIGH
which is 1.65V or higher
def charge_time():
 t1 = time.time()
 GPIO.setup(pin, GPIO.IN)
 while not GPIO.input(pin):
 # charge for 1ms
 GPIO.setup(pin, GPIO.OUT)

344 | Chapter 13: Sensors

 GPIO.output(pin, True)
 time.sleep(0.001)
 # set to input to test again
 GPIO.setup(pin, GPIO.IN)
 time.sleep(0.001)
 t2 = time.time()
 return (t2 - t1) * 1000000

Take an analog reading as the time taken to charge C
def analog_read():
 discharge()
 return charge_time()

while True:
 print(analog_read())
 time.sleep(0.5)

In only using one pin, after discharging the capacitor through the photoresistor, the
charge_time function charges the capacitor through the photoresistor for just 1 ms.
It sets the pin to be an input and tests to see if it’s over the HIGH threshold, and then
repeats until it is HIGH.

Discussion
A photoresistor is a resistor whose resistance varies depending on the amount of light
coming through its transparent window. The brighter the light, the lower the resist‐
ance. Typically, the resistance varies between about 1kΩ in bright light up to perhaps
100kΩ in complete darkness.

The sensors can only really give a rough idea of the light level.

See Also
You could also use an ADC with the photoresistor (Recipe 13.5).

13.3 Measuring Temperature with a Thermistor
Problem
You want to measure temperature using a thermistor.

Solution
A thermistor is a resistor whose resistance varies with temperature. Use the step
response method (Recipe 13.1) to measure the resistance of the thermistor and then
calculate the temperature.

13.3 Measuring Temperature with a Thermistor | 345

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1k Thermistor (see “Resistors and Capacitors” on page 474)
• Two 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• 330 nF capacitor (see “Resistors and Capacitors” on page 474)

All these parts are included in the Electronics Starter Kit for Raspberry Pi from Monk
Makes (see “Prototyping Equipment” on page 474). When you get your thermistor,
make sure that you know its values of Beta and R0 (resistance at 25C) and that it is a
Negative Temperature Coefficient (NTC) device.

Figure 13-6 shows the breadboard layout for this recipe.

Figure 13-6. Breadboard layout for using a thermistor

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called thermistor.py.

import RPi.GPIO as GPIO
import time, math

C = 0.36 # uF
R1 = 1000 # Ohms
B = 3800.0 # The thermistor constant
R0 = 1100.0 # The resistance of the thermistor at 25C

GPIO.setmode(GPIO.BCM)

Pin a charges the capacitor through a fixed 1k resistor
and the thermistor in series
Pin b discharges the capacitor through a fixed 1k resistor

346 | Chapter 13: Sensors

a_pin = 18
b_pin = 23

Discharge the capacitor, leaving it ready to start filling up
def discharge():
 GPIO.setup(a_pin, GPIO.IN)
 GPIO.setup(b_pin, GPIO.OUT)
 GPIO.output(b_pin, False)
 time.sleep(0.1)

Return the time taken (uS) for C to charge
which is 1.65V or higher
def charge_time():
 GPIO.setup(b_pin, GPIO.IN)
 GPIO.setup(a_pin, GPIO.OUT)
 GPIO.output(a_pin, True)
 t1 = time.time()
 while not GPIO.input(b_pin):
 pass
 t2 = time.time()
 return (t2 - t1) * 1000000

Take an analog reading from charge time
def analog_read():
 discharge()
 t = charge_time()
 discharge()
 return t

Convert the time taken to charge the capacitor into a value of resistance
To reduce errors, do it 10 times and take the average.
def read_resistance():
 n = 10
 total = 0;
 for i in range(1, n):
 total = total + analog_read()
 t = total / float(n)
 T = t * 0.632 * 3.3
 r = (T / C) - R1
 return r

def read_temp_c():
 R = read_resistance()
 t0 = 273.15 # 0 deg C in K
 t25 = t0 + 25.0 # 25 deg C in K
 # Steinhart-Hart equation - Google it
 inv_T = 1/t25 + 1/B * math.log(R/R0)
 T = (1/inv_T - t0)
 return T

try:
 while True:

13.3 Measuring Temperature with a Thermistor | 347

 print(read_temp_c())
 time.sleep(0.5)
finally:
 GPIO.cleanup()

When you run the program, you will see a series of temperature measurements in
degrees C. To convert to degrees F, use the formula Tf = Tc * 9 / 5 + 32.

$ sudo python thermistor.py
18.3040458984
17.8302664759
17.3917856854
17.9286173793

Discussion
Most of the code in this project is the same as for Recipe 13.1. The new part is the
function read_temp_c, which converts the resistance value into a temperature in
degrees C.

Calculating the temperature from the resistance of the thermistor requires some fairly
hairy math using logarithms called the Steinhart-Hart equation. This equation needs
to know two things about the thermistor: its resistance at 25 degrees C (called T0 or
sometimes T25) and a constant for the thermistor called Beta, or sometimes just B. If
you use a different thermistor, you will need to plug these values into the variables B
and R0 at the top of the program.

Note that a capacitor typically only has an accuracy of 10%, and thermistors are simi‐
larly inaccurate in their value of R0, so to get useful readings from the thermistor, you
will need to tweak the variables C and R0.

Adjust C first, using a 1kΩ 1% accuracy resistor in place of the pot in Recipe 13.1.
Then adjust R0 to give readings that agree with an accurate thermometer.

See Also
To measure temperature using a TMP36, see Recipe 13.8.

To measure temperature using a digital temperature sensor (DS18B20), see Recipe
13.11.

To measure temperature using a Sense HAT, see Recipe 13.10.

348 | Chapter 13: Sensors

13.4 Detecting Methane
Problem
You want to measure gas levels using a methane sensor.

Solution
Low-cost resistive gas sensors are available that can easily be wired to a Raspberry Pi
to detect gases such as methane. You can use the step response method that you first
used in Recipe 13.1.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Methane sensor (see “Modules” on page 476)
• Two 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• 330 nF capacitor (see “Resistors and Capacitors” on page 474)

The sensor contains a heating element that requires 5V at up to 150mA. The Rasp‐
berry Pi is capable of providing this as long as its power supply can supply the extra
150mA.

The sensor module has rather thick legs—too thick to fit into breadboard holes. One
way around this is to solder short lengths of solid core wire to each lead
(Figure 13-7). Another is to buy SparkFun’s gas sensor breakout board.

13.4 Detecting Methane | 349

Figure 13-7. Soldering leads onto the gas sensor

350 | Chapter 13: Sensors

Wire the breadboard as shown in Figure 13-8 if you’re using the SparkFun breakout
board, or as shown in Figure 13-9 if you soldered longer leads to the gas sensor.

Note that the direct connection shown in Figure 13-9 uses the same symbol for the
breakout board rather than the sensor on its own, but if you look carefully, the con‐
nections are to the six sensor pins, not the four pins of the breakout.

Figure 13-8. Connecting a methane gas sensor to a Raspberry Pi (breakout board)

Figure 13-9. Connecting a methane gas sensor to a Raspberry Pi (direct)

13.4 Detecting Methane | 351

You can use the exact same program as Recipe 13.1, and you can test the methane
sensor by breathing on it. You should see the readings from the sensor drop when
you breathe on it.

Discussion
The obvious use of a methane gas sensor is for novelty fart detecting projects. A more
serious use would be for detecting leaks of natural gas. You could, for instance, imag‐
ine a Raspberry Pi home-watch project that monitored the home with various sen‐
sors. It could then send you an email, while you are on vacation, informing you that
your house is about to explode. Or maybe not.

These types of sensors (Figure 13-10) use a heating element that warms a resistive
surface impregnated with a catalyst sensitive to a particular gas. When the gas is
present, the resistance of the catalyst layer changes.

Figure 13-10. A methane gas sensor

Both the heater and the sensing surface are electrically just resistors. So both can be
connected either way around.

This particular gas sensor is most sensitive to methane, but will also detect other
gases to a lesser extent. That is why breathing on the sensor alters the reading, as
healthy individuals will not normally breathe out methane. The cooling effect of
blowing on the element may also have an effect.

See Also
The datasheet for this sensor can be found at http://bit.ly/1gYupsu. This will give you
all sorts of useful information about the sensor’s sensitivity to various gases.

There are a range of these low-cost sensors available for sensing different gases. For a
list of sensors offered by SparkFun, see the SparkFun website.

352 | Chapter 13: Sensors

13.5 Measuring a Voltage
Problem
You want to measure an analog voltage.

Solution
The Raspberry Pi GPIO connector has only digital inputs. If you wish to measure a
voltage, you need to use a separate analog-to-digital converter (ADC).

Use the MCP3008 eight-channel ADC chip. This chip actually has eight analog
inputs, so you can connect up to eight sensors to one of these and interface to the
chip using the Raspberry Pi SPI interface.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• MCP3008 eight-channel ADC IC (see “Integrated Circuits” on page 475)
• 10kΩ trimpot (see “Resistors and Capacitors” on page 474)

Figure 13-11 shows the breadboard layout for using this chip. Make sure that you get
the chip facing the right way. The little notch in the package should be toward the top
of the breadboard.

Figure 13-11. Using an MCP3008 ADC IC with a Raspberry Pi

13.5 Measuring a Voltage | 353

The variable resistor has one end connected to 3.3V and the other to ground, which
allows the middle connection to be set to any voltage between 0 and 3.3V.

Before trying the program, make sure you have SPI enabled and the SPI Python
library installed (Recipe 9.5).

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called adc_test.py.

import spidev, time

spi = spidev.SpiDev()
spi.open(0, 0)

def analog_read(channel):
 r = spi.xfer2([1, (8 + channel) << 4, 0])
 adc_out = ((r[1]&3) << 8) + r[2]
 return adc_out

while True:
 reading = analog_read(0)
 voltage = reading * 3.3 / 1024
 print("Reading=%d\tVoltage=%f" % (reading, voltage))
 time.sleep(1)

The interesting part of the program is contained in the analog_read function. This
takes a parameter that should be between 0 and 7 and specifies which of the eight
analog inputs down the lefthand side of the chip should be read.

The bit manipulation sets up a request for the appropriate channel and then sends the
bits to the MCP3008, which reads the resultant data:

$ sudo python adc_test.py
Reading=0 Voltage=0.000000
Reading=126 Voltage=0.406055
Reading=221 Voltage=0.712207
Reading=305 Voltage=0.982910
Reading=431 Voltage=1.388965
Reading=527 Voltage=1.698340
Reading=724 Voltage=2.333203
Reading=927 Voltage=2.987402
Reading=1020 Voltage=3.287109
Reading=1022 Voltage=3.293555

Discussion
The MCP3008 has 10-bit ADCs, so when you take a reading, it gives you a number
between 0 and 1023. The test program converts this into a voltage reading by multi‐
plying the reading by the voltage range (3.3V) and then dividing it by 1,024.

354 | Chapter 13: Sensors

You can combine any of the following recipes that use the MCP3008 to allow readings
to be taken from up to eight sensors.

You can also use resistive sensors with the MCP3008 by combining them with a
fixed-value resistor and arranging them as a voltage divider (see Recipe 13.6 and
Recipe 13.7).

See Also
If you’re just interested in detecting the turning of a knob, you can use a rotary
encoder instead of a pot (Recipe 12.7).

You can also detect the position of a pot without the use of an ADC chip by using the
step response method (Recipe 13.1).

Check out the datasheet for the MCP3008.

The Explorer HAT Pro from Pimoroni also has an ADC (Recipe 9.17).

13.6 Reducing Voltages for Measurement
Problem
You want to measure a voltage, but it is higher than the 3.3V possible using an
MCP3008 (Recipe 13.5).

Solution
Use a pair of resistors to act as a voltage divider to reduce the voltage to a suitable
range.

To try this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• MCP3008 eight-channel ADC IC (see “Integrated Circuits” on page 475)
• 10kΩ resistor (see “Resistors and Capacitors” on page 474)
• 3.3kΩ resistor (see “Resistors and Capacitors” on page 474)
• 9V battery and clip lead

Figure 13-12 shows the arrangement for this, using a breadboard. The setup will
measure the voltage of the battery.

13.6 Reducing Voltages for Measurement | 355

Figure 13-12. Reducing the voltage of analog inputs

Never use this recipe to measure high-voltage AC, or for that mat‐
ter, any type of AC. It is for low-voltage DC only.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called adc_scaled.py.

import spidev

R1 = 10000.0
R2 = 3300.0

spi = spidev.SpiDev()
spi.open(0,0)

def analog_read(channel):
 r = spi.xfer2([1, (8 + channel) << 4, 0])
 adc_out = ((r[1]&3) << 8) + r[2]
 return adc_out

reading = analog_read(0)
voltage_adc = reading * 3.3 / 1024
voltage_actual = voltage_adc / (R2 / (R1 + R2))
print("Battery Voltage=" + str(voltage_actual))

The program is very similar to that of Recipe 13.5. The main difference is the scaling,
using the values of the two resistors. The values of these two resistors are held in the
variables R1 and R2.

356 | Chapter 13: Sensors

When you run the program, the battery voltage will be displayed:

$ sudo python adc_scaled.py
Battery Voltage=8.62421875

Read the discussion carefully before attaching anything higher than
9V, or you may destroy the MCP3008.

Discussion
This arrangement of resistors is called a voltage divider or sometimes a potential
divider (Figure 13-13). The formula for calculating the output voltage, given the input
voltage and the values of the two resistors, is:

Vout = Vin * R2 / (R1 + R2)

Figure 13-13. A voltage divider

This means that if R1 and R2 were both the same value (say, 1kΩ), then Vout would
be half of Vin.

When choosing R1 and R2, you also need to consider the current flowing through R1
and R2. This will be Vin/(R1 + R2). In the preceding example, R1 is 10kΩ and R2 is
3.3kΩ. So the current flowing will be 9V/13.3kΩ = 0.68mA. This is low, but still
enough to eventually drain the battery, so do not leave it connected all the time.

See Also
To avoid the math, you can use an online resistor calculator.

The voltage divider is also used to convert resistance to voltage when using a resistive
sensor with an ADC (Recipe 13.7).

13.6 Reducing Voltages for Measurement | 357

13.7 Using Resistive Sensors with an ADC
Problem
You have a resistive sensor that you wish to use with an MCP3008 ADC chip.

Solution
Use a potential divider with one fixed resistor and the resistive sensor to convert the
resistance of the sensor into a voltage that can be measured with the ADC.

As an example, you can remake the light sensor project of Recipe 13.2 to use the
MCP3008 instead of the step response technique.

To try this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• MCP3008 eight-channel ADC IC (see “Integrated Circuits” on page 475)
• 10kΩ resistor (see “Resistors and Capacitors” on page 474)
• Photoresistor (see “Resistors and Capacitors” on page 474)

Figure 13-14 shows the arrangement for this, using a breadboard.

Figure 13-14. Using a photoresistor with an ADC

You can use the exact same program as Recipe 13.5 (adc_test.py). Covering up the
light sensor with your hand changes the readings. You also need to set up SPI on your
Raspberry Pi, so if you haven’t already done so, follow Recipe 9.5.

358 | Chapter 13: Sensors

$ sudo python adc_test.py

Reading=341 Voltage=1.098926
Reading=342 Voltage=1.102148
Reading=227 Voltage=0.731543
Reading=81 Voltage=0.261035
Reading=86 Voltage=0.277148

These readings may be quite a bit different, depending on your photoresistor, but the
important thing is that the figure changes as the light level changes.

Discussion
Choice of fixed value resistor is not very critical. If the value is too high or low, then
you will find that the range of readings is rather narrow. Select a resistor value some‐
where between the minimum and maximum resistance of the sensor. You may need
to experiment with a few resistors before deciding on one that suits your sensor over
the range of readings you’re interested in. If in doubt, start with 10kΩ and see how
that works.

You can swap out the photoresistor for pretty much any resistive sensor. So, for
instance, you could use the gas sensor from Recipe 13.4.

See Also
To measure light intensity without the complication of an ADC, see Recipe 13.2. For
an example of using more than one channel of the ADC at a time, see Recipe 13.12.

13.8 Measuring Temperature with an ADC
Problem
You want to measure temperature using a TMP36 and an analog-to-digital converter.

Solution
Use an MCP3008 ADC chip.

However, unless you need more than one analog channel, you should consider using
the DS18B20 digital temperature sensor, which is more accurate and doesn’t require a
separate ADC chip (Recipe 13.11).

13.8 Measuring Temperature with an ADC | 359

To try this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• MCP3008 eight-channel ADC IC (see “Integrated Circuits” on page 475)
• TMP36 temperature sensor (see “Integrated Circuits” on page 475)

Figure 13-15 shows the arrangement for this, using a breadboard.

Figure 13-15. Using a TMP36 with an ADC

Make sure that you get the TMP36 facing the right way. One side of the package is
flat, while the other is curved.

You will need to set up SPI on your Raspberry Pi, so if you haven’t already done so,
follow Recipe 9.5.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called adc_tmp36.py.

import spidev, time

spi = spidev.SpiDev()
spi.open(0,0)

def analog_read(channel):
 r = spi.xfer2([1, (8 + channel) << 4, 0])
 adc_out = ((r[1]&3) << 8) + r[2]
 return adc_out

while True:

360 | Chapter 13: Sensors

 reading = analog_read(0)
 voltage = reading * 3.3 / 1024
 temp_c = voltage * 100 - 50
 temp_f = temp_c * 9.0 / 5.0 + 32
 print("Temp C=%f\t\tTemp f=%f" % (temp_c, temp_f))
 time.sleep(1)

The program is based on that of Recipe 13.8. A little bit of additional math calculates
the temperature in degrees Celsius and Fahrenheit:

$ sudo python adc_tmp36.py
Temp C=19.287109 Temp f=66.716797
Temp C=18.642578 Temp f=65.556641
Temp C=18.964844 Temp f=66.136719
Temp C=20.253906 Temp f=68.457031
Temp C=20.898438 Temp f=69.617188
Temp C=20.576172 Temp f=69.037109
Temp C=21.865234 Temp f=71.357422
Temp C=23.154297 Temp f=73.677734
Temp C=23.476562 Temp f=74.257812
Temp C=23.476562 Temp f=74.257812
Temp C=24.121094 Temp f=75.417969
Temp C=24.443359 Temp f=75.998047
Temp C=25.087891 Temp f=77.158203

Discussion
The TMP36 outputs a voltage that is proportional to the temperature. According to
the datasheet for the TMP36, the temperature in degrees C is calculated as the voltage
(in volts) times 100 minus 50.

The TMP36 is fine for measuring the approximate temperature but is specified as
having an accuracy of only 2 degrees C. This will only get worse if you attach long
leads to it. To some extent, you can calibrate an individual device, but for better accu‐
racy, use a DS18B20 (Recipe 13.11), which has a stated accuracy of 0.5% over a tem‐
perature range of -10 to +85 degrees C. Being a digital device, it should not suffer any
loss of accuracy when attached to long leads.

See Also
Take a look at the TMP36 datasheet.

To measure temperature using a thermistor, see Recipe 13.3.

To measure temperature using a digital temperature sensor (DS18B20), see Recipe
13.11.

To measure temperature using a Sense HAT, see Recipe 13.10.

13.8 Measuring Temperature with an ADC | 361

13.9 Measuring the Raspberry Pi CPU Temperature
Problem
You want to know just how hot your Raspberry Pi’s CPU is getting.

Solution
Use the os library to access the temperature sensor built into the Broadcom chip.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called cpu_temp.py.

import os, time

while True:
 dev = os.popen('/opt/vc/bin/vcgencmd measure_temp')
 cpu_temp = dev.read()
 print(cpu_temp)
 time.sleep(1)

When you run this program, it will report the temperature. Note that the message
printed is actually a string with temp= before the temperature and 'C after it.

$ python cpu_temp.py
temp=33.6'C
temp=33.6'C

Discussion
If you want the temperature as a number rather than a string, you need to chop off
the extra text and then convert the number to a float. You can find an example pro‐
gram for this in cpu_temp_float.py.

import os, time

while True:
 dev = os.popen('/opt/vc/bin/vcgencmd measure_temp')
 cpu_temp_s = dev.read()[5:-3] # top and tail string
 cpu_temp = float(cpu_temp_s)
 print(cpu_temp)
 time.sleep(1)

See Also
For more information on chopping up strings, see Recipe 5.15.

To measure temperature using a thermistor, see Recipe 13.3.

362 | Chapter 13: Sensors

To measure temperature using a TMP36, see Recipe 13.8.

To measure temperature using a digital temperature sensor (DS18B20), see Recipe
13.11.

To measure temperature using a Sense HAT, see Recipe 13.10.

13.10 Measuring Temperature, Humidity, and Pressure
with a Sense HAT
Problem
You want to measure temperature, humidity, and pressure, but don’t really want to
have to attach three separate sensors.

Solution
Use a Raspberry Pi Sense HAT (Figure 13-16). That way you get all those sensors plus
some extras like a display.

Figure 13-16. A Sense HAT

Start by following Recipe 9.16 to install the libraries needed by the Sense HAT.

13.10 Measuring Temperature, Humidity, and Pressure with a Sense HAT | 363

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called sense_hat_thp.py.

from sense_hat import SenseHat
import time

hat = SenseHat()

while True:
 t = hat.get_temperature()
 h = hat.get_humidity()
 p = hat.get_pressure()
 print('Temp C:{:.2f} Hum:{:.0f} Pres:{:.0f}'.format(t, h, p))
 time.sleep(1)

When you run the program, the terminal will display something like this:

$ sudo python sense_hat_thp.py
Temp C:27.71 Hum:56 Pres:1005
Temp C:27.60 Hum:55 Pres:1005

The temperature is in degrees C, the humidity is the percentage of relative humidity,
and the atmospheric pressure is in millibars.

Discussion
You will find that the temperature readings from the Sense HAT are on the high side.
This is because the temperature sensor is built into the humidity sensor and is on the
Sense HAT PCB. The Sense HAT generates very little heat (unless you use the display)
but the Raspberry Pi under the Sense HAT does get warm and will increase the tem‐
perature of the HAT. The best way to avoid this problem is to use a 40-way ribbon
cable to move the Sense HAT away from the Raspberry Pi. There are also attempts to
adjust the readings by using the temperature reading of the Raspberry Pi, and you
can follow a discussion on that at http://bit.ly/1OfEEWf. Personally, I feel that these
compensation attempts are probably very specific to the users posting and are
unlikely to produce reliable results.

As well as reading the temperature from the humidity sensor, the pressure sensor also
has a temperature sensor built in that you can read like this:

t = hat.get_temperature_from_pressure()

It is unclear from the documentation as to whether this reading is any more accurate
than using the humidity sensor, but for my setup, it reported temperatures about 1
degree C lower than the humidity sensor.

See Also
To get started with the Sense HAT, see Recipe 9.16.

364 | Chapter 13: Sensors

The programming reference for the Sense HAT is here: https://pythonhosted.org/
sense-hat/api/.

The Sense HAT also has an accelerometer, gyroscope (Recipe 13.13) and magnetome‐
ter (Recipe 13.14) for navigation type projects. It also has a full-color 8×8 LED matrix
display (Recipe 14.3).

13.11 Measuring Temperature Using a Digital Sensor
Problem
You want to measure temperature using an accurate digital sensor.

Solution
Use the DS18B20 digital temperature sensor. This device is more accurate than the
TMP36 used in Recipe 13.8 and uses a digital interface, so it doesn’t require an ADC
chip.

Although the interface to this chip is called one-wire, this just refers to the data pin.
You do need at least one other wire to connect to a one-wire device.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• DS18B20 temperature sensor (see “Integrated Circuits” on page 475)
• 4.7kΩ resistor (see “Resistors and Capacitors” on page 474)

Fit the components onto the breadboard as shown in Figure 13-17. Make sure that
you get the DS18B20 facing the right way.

The latest version of Raspbian has support for the one-wire interface used by the
DS18B20 but you do have to enable it.

To enable 1-wire support, edit the file /boot/config.txt using the command sudo
nano /boot/config.txt and add the line shown below to the end of the file. Then
reboot your Raspberry Pi for the change to take effect.

$ dtoverlay=w1-gpio

13.11 Measuring Temperature Using a Digital Sensor | 365

Figure 13-17. Connecting a DS18B20 to a Raspberry Pi

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called temp_DS18B20.py.

import glob, time

base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'

def read_temp_raw():
 f = open(device_file, 'r')
 lines = f.readlines()
 f.close()
 return lines

def read_temp():
 lines = read_temp_raw()
 while lines[0].strip()[-3:] != 'YES':
 time.sleep(0.2)
 lines = read_temp_raw()
 equals_pos = lines[1].find('t=')
 if equals_pos != -1:
 temp_string = lines[1][equals_pos+2:]
 temp_c = float(temp_string) / 1000.0
 temp_f = temp_c * 9.0 / 5.0 + 32.0
 return temp_c, temp_f

while True:

366 | Chapter 13: Sensors

 print("temp C=%f\ttemp F=%f" % read_temp())
 time.sleep(1)

When the program is run, it will report the temperature once a second in both
degrees Celsius and Fahrenheit:

$ python temp_DS18B20.py
temp C=25.187000 temp F=77.336600
temp C=25.125000 temp F=77.225000
temp C=25.062000 temp F=77.111600
temp C=26.312000 temp F=79.361600
temp C=27.875000 temp F=82.175000
temp C=28.875000 temp F=83.975000

Discussion
At first sight, the program looks a little odd. The interface to the DS18B20 uses a file-
like interface. The file interface for the device will always be in the folder /sys/bus/w1/
devices/ and the name of the file path will start with 28, but the rest of the file path
will be different for each sensor.

The code assumes that there will only be one sensor, and finds the first folder starting
with 28. To use multiple sensors, use different index values inside the square brackets.

Within that folder will be a file called w1_slave, which is opened and read to find the
temperature.

The sensor actually returns strings of text like this:

81 01 4b 46 7f ff 0f 10 71 : crc=71 YES
81 01 4b 46 7f ff 0f 10 71 t=24062

The remainder of the code extracts the temperature part of this message. This appears
after t= and is the temperature in one-thousandths of a degree Celsius.

The read_temp function calculates the temperature in both degrees Celsius and Fah‐
renheit and returns both values.

Besides the basic chip version of the DS18B20, you can also buy a version encapsula‐
ted in a rugged and waterproof probe.

See Also
To find out about logging readings, see Recipe 13.20.

This recipe is heavily based on an Adafruit tutorial.

Take a look at the datasheet for the DS18B20.

To measure temperature using a thermistor, see Recipe 13.3.

To measure temperature using a TMP36, see Recipe 13.8.

13.11 Measuring Temperature Using a Digital Sensor | 367

To measure temperature using a Sense HAT, see Recipe 13.10.

13.12 Measuring Acceleration with an MCP3008 Module
Problem
You want to connect a triple-axis accelerometer to a Raspberry Pi.

Solution
Use an analog accelerometer with an MCP3008 ADC chip to measure the X, Y, and Z
analog outputs.

To try this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• MCP3008 eight-channel ADC IC (see “Integrated Circuits” on page 475)
• ADXL335 triple-axis accelerometer (see “Modules” on page 476)

Figure 13-18 shows the arrangement for this, using a breadboard. It uses three chan‐
nels of the ADC to measure the X, Y, and Z acceleration forces.

Figure 13-18. Using a triple-axis accelerometer

You will need to set up SPI on your Raspberry Pi, so if you have not already done so,
follow Recipe 9.5.

368 | Chapter 13: Sensors

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called adc_accelerometer.py.

import spidev, time

spi = spidev.SpiDev()
spi.open(0,0)

def analog_read(channel):
 r = spi.xfer2([1, (8 + channel) << 4, 0])
 adc_out = ((r[1]&3) << 8) + r[2]
 return adc_out

while True:
 x = analog_read(0)
 y = analog_read(1)
 z = analog_read(2)
 print("X=%d\tY=%d\tZ=%d" % (x, y, z))
 time.sleep(1)

The program simply reads the three forces and prints them out:

$ sudo python adc_accelerometer.py
X=508 Y=503 Z=626
X=508 Y=504 Z=624
X=506 Y=505 Z=627
X=423 Y=517 Z=579
X=411 Y=513 Z=548
X=532 Y=510 Z=623
X=609 Y=518 Z=495
X=607 Y=521 Z=496
X=610 Y=513 Z=499

The first three readings took place with the accelerometer level. In the next three, the
whole breadboard was tipped to one side. You can see that the X reading has
decreased. Tipping the breadboard the other way causes the X reading to increase.

Discussion
The most common use for an accelerometer is to detect tilt. This works because the Z
axis force is dominated by the pull of gravity (Figure 13-19).

When the accelerometer is tilted in one direction, some of that vertical force of grav‐
ity becomes active on another axis of the accelerometer.

13.12 Measuring Acceleration with an MCP3008 Module | 369

Figure 13-19. Detecting tilt with an accelerometer

We can use this principle to detect when the tilt is past a certain threshold. The fol‐
lowing program (tilt.py) illustrates this point:

import spidev, time

spi = spidev.SpiDev()
spi.open(0,0)

def analog_read(channel):
 r = spi.xfer2([1, (8 + channel) << 4, 0])
 adc_out = ((r[1]&3) << 8) + r[2]
 return adc_out

while True:
 x = analog_read(0)
 y = analog_read(1)
 z = analog_read(2)
 if x < 450:
 print("Left")
 elif x > 550:
 print("Right")
 elif y < 450:
 print("Back")
 elif y > 550:
 print("Forward")
 time.sleep(0.2)

When you run the program, you will start to see direction messages. You could use
this to control a roving robot or a motorized pan-tilt head with a webcam attached:

$ sudo python tilt.py
Left
Left
Right
Forward
Forward
Back
Back

370 | Chapter 13: Sensors

See Also
See the datasheet for the accelerometer chip used in the module.

There are many other analog accelerometer modules available. You may find that
they give different readings. Make sure that the analog outputs do not exceed 3.3V.

The Sense HAT includes an accelerometer (Recipe 13.13).

13.13 Using the Inertial Management Unit (IMU) of the
Sense HAT
Problem
You want more accurate orientation information from your Raspberry Pi than the
accelerometer from Recipe 13.12 provides.

Solution
Use the Inertial Management Unit (IMU) of the Sense HAT. This unit includes a 3-
axis accelerometer like the one in Recipe 13.12 but also has a 3-axis gyroscope and
magnetometer. The readings from these different sensors are combined to let you get
a more accurate orientation for the Sense HAT expressed as pitch, roll, and yaw (as
shown in Figure 13-20).

Figure 13-20. Pitch, roll, and yaw

13.13 Using the Inertial Management Unit (IMU) of the Sense HAT | 371

Pitch, roll, and yaw are three terms that come from aviation. They are relative to the
axis of the plane’s flight. The pitch is the angle to the horizontal. The roll is the degree
of rotation around the plane’s axis of flight (imagine one wing going up and the other
down), and yaw is the rotation on the horizontal axis (think changing bearing).

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called sense_hat_orientation.py.

from sense_hat import SenseHat

sense = SenseHat()

sense.set_imu_config(True, True, True)

while True:
 o = sense.get_orientation()
 print("p: {:.0f}, r: {:.0f}, y: {:.0f}".format(o['pitch'], o['roll'],
o['yaw']))

The function set_imu_config specifies which of the compass, gyroscope, and accel‐
erometer (in that order) should be used to measure the orientation. Setting all three
to True will mean that all are used to make the measurement.

When you run the program, you will see output similar to this:

$ sudo python sense_hat_orientation.py
p: 1, r: 317, y: 168
p: 1, r: 318, y: 169

Try tilting the Sense HAT and Raspberry Pi forward toward the USB ports, and you
should see the value of pitch increase.

Discussion
An accelerometer measures forces on a stationary mass and can therefore measure
the degree of tilt by calculating how much of the force supplied by gravity (z-axis)
influences the force measured on the x and y axes.

A gyroscope is different. It measures the force on moving masses (vibrating back and
forth) as those masses turn relative to the path of the movement, using an effect
called the Coriolis effect.

See Also
For more information on the Sense HAT’s IMU, see https://www.raspberrypi.org/
learning/astro-pi-guide/sensors/movement.md.

To measure temperature, humidity, and atmospheric pressure, see Recipe 13.10.

372 | Chapter 13: Sensors

The IMU of the Sense HAT can also be used to make a compass and detect the pres‐
ence of a magnet (Recipe 13.16).

To find out more about gyroscopes and the Coriolis effect, see https://en.wikipe‐
dia.org/wiki/Coriolis_effect.

13.14 Finding Magnetic North with the Sense HAT
Problem
You want to use a Sense HAT to detect magnetic north.

Solution
Use the Python library for the built-in 3-axis magnetometer in the Sense HAT.

First follow Recipe 9.16 to install the Sense HAT library.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called sense_hat_compass.py.

from sense_hat import SenseHat

sense = SenseHat()

while True:
 bearing = sense.get_compass()
 print('Bearing: {:.0f} to North'.format(bearing))

When you run this program, you will see a series of bearing readings.

$ sudo python sense_hat_compass.py
Bearing: 138 to North
Bearing: 138 to North

Discussion
The compass will be sensitive to any other nearby sources of magnetic field so you
may find it difficult to get accurate bearings.

See Also
You can find documentation for Sense HAT at https://github.com/RPi-Distro/python-
sense-hat and http://pythonhosted.org/sense-hat/api/.

To use the Sense HAT to detect a magnet, see Recipe 13.16.

13.14 Finding Magnetic North with the Sense HAT | 373

13.15 Sensing a Magnet with a Reed Switch
Problem
You want to detect the presence of a magnet.

Solution
Use a reed switch (Figure 13-21). It works just like a regular switch except it only acti‐
vates when a magnet is near. Figure 13-22 shows how a reed switch works.

Figure 13-21. A reed switch

Figure 13-22. How a reed switch works

The two reed contacts are encased in a a glass tube. When a magnet is placed near the
reed switch, the reeds are pulled together and make contact.

You can use any of the regular switch recipes in Chapter 12 with a reed switch, start‐
ing with Recipe 12.1.

374 | Chapter 13: Sensors

Discussion
Reed switches are a low-tech way of detecting a magnet. They have been around since
the 1930s and are extremely reliable. They are also commonly used in security sys‐
tems where a plastic encased reed switch is placed on a door frame, with a fixed mag‐
net in another plastic enclosure on the door itself. When the door opens, the reed
switch contacts open, triggering the alarm.

See Also
To detect a magnet using the magnetometer of the Sense HAT, see Recipe 13.16.

13.16 Sensing a Magnet with the Sense HAT
Problem
You want to detect the presence of a magnet, and have a Sense Hat with built-in mag‐
netometer from a Python program.

Solution
Use the Sense HAT’s Python library to interface with its magnetometer.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called sense_hat_magnet.py.

from sense_hat import SenseHat
import time

hat = SenseHat()
fill = (255, 0, 0)

while True:
 reading = int(hat.get_compass_raw()['z'])
 if reading > 200:
 hat.clear(fill)
 time.sleep(0.2)
 else:
 hat.clear()

When the magnet gets close to the Sense HAT, the LEDs will all turn red for 1/5 of a
second.

Discussion
It doesn’t matter which axis of the compass data you use; they will all be greatly dis‐
rupted by the presence of a fixed magnet.

13.16 Sensing a Magnet with the Sense HAT | 375

See Also
To detect a magnet using a reed switch, see Recipe 13.15.

For other ways to use the Sense HAT display, see Recipe 14.3.

13.17 Measuring Distance
Problem
You want to measure distance using an ultrasonic rangefinder.

Solution
Use a low-cost SR-04 rangefinder. These devices need two GPIO pins: one to trigger
the pulse of ultrasound and the other to monitor how long it takes for the echo to
return.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• SR-04 rangefinder (eBay)
• 470Ω resistor (see “Resistors and Capacitors” on page 474)
• 270Ω resistor (see “Resistors and Capacitors” on page 474)

Fit the components onto the breadboard as shown in Figure 13-23. The resistors are
necessary to reduce the echo output of the rangefinder from 5V to 3.3V (see Recipe
9.12).

Figure 13-23. Connecting an SR-04 rangefinder to a Raspberry Pi

376 | Chapter 13: Sensors

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called ranger.py.

import RPi.GPIO as GPIO
import time

trigger_pin = 18
echo_pin = 23

GPIO.setmode(GPIO.BCM)
GPIO.setup(trigger_pin, GPIO.OUT)
GPIO.setup(echo_pin, GPIO.IN)

def send_trigger_pulse():
 GPIO.output(trigger_pin, True)
 time.sleep(0.0001)
 GPIO.output(trigger_pin, False)

def wait_for_echo(value, timeout):
 count = timeout
 while GPIO.input(echo_pin) != value and count > 0:
 count = count - 1

def get_distance():
 send_trigger_pulse()
 wait_for_echo(True, 10000)
 start = time.time()
 wait_for_echo(False, 10000)
 finish = time.time()
 pulse_len = finish - start
 distance_cm = pulse_len / 0.000058
 distance_in = distance_cm / 2.5
 return (distance_cm, distance_in)

while True:
 print("cm=%f\tinches=%f" % get_distance())
 time.sleep(1)

The operation of the program is described in the next Discussion. When the program
is run, it will report the distance in both centimeters and inches, once per second. Use
your hand or some other obstacle to change the reading.

sudo python ranger.py
cm=154.741879 inches=61.896752
cm=155.670889 inches=62.268356
cm=154.865199 inches=61.946080
cm=12.948595 inches=5.179438
cm=14.087249 inches=5.634900
cm=13.741954 inches=5.496781

13.17 Measuring Distance | 377

cm=20.775302 inches=8.310121
cm=20.224473 inches=8.089789

Discussion
While there are a number of ultrasonic rangefinders available, the type used here is
easy to use and low cost. It works by sending a pulse of ultrasound and then measur‐
ing the amount of time taken for the echo to be received. One of the round ultrasonic
transducers on the front of the device is the transmitter, and the other is the receiver.

This process is controlled from the Raspberry Pi. The difference between this type of
device and more expensive models is that the more expensive versions include their
own microcontroller, which carries out all the necessary timing and provides an I2C
or serial interface to return a final reading.

When you are using one of these sensors with a Raspberry Pi, the trig (trigger) input
to the rangefinder is connected to a GPIO output, and the echo output of the range‐
finder is connected to a GPIO input on the Raspberry Pi after having its voltage range
lowered from 5V to a safe 3.3V.

Figure 13-24 shows an oscilloscope trace of the sensor in action. The top (red) trace is
connected to trig, and the bottom (yellow) trace is connected to echo. You can see that
first the trig pin is taken high for a short pulse. There is then a short delay before the
echo pin goes high. This stays high for a period that is proportional to the distance
from the sensor.

Figure 13-24. The oscilloscope trace for trigger and echo

378 | Chapter 13: Sensors

The code for this sensor first generates a trigger pulse (using the function send_trig
ger_pulse). It must wait until the echo pin goes high, and then times how long the
echo pin stays high.

We can then calculate the distance by using the time taken for the echo pulse and the
speed of sound.

The wait_for_echo function waits until the echo pin either goes high or low, depend‐
ing on its first argument. Its second argument is used to provide a timeout so that if
for any reason, the echo pin does not change to the state being waited for, the loop
won’t hang indefinitely.

This method of measuring distance is not terribly accurate because temperature,
pressure, and relative humidity all alter the speed of sound and hence the distance
readings.

See Also
Take a look at the datasheet for the ultrasonic rangefinder.

13.18 Capacitative Touch Sensing
Problem
You want to provide a touch interface to your Raspberry Pi.

Solution
Use an Adafruit Capacitative Touch HAT (Figure 13-25).

Touch sensors are a lot of fun and are great for educational use. You can attach any‐
thing that conducts electricity a little, including fruit. A popular project is to con‐
struct a fruit keyboard using a variety of fruits and vegetables attached to the sense
terminals on the board using alligator clips. Then as you touch the different items of
fruit, different sounds are made.

The Adafruit Touch HAT uses the Raspberry Pi’s I2C interface. You also need SPI
tools installed, so if you have not already done so, follow Recipe 9.3.

13.18 Capacitative Touch Sensing | 379

Figure 13-25. An Adafruit Capacitative Touch HAT attached to an apple

To install the Python library for the HAT, run the following commands:

$ cd /home/pi
$ git clone https://github.com/adafruit/Adafruit_Python_MPR121.git
$ cd Adafruit_Python_MPR121/
$ sudo python setup.py install

To test out the Touch HAT, run the simpletest.py example supplied with the library by
using the commands:

$ cd examples
$ sudo python simpletest.py
Adafruit MPR121 Capacitive Touch Sensor Test
Press Ctrl-C to quit.
0 touched!
0 released!

You can either just touch the connection pads or connect the pads to a piece of fruit
using an alligator clip as shown in Figure 13-25.

Discussion
You will find other example programs in the examples folder, including the ever pop‐
ular fruit-based musical keyboard.

380 | Chapter 13: Sensors

The Adafruit Touch HAT has 12 touch contacts. If you only need a few touch con‐
tacts, you can use the Pimoroni Explorer HAT Pro, which has four alligator-clip–
compatible contacts (Figure 13-26).

Figure 13-26. The Explorer HAT Pro with fruit

To use the Explorer HAT Pro’s touch contacts, first follow Recipe 9.17 to install the
library for the HAT.

In addition to the four terminals on the side, designed for alligator clips, there are
also four touch switches labeled 1 to 4 that also use the touch interface.

To try out touch on the Explorer HAT Pro, open a Python console and run the fol‐
lowing commands to detect touches:

>>> import explorerhat
Explorer HAT Pro detected...
>>> explorerhat.touch.five.is_pressed()
True
>>> explorerhat.touch.five.is_pressed()
False
>>>

If you run the is_pressed() function while holding the apple, the result will be True;
otherwise, it will be False.

13.18 Capacitative Touch Sensing | 381

See Also
For documentation of the Adafruit Touch HAT, see https://www.adafruit.com/prod‐
ucts/2340, and for the Explorer HAT Pro, see https://github.com/pimoroni/explorer-
hat.

13.19 Displaying Sensor Values
Problem
You have a sensor wired to your Raspberry Pi, and want a big digital display of the
reading on the screen.

Solution
Use the Tkinter library to open a window and write the reading on it as a label with a
large font (Figure 13-27).

Figure 13-27. Displaying a sensor reading using Tkinter

This example uses data from the ultrasonic rangefinder of Recipe 13.17. So, complete
that recipe first if you want to try out this example.

To test out the rangefinder, open an editor (nano or idle) and paste in the following
code. As with all the program examples in this book, you can also download the pro‐
gram from the Code section of the book’s website, where it is called gui_sensor_read‐
ing.py. The code for measuring distances using the ultrasonic sensor is the same as in
Recipe 13.17, so only the section of the code concerned with displaying the value is
repeated here:

382 | Chapter 13: Sensors

class App:

 def __init__(self, master):
 self.master = master
 frame = Frame(master)
 frame.pack()
 label = Label(frame, text='Distance (inches)', font=("Helvetica", 32))
 label.grid(row=0)
 self.reading_label = Label(frame, text='12.34', font=("Helvetica", 110))
 self.reading_label.grid(row=1)
 self.update_reading()

 def update_reading(self):
 cm, inch = get_distance()
 reading_str = "{:.2f}".format(inch)
 self.reading_label.configure(text=reading_str)
 self.master.after(500, self.update_reading)

root = Tk()
root.wm_title('Range Finder')
app = App(root)
root.geometry("400x300+0+0")
root.mainloop()

Discussion
Athough this recipe uses a distance sensor, it works equally well with the other sensor
recipes in this chapter. You just need to change the labels and the method of obtain‐
ing a reading from the sensor.

See Also
For information on formatting numbers to a certain number of decimal places, see
Recipe 7.1.

For an example of displaying sensor data in a web browser rather than an application
window, see Recipe 15.2.

13.20 Logging to a USB Flash Drive
Problem
You want to log data measured with a sensor onto a USB flash drive.

13.20 Logging to a USB Flash Drive | 383

Solution
Write a Python program that writes the data to a file on a USB flash drive. By writing
the file in comma-separated values (CSV), you can import it directly into a spread‐
sheet, including Gnumeric on the Raspberry Pi (Recipe 4.2).

The example program will log temperature readings recorded from a DS18B20. So if
you wish to try this out, first build Recipe 13.11.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called temp_log.py.

import os, glob, time, datetime

log_period = 600 # seconds

logging_folder = glob.glob('/media/*')[0]
dt = datetime.datetime.now()
file_name = "temp_log_{:%Y_%m_%d}.csv".format(dt)
logging_file = logging_folder + '/' + file_name

os.system('modprobe w1-gpio')
os.system('modprobe w1-therm')

base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'

def read_temp_raw():
 f = open(device_file, 'r')
 lines = f.readlines()
 f.close()
 return lines

def read_temp():
 lines = read_temp_raw()
 while lines[0].strip()[-3:] != 'YES':
 time.sleep(0.2)
 lines = read_temp_raw()
 equals_pos = lines[1].find('t=')
 if equals_pos != -1:
 temp_string = lines[1][equals_pos+2:]
 temp_c = float(temp_string) / 1000.0
 temp_f = temp_c * 9.0 / 5.0 + 32.0
 return temp_c, temp_f

def log_temp():
 temp_c, temp_f = read_temp()
 dt = datetime.datetime.now()
 f = open(logging_file, 'a')
 f.write('\n"{:%H:%M:%S}",'.format(dt))

384 | Chapter 13: Sensors

 f.write(str(temp_c))
 f.close()

print("Logging to: " + logging_file)
while True:
 log_temp()
 time.sleep(log_period)

The program is set to log the temperature every 10 minutes (600 seconds). You can
alter this by changing the value of log_period.

Discussion
When you plug a USB flash drive into a Raspberry Pi, it automatically installs it
under /media. If there is more than one removeable drive attached to your Raspberry
Pi, then the program uses the first folder it finds inside /media. The name of the log‐
ging file is constructed from the current date.

If you open the file in a spreadsheet like Open Office, you will be able to edit it
directly. Your spreadsheet may ask you to specify the separator for the data, which
will be a comma.

Figure 13-28 shows a set of data captured using this recipe, and the resulting file has
been opened with the Gnumeric spreadsheet running on the Raspberry Pi.

Figure 13-28. Charting data

See Also
This program could easily be adapted for use with any of the other sensors used in
this chapter.

For an example of logging sensor data to a web service, see Recipe 15.6.

13.20 Logging to a USB Flash Drive | 385

CHAPTER 14

Displays

14.0 Introduction
Although the Raspberry Pi can use a monitor or TV as a display, it is often nice to use
a smaller, more specialized display with it. In this chapter, you will explore a range of
different displays that can be attached to a Raspberry Pi.

Some of the recipes require the use of a solderless breadboard and male-to-female
jumper wires (see Recipe 9.8).

14.1 Using a Four-Digit LED Display
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to display a four-digit number in an old-fashioned, seven-segment LED
display.

Solution
Use an I2C LED module, such as the model shown in Figure 14-1, to a Raspberry Pi
using female-to-female jumper wires.

387

Figure 14-1. Seven-segment LED display with Raspberry Pi

To make this recipe, you need:

• Four female-to-female jumper wires (see “Prototyping Equipment” on page 474)
• Adafruit 4×7-segment LED with I2C backpack (see “Modules” on page 476)

The connections between the Raspberry Pi and the module are as follows:

• VCC (+) on the display to 5V on the Raspberry Pi GPIO connector
• GND (-) on the display to GND on the Raspberry Pi GPIO connector
• SDA (D) on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO connector
• SCL (C) on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO connector

Note that Adafruit also supplies a jumbo-sized LED display. This can be connected to
the Raspberry Pi using the connections above, but the larger display has two positive
power pins: one for the logic (V_IO) and one for the display (5V). You can just use an
extra female-to-female jumper wire to connect this extra pin to the second 5V pin on
the GPIO connector. This is because, being a large display, it requires more current
for the LED display. Fortunately, the Raspberry Pi can supply enough power for it.

For this recipe to work, you will also need to set up your Raspberry Pi for I2C, so
follow Recipe 9.3 first.

The display has an accompanying Python library written by Adafruit. It isn’t installed
as a proper library, so to use it, you first need to download the folder structure.

388 | Chapter 14: Displays

$ git clone https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git

Change directory into the Adafruit code by using:

$ cd Adafruit-Raspberry-Pi-Python-Code
$ cd Adafruit_LEDBackpack

In this folder, you will find a test program that will display the time. Run it by using
the command:

$ sudo python ex_7segment_clock.py

Discussion
If you open the example file ex_7segment_clock.py in nano, you’ll see that the key
commands are:

from Adafruit_7Segment import SevenSegment

This imports the library code into your program. You then need to create a instance
of SevenSegment using the next line of code. The address supplied as an argument is
the I2C address (see Recipe 9.4).

Every I2C slave device has an address number. The LED board has three pairs of sol‐
der pads on the back that can be bridged with solder if you want to change the
address. This is essential if you need to operate more than one I2C device from a sin‐
gle Raspberry Pi.

segment = SevenSegment(address=0x70)

To actually set the contents of a particular digit, use a line like this one:

segment.writeDigit(0, int(hour / 10))

The first argument (0) is the digit position. Note that these positions are 0, 1, 3, and 4.
Position 2 is reserved for the two dots in the center of the display.

The second argument is the number to display.

See Also
You can find out more about the Adafruit library at http://bit.ly/HQBE6W.

14.2 Displaying Messages on an I2C LED Matrix
Problem
You want to control the pixels of a multicolor LED matrix display.

14.2 Displaying Messages on an I2C LED Matrix | 389

Solution
Use an I2C LED module, such as the model shown in Figure 14-2, attached to a Rasp‐
berry Pi using female-to-female jumper wires.

Figure 14-2. LED matrix display with Raspberry Pi

To make this recipe, you need:

• Four female-to-female jumper wires (see “Prototyping Equipment” on page 474)
• Adafruit bicolor LED square-pixel matrix with I2C backpack (see “Modules” on

page 476)

The connections between the Raspberry Pi and the module are as follows:

• VCC (+) on the display to 5V on the Raspberry Pi GPIO connector
• GND (-) on the display to GND on the Raspberry Pi GPIO connector
• SDA (D) on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO connector
• SCL (C) on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO connector

For this recipe to work, you will also need to set up your Raspberry Pi for I2C, so
follow Recipe 9.3 first.

390 | Chapter 14: Displays

The display has an accompanying Python library written by Adafruit. It’s not installed
as a proper library, so to use it, you first need to download the folder structure.

$ git clone https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git

Change directory into the Adafruit code by using:

$ cd Adafruit-Raspberry-Pi-Python-Code
$ cd Adafruit_LEDBackpack

In this folder, you will find a test program that displays the time as scrolling digits.
Run it by using the command:

$ sudo python ex_8x8_color_pixels.py

Discussion
The program cycles through all the colors for each pixel in turn. The code is listed
here, with some of the comments and an unnecessary import removed:

import time
from Adafruit_8x8 import ColorEightByEight

grid = ColorEightByEight(address=0x70)

iter = 0

Continually update the 8x8 display one pixel at a time
while(True):
 iter += 1

 for x in range(0, 8):
 for y in range(0, 8):
 grid.setPixel(x, y, iter % 4)
 time.sleep(0.02)

The address supplied as an argument to the next line is the I2C address (see Recipe
9.4):

grid = ColorEightByEight(address=0x70)

Every I2C slave device has an address number. The LED board has three pairs of sol‐
der pads on the back that can be bridged with solder if you want to change the
address. This is essential if you need to operate more than one I2C device with the
same base address from a single Raspberry Pi.

The variable iter gets 1 added to it each time through the loop. The command
grid.setPixel takes x and y coordinates as its first two parameters. The final param‐
eter is the color to which the pixel will be set. This is a number between 0 and 3 (0 is
off, 1 is green, 2 is red, and 3 is orange).

14.2 Displaying Messages on an I2C LED Matrix | 391

The variable iter is used to generate the number between 0 and 3 using the % opera‐
tor, which is the modulo remainder (i.e., what is left over when you divide iter by 4).

See Also
You can find out more about this product at http://www.adafruit.com/products/902.

14.3 Using the Sense HAT LED Matrix Display
Problem
You want to display messages and graphics, using the display of a Sense HAT.

Solution
Follow Recipe 9.16 and install the software that the Sense HAT needs and then use
the library commands to display text.

The program sense_hat_clock.py illustrates this by repeatedly displaying the date and
time in a scrolling message. As with all the program examples in this book, you can
also download the program from the Code section of the Raspberry Pi Cookbook web‐
site.

from sense_hat import SenseHat
from datetime import datetime
import time

hat = SenseHat()
time_color = (0, 255, 0)
date_color = (255, 0, 0)

while True:
 now = datetime.now()
 date_message = '{:%d %B %Y}'.format(now)
 time_message = '{:%H:%M:%S}'.format(now)

 hat.show_message(date_message, text_colour=date_color)
 hat.show_message(time_message, text_colour=time_color)

Discussion
Two colors are defined so that the date and time parts of the message can be displayed
in different colors. These colors are then used as an optional parameter to
show_message.

392 | Chapter 14: Displays

Other optional parameters to show_message are:

• scroll_speed which is actually the delay between each scrolling step rather than
the speed. So a higher value makes the scrolling slower.

• back_colour sets the background color. Note the British spelling of “back_col‐
our” with a “u.”

The display can be used for a lot more than just displaying scrolling text. Starting at
its most basic, you can set individual pixels using set_pixel, set the orientation of
the display using set_rotation, and display an image (albeit a small one) with
load_image. The example below, which you can find in sense_hat_taster.py, illustrates
these function calls. As with all the program examples in this book, you can also
download the program from the Code section of the Raspberry Pi Cookbook website.

The image must be just 8×8 pixels, but most common graphics formats like .jpg
and .png can be used and the bit depth will be handled automatically.

from sense_hat import SenseHat
import time

hat = SenseHat()

red = (255, 0, 0)

hat.load_image('small_image.png')
time.sleep(1)
hat.set_rotation(90)
time.sleep(1)
hat.set_rotation(180)
time.sleep(1)
hat.set_rotation(270)
time.sleep(1)

hat.clear()
hat.set_rotation(0)
for xy in range(0, 8):
 hat.set_pixel(xy, xy, red)
 hat.set_pixel(xy, 7-xy, red)

Figure 14-3 shows the Sense HAT displaying a crude image.

14.3 Using the Sense HAT LED Matrix Display | 393

Figure 14-3. A Sense HAT displaying an “image”

See Also
For full documentation on the Sense HAT, see https://pythonhosted.org/sense-hat/api/.

For information on formatting dates and times, see Recipe 7.2.

Other recipes that use the Sense HAT are Recipes 9.16, 13.10, 13.13, 13.14, and 13.16.

14.4 Displaying Messages on an Alphanumeric LCD HAT
Problem
You have a few lines of text that you want to display neatly on an LCD display.

Solution
Use a Displayotron Pimoroni HAT attached to your Raspberry Pi as shown
in Figure 14-4.

394 | Chapter 14: Displays

Figure 14-4. A Displayotron LCD HAT

This HAT requires both I2C and SPI to be enabled, so if you have not already done
so, follow Recipe 9.3 and Recipe 9.5.

Then fetch the code for its accompanying library from GitHub and install it by using
the following commands:

$ git clone https://github.com/pimoroni/dot3k.git
$ cd dot3k/python/library
$ sudo python setup.py install

By way of example, the following program (displayotron_ip.py) finds the hostname
and IP address of your Raspberry Pi and displays them along with the time. If all is
well, then the backlit LED will be green, but if the network connection is down, the
backlight will turn red.

As with all the program examples in this book, you can also download the program
from the Code section of the Raspberry Pi Cookbook website.

import dothat.lcd as lcd
import dothat.backlight as backlight
import time
from datetime import datetime
import subprocess

while True:
 lcd.clear()
 backlight.rgb(0, 255, 0)

14.4 Displaying Messages on an Alphanumeric LCD HAT | 395

 try:
 hostname = subprocess.check_output(['hostname']).split()[0]
 ip = subprocess.check_output(['hostname', '-I']).split()[0]
 t = '{:%H:%M:%S}'.format(datetime.now())
 lcd.write(hostname)
 lcd.set_cursor_position(0, 1)
 lcd.write(ip)
 lcd.set_cursor_position(0, 2)
 lcd.write(t)
 except:
 backlight.rgb(255, 0, 0)
 time.sleep(1)

Discussion
The test program imports the necessary libraries, including subprocess (see Recipe
7.15), which will be used to find the IP address (see Recipe 2.2) of the Raspberry Pi
and its hostname.

The main methods in the library are:

• lcd.clear clears the display of any text
• lcd.set_cursor_position sets the position for new text to be written to the col‐

umn and row specified as its two parameters
• lcd.write adds the text supplied as its parameter to the current cursor position
• backlight.rgb sets the red, green, and blue values of the backlight (0 to 255)

See Also
You can find out more about this HAT on PiMoroni’s product page.

To attach a low-cost LCD module directly to a Raspberry Pi without a HAT,
see Recipe 14.5.

14.5 Displaying Messages on an Alphanumeric LCD
Module
Problem
You want to display text on an alphanumeric LCD display, but do not want to use a
ready-made display HAT.

Solution
Use an HD44780-compatible LCD module and wire it to the GPIO connector.

396 | Chapter 14: Displays

This is clearly a lot more complex than using a ready-made shield, but, if you are
planning a complex project where the display is one element and you need access to
other GPIO pins, then it is useful to know how to use an LCD module directly.

You will find many low-cost LCD modules, such as the one shown connected to a
Raspberry Pi in Figure 14-5. These have 16 pins, although fortunately, not all of them
have to be connected to a GPIO pin.

Figure 14-5. A 16×2 LCD display connected to a Raspberry Pi

These modules are available in a number of sizes and are specified by the number of
columns and rows of letters they can display. So, for example, the module used in this
recipe is described as 16×2 because it can display two rows each of 16 characters.
Other common sizes are 8×1, 16×1, 16×2, 20×2, and 20×4.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 16×2 HD44780-compatible LCD module (see “Modules” on page 476)
• Row of 16 header pins (see “Miscellaneous” on page 477)
• 10kΩ trimpot (see “Resistors and Capacitors” on page 474)

Figure 14-6 shows the breadboard layout for connecting the display. The LCD mod‐
ules are not normally supplied with header pins, so you will need to solder these in
place.

14.5 Displaying Messages on an Alphanumeric LCD Module | 397

The trimpot is used to control the contrast of the display. Note that if it looks like the
project has not worked, try moving the knob of the trimpot over its entire range. It
may well be that the contrast is so off that the display characters are not visible at all.

Figure 14-6. Wiring an LCD display to a Raspberry Pi

The Adafruit Raspberry Pi example code, available from GitHub, includes a library
for controlling LCD displays that use the HD44780 driver. Before installing it, follow
Recipe 9.2 to install the RPi.GPIO library.

The Adafruit library is not installed as a proper library, so to use it, you first need to
download the folder structure.

$ git clone https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git

Change directory into the one that holds the Adafruit code by using:

$ cd Adafruit-Raspberry-Pi-Python-Code
$ cd Adafruit_CharLCD

There is a test program here that displays the time and IP address of the Raspberry Pi.
But first, if you are using a newer Raspberry Pi model B, revision 2, you will need to
edit the file Adafruit_CharLCD.py:

$ nano Adafruit_CharLCD.py

Search for the line:

398 | Chapter 14: Displays

def __init__(self, pin_rs=25, pin_e=24, pins_db=[23, 17, 21, 22], GPIO = None):

Replace the number 21 with 27 so that the line looks as follows, and then save and
exit the file:

def __init__(self, pin_rs=25, pin_e=24, pins_db=[23, 17, 27, 22], GPIO = None):

You can now run the example program with the command:

$ sudo python Adafruit_CharLCD_IPclock_example.py

Discussion
These displays can operate either with a four- or eight-bit data bus and also require
three control pins. The pins are connected as per Table 14-1.

Table 14-1. Raspberry Pi and LCD display pin connections
LCD module pin GPIO pin Notes
1 GND 0V

2 +5V 5V logic supply

3 No connection Contrast control voltage

4 25 RS: Register select

5 GND RW: Read/write (always write)

6 24 EN: Enable

7-10 No connection Only used in eight-bit mode

11 23 D4: Data line 4

12 17 D5: Data line 5

13 21 D6: Data line 6

14 22 D7: Data line 7

15 +5V LED backlight

16 GND LED backlight

The Adafruit library file Adafruit_CharLCD.py is responsible for setting the values on
the data pins and then sending them to the display module. It provides the following
functions, which you can use in your programs:

home()

Move to top left.

clear()

Clear all text off the display.

setCursor(column, row)

Set the cursor position from where text will be written.

14.5 Displaying Messages on an Alphanumeric LCD Module | 399

cursor()

Turn on cursor display.

noCursor()

Turn off cursor display (default).

message(text)

Write the text at the current cursor position.

The following minimal example program shows how easy it is to display a simple
message by using the library:

from Adafruit_CharLCD import Adafruit_CharLCD
from time import sleep

lcd = Adafruit_CharLCD()
lcd.begin(16,2)

i = 0

while Tue:
 lcd.clear()
 lcd.message('Counting: ' + str(i))
 sleep(1)
 i = i + 1

See Also
This recipe is based on the Adafruit tutorial at the Adafruit learning website. Adafruit
also sells a plug-in board with an LCD display attached that is compatible with this
recipe.

For the convenience of using a ready-made alphanumeric LCD display on a HAT, see
Recipe 2.2.

14.6 Using an OLED Graphical Display
Problem
You want to attach a graphical OLED (Organic LED) display to your Raspberry Pi.

Solution
Use an OLED display based on the SSD1306 driver chip, using an I2C interface
(Figure 14-7).

400 | Chapter 14: Displays

Figure 14-7. An I2C OLED display

To make this recipe, you need:

• Four female-to-female jumper wires (see “Prototyping Equipment” on page 474)
• I2C OLED display 128×64 pixels (see “Modules” on page 476)

Some of these displays have just four pins, whereas others have eight pins. The 8-pin
varieties (including Adafruit’s displays) have more pins because they have both an
I2C and SPI interfaces. The 4-pin displays just have an I2C. The I2C interface is bet‐
ter suited for use with the Raspberry Pi because the display operates at 5V, and both
interface pins for I2C (SDA and SCL) are 3.3V outputs from the Raspberry Pi,
whereas the SPI interface’s MISO pin is a 3.3V input that requires level conversion
before connecting to the Raspberry Pi.

14.6 Using an OLED Graphical Display | 401

The connections between the Raspberry Pi and the module are as follows:

• VCC on the display to 5V on the Raspberry Pi GPIO connector
• GND on the display to GND on the Raspberry Pi GPIO connector
• SDA on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO connector
• SCL on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO connector

For this recipe to work, you will also need to set up your Raspberry Pi for I2C, so
follow Recipe 9.3 first.

Adafruit has a library for these displays. Install it by using these commands:

$ git clone https://github.com/adafruit/Adafruit_Python_SSD1306.git
$ cd Adafruit_Python_SSD1306
$ sudo python setup.py install

This library uses the Python Image Library (PIL), which can be installed by using the
command:

$ sudo pip install pillow

The code example old_clock.py displays the time and date on the OLED display. As
with all the program examples in this book, you can also download the program from
the Code section of the Raspberry Pi Cookbook website.

from oled.device import ssd1306
from oled.render import canvas
from PIL import ImageFont
import time
from datetime import datetime

Set up display
device = ssd1306(port=1, address=0x3C)
font_file = '/usr/share/fonts/truetype/freefont/FreeSansBold.ttf'
small_font = ImageFont.truetype('FreeSans.ttf', 12, filename=font_file)
large_font = ImageFont.truetype('FreeSans.ttf', 33, filename=font_file)

Display a message on 3 lines, first line big font
def display_message(top_line, line_2):
 global device
 with canvas(device) as draw:
 draw.text((0, 0), top_line, font=large_font, fill=255)
 draw.text((0, 50), line_2, font=small_font, fill=255)

while True:
 now = datetime.now()
 date_message = '{:%d %B %Y}'.format(now)
 time_message = '{:%H:%M:%S}'.format(now)
 display_message(time_message, date_message)
 time.sleep(0.1)

402 | Chapter 14: Displays

Every I2C slave device has an address, which is set in the line:

device = ssd1306(port=1, address=0x3C)

This is fixed at 3C (hex) for many of the low-cost I2C modules but may vary, so you
should check any documentation that comes with the device or use I2C tools (Recipe
9.4) to list all the I2C devices attached to the bus so that you can see the address of
your display.

Discussion
Small, organic LED (OLED) displays are cheap, don’t use much current, and have
high resolution despite their diminutive size. They are replacing LCD displays in
many consumer products.

See Also
The instructions here are for 4-pin I2C interfaces. If you really want to use the SPI
interface, then take a look at Adafruit’s tutorial on this.

14.7 Using Addressable RGB LED Strips
Problem
You want to connect an RGB LED strip (Neopixels) to your Raspberry Pi.

Solution
Use an LED strip based on the WS2812 RGB LED chips on your Raspberry Pi.

Using these LED strips (Figure 14-8) can be really easy, with a direct connection to
the Raspberry Pi and power for the LEDs supplied by the Raspberry Pi. This is the
“Happy Day” scenario that should work just fine, but do see the Discussion for this
recipe for potential pitfalls with this approach and ways to guarantee that your LED
strip use is trouble-free.

Don’t Power the LEDS from the Pi’s 3.3V Supply

While it might be tempting to power the LEDs from the 3.3V sup‐
ply pin on the GPIO connector, do not do this—it can only supply
low currents (see Recipe 9.2). Using this pin could easily damage
your Raspberry Pi.

14.7 Using Addressable RGB LED Strips | 403

Figure 14-8. An LED strip of 10 LEDs

The LED strip used in Figure 14-8 is cut from a reel. In this case, there are 10 LEDs.
As each LED can use up to 60mA, 10 is probably a sensible limit for the number of
LEDs that can be used without arranging for a separate power supply for the LED
strip (see Discussion).

To connect the strip to the Raspberry Pi, jumper wires with female connectors on one
end were cut and the wire ends soldered to the three connections on the LED strip:
GND, DI (Data In), and 5V. These can then be attached to GPIO pins GND, GPIO
18, and 5V, respectively.

Notice that the LED strip has an arrow printed on it (Figure 14-9). Make sure that
when you solder leads to the LED strip, you start from the cut end to the left of the
arrow.

404 | Chapter 14: Displays

Figure 14-9. An LED strip close-up

Finding a library for the WS2812 that works with all Raspberry Pi models is, at the
time of writing, a little tricky. The original library was developed by Jeremy Garff, and
Raspberry Pi 2 support was added to this by Richard Hurst. Adafruit also had a hand
in the library. However, Raspbian’s switch to Linux Kernel 4.1.6 broke a few things. At
the time of writing, the Pimoroni Unicorn HAT (which uses a modified version of
Richard Hurst’s library) seems to be most reliable. Being tied to a commercial prod‐
uct, this version is most likely to be maintained for any future changes to Raspbian or
Raspberry Pi boards. To install this library, run the following commands:

$ git clone https://github.com/pimoroni/unicorn-hat.git
$ cd unicorn-hat/python/rpi-ws281x
$ make
$ sudo python setup.py install

The following example program (led_strip.py) will set the LED red in successive posi‐
tions along the strip. As with all the program examples in this book, you can also
download the program from the Code section of the Raspberry Pi Cookbook website.

import time
from neopixel import *

LED strip configuration:
LED_COUNT = 10 # Number of LED pixels.
LED_PIN = 18 # GPIO pin connected to the pixels (must support PWM!).
LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz)
LED_DMA = 5 # DMA channel to use for generating signal (try 5)
LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest
LED_INVERT = False # True to invert the signal

RED = Color(255, 0, 0)
NO_COLOR = Color(0, 0, 0)

strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA,
LED_INVERT, LED_BRIGHTNESS)
strip.begin()

def clear():

14.7 Using Addressable RGB LED Strips | 405

 for i in range(0, LED_COUNT):
 strip.setPixelColor(i, NO_COLOR)
 strip.show()

i = 0
while True:
 clear()
 strip.setPixelColor(i, RED)
 strip.show()
 time.sleep(1)
 i += 1
 if i >= LED_COUNT:
 i = 0

The parameters in the section LED strip configuration can be modified for different
LED configurations. If you have a different number of LEDs in your strip, then mod‐
ify LED_COUNT. The rest of the constants do not need to be changed.

Each of the LEDs can have its color set independently using the setPixelColor
method. The first parameter to this is the index position (starting at 0) of the LED
whose color you want to set. The second parameter is the color to set it to. The
changes to the LED colors are not actually updated until the method show is called.

Discussion
Each LED in the strip can use a maximum of about 60mA. It will only do this if all
three color channels (red, green, and blue) are at maximum brightness (255). So, if
you plan to use a lot of LEDs, then you will need to use a separate 5V power supply
sufficient to supply all the LEDs in your strip. Figure 14-10 shows how you would
wire up a separate power supply. A female DC jack-to-screw terminal adapter (“Pro‐
totyping Equipment” on page 474) makes it easy to connect an external power supply
to a breadboard.

The datasheet for the WS2812 states that the input signal should have a logic high of
at least 4V for a 5V power supply to the LEDs. So, when using this with a Raspberry
Pi’s 3.3V GPIO output, there are no guarantees that the LEDs will work reliably. Hav‐
ing said that, I have never had any trouble.

406 | Chapter 14: Displays

Figure 14-10. Powering an LED strip with an external power supply

If you do have problems with the signal not being strong enough, you can use a single
transistor logic-level converter as shown in Figure 14-11. A suitable transistor is the
2N7000 (note that a 2N3904 will not work in this situation as it cannot respond
quickly enough to invert the pulses).

Figure 14-11. Using a logic-level converter

14.7 Using Addressable RGB LED Strips | 407

This transistor converts the 3.3V signal to 5V but has the side effect of inverting the
signal, so if the output of the GPIO pin is HIGH, the signal into the LED strip will be
LOW and vice-versa. This means that the logic in your program will need to be
modified by changing the line:

LED_INVERT = False

to read:

LED_INVERT = True

See Also
An alternative to using a transistor to raise the signal level from 3.3V to 5V is to use a
level converter module (see Recipe 9.13).

The Unicorn HAT, whose library is used here, has 64 WS2812 LEDs arranged in an
8×8 grid. You can find out more about this display at https://shop.pimoroni.com/prod‐
ucts/unicorn-hat.

408 | Chapter 14: Displays

CHAPTER 15

The Internet of Things

15.0 Introduction
The Internet of Things (IoT) is the rapidly growing network of devices (things) con‐
nected to the Internet. That doesn’t just mean more and more computers using
browsers, but actual appliances and wearable and portable technology. This includes
all sorts of home automation from smart appliances and lighting, to security systems
and even Internet-operated pet feeders, as well as lots of less practical but fun
projects.

In this chapter, you will learn how your Raspberry Pi can participate in the Internet
of Things in various ways.

15.1 Controlling GPIO Outputs Using a Web Interface
Problem
You want to control GPIO outputs using a web interface to your Raspberry Pi.

Solution
Use the bottle Python web server library (Recipe 7.17) to create an HTML web
interface to control the GPIO port.

409

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Three 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• Three LEDs (see “Opto-Electronics” on page 476)
• Tactile push switch (see “Miscellaneous” on page 477)

The breadboard layout for this is shown in Figure 15-1.

Figure 15-1. The breadboard layout controlling GPIO outputs from a web page

An alternative to using a breadboard is to attach a Raspberry Squid and Squid Button
(see Recipe 9.10 and Recipe 9.11). These can be plugged directly into the GPIO pins
of the Raspberry Pi, as shown in Figure 15-2.

410 | Chapter 15: The Internet of Things

Figure 15-2. Raspberry Squid and Squid Button

To install the bottle library, see Recipe 7.17.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called web_control.py. You will
also find a program called web_control_test.py. This program simply tests the hard‐
ware by flashing the LEDs in sequence and displaying the state of the switch, without
any of the complications of the web server.

Here’s the web_control.py program:

from bottle import route, run
import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
led_pins = [18, 23, 24]
led_states = [0, 0, 0]

15.1 Controlling GPIO Outputs Using a Web Interface | 411

switch_pin = 25

GPIO.setup(led_pins[0], GPIO.OUT)
GPIO.setup(led_pins[1], GPIO.OUT)
GPIO.setup(led_pins[2], GPIO.OUT)
GPIO.setup(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def switch_status():
 state = GPIO.input(switch_pin)
 if state:
 return 'Up'
 else:
 return 'Down'

def html_for_led(led):
 l = str(led)
 result = " <input type='button' onClick='changed(" + l +
")' value='LED " + l + "'/>"
 return result

def update_leds():
 for i, value in enumerate(led_states):
 GPIO.output(led_pins[i], value)

@route('/')
@route('/<led>')
def index(led):
 if led >= '0' and led <= '9':
 led_num = int(led)
 led_states[led_num] = not led_states[led_num]
 update_leds()
 response = "<script>"
 response += "function changed(led)"
 response += "{"
 response += " window.location.href='/' + led"
 response += "}"
 response += "</script>"

 response += '<h1>GPIO Control</h1>'
 response += '<h2>Button=' + switch_status() + '</h2>'
 response += '<h2>LEDs</h2>'
 response += html_for_led(0)
 response += html_for_led(1)
 response += html_for_led(2)
 return response

try:
 run(host='0.0.0.0', port=80)
finally:
 print('\nCleaning up')
 GPIO.cleanup()

412 | Chapter 15: The Internet of Things

You must run the program as superuser:

sudo python web_control.py

If it starts correctly, you should see a message like this:

Bottle server starting up (using WSGIRefServer())...
Listening on http://0.0.0.0:80/
Hit Ctrl-C to quit.

Open a browser window from any machine on your network, even the Raspberry Pi
itself, and navigate to the IP address of the Raspberry Pi. The web interface shown in
Figure 15-3 should appear.

Figure 15-3. A web interface to GPIO

If you click on one of the three LED buttons at the bottom of the screen, you should
find that the appropriate LED toggles on and off.

Also, if you hold down the button as you reload the web page, you should see that the
text next to Button says Down rather than Up.

Discussion
To understand how the program works, we first need to look at how a web interface
works. All web interfaces rely on a server somewhere (in this case, a program on the
Raspberry Pi) responding to requests from a web browser.

When the server receives a request, it looks at the information that comes with the
request and formulates some HyperText Markup Language (HTML) in response.

If the web request is just to the root page (http://192.168.1.8/), then led will be given a
default value of n. However, if we were to browse the URL http://192.168.1.8/2, then
the 2 on the end of the URL would be assigned to the led parameter.

15.1 Controlling GPIO Outputs Using a Web Interface | 413

The led parameter is then used to determine that LED 2 should be toggled.

To be able to access this LED-toggling URL, we need to arrange things so that when
the button for LED 2 is pressed, the page is reloaded with this extra parameter on the
end of the URL. The trick here is to include a JavaScript function in HTML that is
returned to the browser. When the browser runs this function, it causes the page to
be reloaded with the appropriate extra parameter.

This all means that we have the rather mind-bending situation where the Python pro‐
gram is generating code in JavaScript to be run later by the browser. The lines that
generate this JavaScript function are as follows:

 response = "<script>"
 response += "function changed(led)"
 response += "{"
 response += " window.location.href='/' + led"
 response += "}"
 response += "</script>"

Rather than repeat the HTML for each of the buttons, this is generated by the func‐
tion html_for_led:

def html_for_led(led):
 l = str(led)
 result = " <input type='button' onClick='changed(" + l + ")'
 value='LED " + l + "'/>"
 return result

This code is used three times, once for each button, and links a button press with the
changed function. The function is also supplied with the LED number as its
parameter.

The code that actually changes the GPIO outputs lives in the update_leds function.
This function is called every time the server receives a request that includes an LED
number that requires toggling:

def update_leds():
 for i, value in enumerate(led_states):
 GPIO.output(led_pins[i], value)

The function simply iterates over an array of states, setting each output in turn to its
current value.

The following line in the index function toggles the value in the state array for the
LED supplied in the led parameter:

led_states[led_num] = not led_states[led_num]

The process of reporting the state of the push button is much more straightforward.
It is simply the act of reading the state of the input and generating HTML that reports
the button position. This is all contained in the switch_status function:

414 | Chapter 15: The Internet of Things

def switch_status():
 state = GPIO.input(switch_pin)
 if state:
 return 'Up'
 else:
 return 'Down'

See Also
For more information on using bottle, see the bottle documentation.

15.2 Displaying Sensor Readings on a Web Page
Problem
You want to display sensor readings from your Raspberry Pi on a web page that auto‐
matically updates.

Solution
Use the bottle web server and some fancy JavaScript to automatically update your
display.

The example shown in Figure 15-4 displays the Raspberry Pi’s CPU temperature
using its built-in sensor.

Figure 15-4. Displaying the Raspberry Pi CPU temperature

To install the bottle library, see Recipe 7.17.

15.2 Displaying Sensor Readings on a Web Page | 415

There are four files for this example, which are contained in the folder web_sensor:

web_sensor.py
Contains the Python code for the bottle server

main.html
Contains the web page that will be displayed in your browser

justgage.1.0.1.min.js
A third-party JavaScript library that displays the temperature meter

raphael.2.1.0.min.js
A library used by the justgage library

As with all the program examples in this book, you can also download the program
from the Code section of the Raspberry Pi Cookbook website.

To run the program, change directory to web_sensor and then run the Python pro‐
gram using:

$ sudo python web_sensor.py

Then open a browser, either on the same Raspberry Pi or any computer on the same
network as the Raspberry Pi, and enter the IP address of the Raspberry Pi into the
browser’s address bar. The page shown in Figure 15-4 should appear.

Discussion
The main program (web_sensor.py) is actually quite concise:

import os, time
from bottle import route, run, template

def cpu_temp():
 dev = os.popen('/opt/vc/bin/vcgencmd measure_temp')
 cpu_temp = dev.read()[5:-3]
 return cpu_temp

@route('/temp')
def temp():
 return cpu_temp()

@route('/')
def index():
 return template('main.html')

@route('/raphael')
def index():
 return template('raphael.2.1.0.min.js')

@route('/justgage')

416 | Chapter 15: The Internet of Things

def index():
 return template('justgage.1.0.1.min.js')

run(host='0.0.0.0', port=80)

The function cpu_temp reads the temperature of the Raspberry Pi’s CPU, as described
in Recipe 13.9.

Four routes are then defined for the bottle web server. The first (/temp) returns a
string containing the CPU temperature in degrees C. The root route (/) returns the
main HTML template for the page (main.html). The other two routes provide access
to copies of the raphael and justgage JavaScript libraries.

The file main.html mostly contains the JavaScript to render the user interface.

<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"
type="text/javascript" charset="utf-8"></script>
<script src="raphael"></script>
<script src="justgage"></script>

<script>
function callback(tempStr, status){
if (status == "success") {
 temp = parseFloat(tempStr).toFixed(2);
 g.refresh(temp);
 setTimeout(getReading, 1000);
}
else {
 alert("There was a problem");
 }
}

function getReading(){
 $.get('/temp', callback);
}
</script>
</head>

<body>
<div id="gauge" class="200x160px"></div>

<script>
var g = new JustGage({
 id: "gauge",
 value: 0,

15.2 Displaying Sensor Readings on a Web Page | 417

 min: 10,
 max: 60,
 title: "CPU Temp 'C"
});
getReading();
</script>

</body>
</html>

The JQuery, Raphael, and JustGage libraries are all imported (JQuery from https://
developers.google.com/speed/libraries/#jquery and the other two from local copies).

Getting a reading from the Raspberry Pi to the browser window is a two-stage pro‐
cess. First, the function getReading is called. This sends a web request with the
route /temp to web_sensor.py and specifies a function called callback to be run
when the web request completes. The callback function is then responsible for
updating the JustGage display before setting a timeout to call getReading again after
a second.

See Also
For an example of using Tkinter to display sensor values in an application rather than
a web page, see Recipe 13.19.

The JustGage library has all sorts of useful options for displaying sensor values.
See http://justgage.com/ for more information.

15.3 Sending Email and Other Notifications with IFTTT
Problem
You want a flexible way for your Raspberrry Pi to send notifications by email, Face‐
book status, Twitter, or Slack.

Solution
Have your Raspberry Pi send requests to the If This Then That (IFTTT) Maker chan‐
nel to trigger configurable notifications.

This recipe is illustrated with an example that sends you an email when the CPU tem‐
perature of your Raspberry Pi exceeds a threshold.

You need to create an account with IFTTT before you can start using it, so visit
www.ifttt.com and sign up.

418 | Chapter 15: The Internet of Things

The next step is to create a new IFTTT recipe. Rather confusingly, IFTTT uses the
word recipe to refer to a rule, such as When I get a web request from a Raspberry Pi,
send an email. Click on the Create a Recipe button. This will prompt you to first enter
the IF part of the recipe and later the THAT part.

In this case, the IF THIS part (the trigger) is going to be the receipt of a web request
from your Raspberry Pi, so click on THIS and then enter Maker into the search field
to find the Maker channel. Select the Maker channel and when prompted to Choose a
Trigger, select the option (Receive a Web Request). This will open the form shown in
Figure 15-5.

Figure 15-5. The “Receive a web request” trigger form

Enter the text cpu_too_hot into the Event Name field and click Create Trigger.

This will now move you to the THAT portion of the recipe, the action , and you will
need to select an action channel. Here there are many options, but for this example
you will use the Email channel, so type Email into the search field and then select the
Email channel. You will see several email-related channels, including Gmail. Use the
email channel, even if you are sending from a Gmail account.

Having selected the Email channel, select the action Send Me an Email, and the form
shown in Figure 15-6 will be displayed.

15.3 Sending Email and Other Notifications with IFTTT | 419

Figure 15-6. Configuring the Send Me an Email action

Change the text so that it appears as shown in Figure 15-6. Note that the special val‐
ues OccurredAt and Value1 will both be surrounded by {{ and }}. These values are
called ingredients and are variable values that will be taken from the web request and
substituted into the email subject and body.

Click Create Action and then Create Recipe to finish the recipe creation.

That’s it—the recipe is now live, and once the Raspberry Pi is ready to send web
requests to it, it will start emailing.

The Python program to send the web request can be found with the downloads for
the book on the Raspberry Pi Cookbook website and is called ifttt_cpu_temp.py.

import time, os, urllib, urllib2

MAX_TEMP = 37.0
MIN_T_BETWEEN_WARNINGS = 60 # Minutes

EVENT = 'cpu_too_hot'
BASE_URL = 'https://maker.ifttt.com/trigger/'
KEY = 'cyR3vPNFlP9K32W4NZB9cd'

420 | Chapter 15: The Internet of Things

def send_notification(temp):
 data = urllib.urlencode({'value1' : str(temp)})
 url = BASE_URL + EVENT + '/with/key/' + KEY
 response = urllib2.urlopen(url=url, data=data)
 print(response.read())

def cpu_temp():
 dev = os.popen('/opt/vc/bin/vcgencmd measure_temp')
 cpu_temp = dev.read()[5:-3]
 return float(cpu_temp)

while True:
 temp = cpu_temp()
 print("CPU Temp (C): " + str(temp))
 if temp > MAX_TEMP:
 print("CPU TOO HOT!")
 send_notification(temp)
 print("No more notifications for: " + str(MIN_T_BETWEEN_WARNINGS) +
" mins")
 time.sleep(MIN_T_BETWEEN_WARNINGS * 60)
 time.sleep(1)

Before running the program, you will need to get an access key for the Maker Action
channel by selecting Channels (at the top of the IFTTT web page), and then search‐
ing for Maker. Connect to the channel, and then you will see your key displayed near
the bottom of the web page (Figure 15-7).

Paste the key into ifttt_cpu_temp.py on the line that starts KEY= and then run the
program using:

$ sudo python ifttt_cpu_temp.py

You can increase your CPU temperature by playing a video or temporarily wrapping
your Raspberry Pi in bubble wrap. Once the event is triggered, you should receive an
email that looks like Figure 15-8. Notice how the values have been substituted into
the email.

15.3 Sending Email and Other Notifications with IFTTT | 421

Figure 15-7. Getting an IFTTT key

Figure 15-8. A notification email

422 | Chapter 15: The Internet of Things

Discussion
Most of the action for this program takes place in the send_notification email. This
first constructs a URL including the key and request parameter value1 (containing
the temperature) and then uses the Python urllib2 to send the web request to
IFTTT.

The main loop continually checks the temperature against the MAX_TEMP, and if the
CPU temperature exceeds MAX_TEMP, the web request is sent and a long sleep is
started as specified by MIN_T_BETWEEN_WARNINGS to prevent your inbox from being
flooded with notifications.

As an alternative to using IFTTT, you could, of course, just send an email directly
using Recipe 7.16. However, by using IFTTT to send the messages, you are not
restricted to email notifications—you could use any of the action channels available
in IFTTT without having to write any code.

See Also
To send an email directly from Python, see Recipe 7.16.

The code to measure the CPU temperature is described in Recipe 13.9.

15.4 Sending Tweets Using ThingSpeak
Problem
You want to automatically send tweets from your Raspberry Pi; for example, to irri‐
tate people by telling them the temperature of your CPU.

Solution
You could just use Recipe 15.3 and change the Action Channel to be Twitter. How‐
ever, the ThingSpeak service is an alternative way of doing this.

ThingSpeak is similar to IFTTT but is aimed squarely at IoT projects. It allows you to
create channels that can store and retrieve data using web requests, and also has a
number of actions, including ThingTweet, which provides a web services wrapper
around Twitter. This is easier to use than the Twitter API, which requires you to reg‐
ister your application with Twitter.

Start by visiting https://thingspeak.com and signing up. Then select the ThingTweet
action (Figure 15-9). You will be prompted to log in to Twitter.

15.4 Sending Tweets Using ThingSpeak | 423

Figure 15-9. The ThingTweet action

The Python program to send the web request that triggers the tweet can be found
with the downloads for the book on the Raspberry Pi Cookbook website and is called
send_tweet.py:

import time, os, urllib, urllib2

MAX_TEMP = 37.0
MIN_T_BETWEEN_WARNINGS = 60 # Minutes

BASE_URL = 'https://api.thingspeak.com/apps/thingtweet/1/statuses/update/'
KEY = '68LZC4LBMXLO6YDY'

def send_notification(temp):
 status = 'Raspberry Pi getting hot. CPU temp=' + temp
 data = urllib.urlencode({'api_key' : KEY, 'status': status})
 response = urllib2.urlopen(url=BASE_URL, data=data)
 print(response.read())

def cpu_temp():
 dev = os.popen('/opt/vc/bin/vcgencmd measure_temp')
 cpu_temp = dev.read()[5:-3]
 return cpu_temp

while True:
 temp = cpu_temp()
 print("CPU Temp (C): " + str(temp))
 if temp > MAX_TEMP:
 print("CPU TOO HOT!")
 send_notification(temp)
 print("No more notifications for: " + str(MIN_T_BETWEEN_WARNINGS) +
" mins")
 time.sleep(MIN_T_BETWEEN_WARNINGS * 60)
 time.sleep(1)

424 | Chapter 15: The Internet of Things

As with Recipe 15.3, you will need to paste your key from Figure 15-9 into the code
before you run the program. Run and test the program in just the same way you did
in Recipe 15.3.

Discussion
The code is very similar to Recipe 15.3. The main difference is in the function
send_notification, which constructs the tweet and then sends the web request with
the message as the parameter status.

See Also
For full documentation of the ThingSpeak service, see https://uk.mathworks.com/help/
thingspeak/.

In Recipe 15.5, you use the popular Cheerlights, implemented in ThingSpeak; and i
Recipe 15.6, you learn how to use ThingSpeak to collect sensor data.

15.5 CheerLights
Problem
You want to hook your Raspberry Pi up to an RGB LED and participate in the popu‐
lar Cheerlights project.

Cheerlights is a web service that, when anyone sends a tweet to @cheerlights contain‐
ing the name of a color, will record that color as being the last color. Around the
world, many people have Cheerlight projects that use a web service to request the last
color and set their lighting to that color. So when anyone tweets, everyone’s lights
change color.

Solution
Use a Raspberry Squid RGB LED connected to your Raspberry Pi (Figure 15-10) and
run the test program called cheerlights.py, which can be found with the downloads for
the book on the Raspberry Pi Cookbook website.

15.5 CheerLights | 425

Figure 15-10. A Cheerlight

from squid import *
import urllib, time

squid = Squid(18, 23, 24)
cheerlights_url = "http://api.thingspeak.com/channels/1417/field/2/last.txt"

try:
 while True:
 try:
 cheerlights = urllib.urlopen(cheerlights_url)
 c = cheerlights.read()
 cheerlights.close()
 print(c)
 squid.set_color_rgb(c)
 except:
 print('Error')
 time.sleep(2)

finally:
 GPIO.cleanup()

426 | Chapter 15: The Internet of Things

Before running the program, you will need to install the Squid library (see Recipe
9.10).

Your LED should immediately set itself to the last color. It will probably change color
after a while as someone tweets; if it doesn’t, try tweeting a message such as “@cheer‐
lights red” and the color of both your LED and the rest of the world’s LEDs should all
change. Valid color names for Cheerlights are red, blue, cyan, white, oldlace, purple,
magenta, yellow, orange, and pink.

Discussion
The code just sends a web request to ThingSpeak, which returns a string of colors as a
6-digit hexadecimal number. This is then used to set the LED color.

The inner try/except code is used to ensure that the program does not crash if there
is a temporary network outage.

See Also
Cheerlights uses ThingSpeak to store the last color in a channel. In Recipe 15.6, a
channel is used to record sensor data.

If you don’t have a Squid, you can use an RGB on a breadboard (see Recipe 10.10), or
even adapt Recipe 14.7 to control an entire LED strip.

15.6 Sending Sensor Data to ThingSpeak
Problem
You want to log sensor data to ThingSpeak.

Solution
Log into ThingSpeak, and from the Channels drop-down, select My Channels. Now
create a new channel by completing the top of the form as shown in Figure 15-11.

15.6 Sending Sensor Data to ThingSpeak | 427

Figure 15-11. Creating a channel in ThingSpeak

The rest of the form can be left blank. When you have finished editing, click Save
Channel at the bottom of the page. Click on the Data Import/Export tab to find a
summary of the web requests that you can use, customized to the channel you just
created (Figure 15-12).

Figure 15-12. Getting data into a ThingSpeak channel

428 | Chapter 15: The Internet of Things

To send data to the channel, a web request must be sent. The Python program to send
the web request can be found with the downloads for the book on the Raspberry Pi
Cookbook website and is called thingspeak_data.py.

import time, os, urllib, urllib2

PERIOD = 60 # Seconds

BASE_URL = 'https://api.thingspeak.com/update.json'
KEY = 'DYHHDDKKLU8OV58T'

def send_data(temp):
 data = urllib.urlencode({'api_key' : KEY, 'field1': temp})
 response = urllib2.urlopen(url=BASE_URL, data=data)
 print(response.read())

def cpu_temp():
 dev = os.popen('/opt/vc/bin/vcgencmd measure_temp')
 cpu_temp = dev.read()[5:-3]
 return cpu_temp

while True:
 temp = cpu_temp()
 print("CPU Temp (C): " + str(temp))
 send_data(temp)
 time.sleep(PERIOD)

Run the program. On the ThingSpeak channel page on the Private View tab, you
should see a graph like the one shown in Figure 15-13.

Figure 15-13. Charting the sensor data

This will update as a new reading arrives every minute.

15.6 Sending Sensor Data to ThingSpeak | 429

Discussion
The variable PERIOD is used to determine the time interval between each sending of
the temperature. This period is in seconds.

The send_data function constructs the web request, supplying the temperature in a
parameter called field1.

If your data might be of public interest—say, accurate environmental readings—then
you might want to make the channel public so that anyone can make use of it. This
probably isn’t the case for your Pi’s CPU temperature.

See Also
For an example of exporting sensor data into a spreadsheet, see Recipe 13.20.

For an explanation of the code that reads the CPU temperature, see Recipe 13.9.

15.7 Responding to Tweets Using Dweet and IFTTT
Problem
You want your Raspberry Pi to perform some action in response to a certain hashtag
or mention in a tweet.

Recipe 15.5 does just this, but it does it very inefficiently because it relies on you con‐
tinually polling with web requests to see if the color has changed.

Solution
An efficient mechanism for monitoring tweets that does not rely on polling is to use
IFTTT (see Recipe 15.3) to spot tweets of interest and then send a web request to a
service called Dweet that can push notifications to a Python program running on
your Raspberry Pi (Figure 15-14).

For example, you could flash an LED for 10 seconds every time there is a mention of
your username on Twitter by using a Raspberry Squid or an LED attached to a bread‐
board.

As far as the hardware goes, this recipe just requires some electronics that do some‐
thing noticeable when GPIO 18 goes high. This could be one channel of a Raspberry
Squid (see Recipe 9.10) or a single LED attached to breadboard (see Recipe 10.1) or
for ultimate flexibility, a relay (see Recipe 10.6). Using a relay would allow you to cre‐
ate a project like Bubblino.

430 | Chapter 15: The Internet of Things

Figure 15-14. IFTTT, Dweet, and Python, working together

The first step is to log in to IFTTT (see Recipe 15.3) and then create a new recipe.
Choose an action channel of New Mention of You and then click Create Trigger. For
the recipe’s action channel, select Maker and then select the action “Make a Web
Request” and complete the fields as shown in Figure 15-15.

The URL includes a request parameter with the ingredient of text. This will contain
the body of the tweet. Although this will not be used other than to print it in the con‐
sole, you might have the message displayed on an LCD screen for a more sophistica‐
ted project, so it is useful to know how to pass data from tweet to the Python
program.

Then click Create Recipe to take the IFTTT recipe live.

The dweet.io web service operates rather like Twitter for IoT things. It has a web
interface that allows you to both post and listen for dweets.

Dweet does not require an account or any login details to make use of it; you can just
have one thing (IFTTT in this case) send a message to it and have another thing
(your Raspberry Pi Python program) wait for notifications from it that something
you are interested in has happened. In this case, the token that links the two is
tweet_about_me. This is not very unique, and if several people are trying out this
example from the book at the same time, then they will get each other’s messages. To
avoid this, use a more unique token (say, by adding a random string of letters and
numbers to the message).

15.7 Responding to Tweets Using Dweet and IFTTT | 431

Figure 15-15. Completing the Send HTTP Request action channel in IFTTT

To access Dweet from your Python program, the dweepy library needs to be installed,
using the following commands:

$ git clone git://github.com/paddycarey/dweepy.git
$ cd dweepy
$ sudo python setup.py install

The program for this recipe can be found with the downloads for the book on the
Raspberry Pi Cookbook website and is called twitter_trigger.py.

import time
import dweepy
import RPi.GPIO as GPIO

KEY = 'tweet_about_me'
OUTPUT_PIN = 18
OUTPUT_DURATION = 10

432 | Chapter 15: The Internet of Things

GPIO.setmode(GPIO.BCM)
GPIO.setup(OUTPUT_PIN, GPIO.OUT)

while True:
 try:
 for dweet in dweepy.listen_for_dweets_from(KEY):
 print('Tweet: ' + dweet['content']['text'])
 GPIO.output(OUTPUT_PIN, True)
 time.sleep(OUTPUT_DURATION)
 GPIO.output(OUTPUT_PIN, False)
 except Exception:
 pass

Discussion
The program uses the listen_for_dweets_from method to leave an open connection
to the dweet.io server, listening for any push messages from the server as a result of a
dweet arriving from IFTTT in response to a tweet. The try/except block ensure that
if there is any communication outage, the program will just start the listenning pro‐
cess again.

See Also
For a similar project using a different approach, see Recipe 15.5.

15.7 Responding to Tweets Using Dweet and IFTTT | 433

CHAPTER 16

Arduino and Raspberry Pi

16.0 Introduction
While a Raspberry Pi is ideal for projects that need a network connection or a graphi‐
cal user interface, the low-power GPIO outputs and lack of any analog inputs puts it
at a disadvantage to microcontroller boards, such as the Arduino (Figure 16-1). For‐
tunately, it is possible to have the best of both worlds by connecting an Arduino to a
Raspberry Pi and allowing the Arduino to interface with external electronics.

Arduino boards are superficially a little like a Raspberry Pi in that they are small and
essentially a computer. However, Arduino boards are very different from the Rasp‐
berry Pi in a number of respects:

• They do not have any interface to keyboard, mouse, or screen.
• They have just 2 KB of RAM and 32 KB of flash for storing programs.
• Their processor runs at just 16 MHz compared with the Raspberry Pi’s 700 MHz.

This might lead you to wonder why you would use such an apparently feeble board
rather than the Raspberry Pi directly.

The answer is that Arduino boards, the most common being the Arduino Uno, are
better than the Raspberry Pi at interfacing with external electronics in several ways.
For example, Arduino boards have:

• 14 digital inputs/outputs, like the Raspberry Pi’s GPIO pins, but each pin can
provide up to 40 mA compared with the original Raspberry Pi’s 3 mA. This ena‐
bles them to power more devices without the need for extra electronics.

• 6 analog inputs. This makes connecting analog sensors much easier (see Recipe
16.7).

435

• 6 PWM outputs. These outputs are hardware-timed and produce a much more
accurate PWM signal than can be achieved with the Raspberry Pi, making them a
lot better for controlling servo motors.

• A huge range of plug-in shields for everything from motor control to LCD dis‐
plays of various sorts.

Figure 16-1. An Arduino Uno board

In many ways, using a Raspberry Pi with an Arduino to handle all the low-level stuff
is a good combination, playing to the strengths of both boards. This is taken to its
extreme with interface boards that have a GPIO connector and also include Arduino-
compatible hardware such as the aLaMode (Recipe 16.13).

16.1 Programming an Arduino from Raspberry Pi
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

436 | Chapter 16: Arduino and Raspberry Pi

Problem
You want to run the Arduino IDE on a Raspberry Pi so that you can write and upload
programs onto an Arduino.

Solution
The Arduino IDE is available for the Raspberry Pi. It is a little bit slow, but usable.
You will definitely want to use the superior speed of the Raspberry Pi 2 when using
the Arduino IDE. Use these commands to install the Arduino IDE:

$ sudo apt-get update
$ sudo apt-get install arduino

After installation, you will find an Electronics group in your Programs menu
(Figure 16-2).

To program the Arduino IDE, connect it to the Raspberry Pi through its USB cable.
The easiest way to set up your Pi to use the Arduino IDE is to run a script created by
Kevin Osborn that configures the serial ports and Arduino profiles necessary to get
things running. This has the advantage that it also sets up the aLaMode board to be
ready for use (Recipe 16.13).

To download and run this script, follow these steps:

$ https://github.com/wyolum/alamode/raw/master/bundles/alamode-setup.tar.gz
$ tar -xvzf alamode-setup.tar.gz
$ cd alamode-setup
$ sudo ./setup

You can now connect your Arduino to your Raspberry Pi. From the Tools menu,
select Board and set the board type to Arduino Uno. Then, from the Serial Port
option, select /dev/ttyACM0. To upload a test program that will make the LED on the
Arduino blink, select the File menu and then click “Examples, Basic,” and finally click
Blink. Click on the right arrow on the toolbar to begin the compile and upload pro‐
cess. If all is well, you should see a “Done Uploading” message in the status area at the
bottom of the IDE window.

If you find that the device ttyACM0 is not listed even though your
Arduino is plugged in, try restarting the Arduino IDE. If that
doesn’t work, then you may have to reboot your Raspberry Pi.
Leave the Arduino connected while you reboot and restart the
Arduino IDE.

16.1 Programming an Arduino from Raspberry Pi | 437

Figure 16-2. The Arduino IDE running on Raspberry Pi

Discussion
To get the most out of using Arduino with Raspberry Pi, you need to learn a little
Arduino programming. You may find the book Programming Arduino: Getting
Started with Sketches (McGraw-Hill/Tab Books), by yours truly, helpful.

You can, however, make use of an Arduino without needing to write any code on the
Arduino side, using a project called PyFirmata. Recipe 16.3 explains how to use
PyFirmata.

See Also
The Arduino IDE setup script came from the blog Bald Wisdom.

438 | Chapter 16: Arduino and Raspberry Pi

16.2 Communicating with the Arduino by Using the Serial
Monitor
Problem
You want to display messages sent from an Arduino.

Solution
The Arduino IDE includes a feature called the serial monitor, which allows you to
both send text messages to the Arduino and see messages from the Arduino over the
USB cable.

To try this out, you first need to write a very short Arduino program (programs are
called sketches in the Arduino world). This sketch will just repeat a message, sending
it every second.

The Arduino sketch is listed here. As with all the program examples in this book, you
can also download the program from http://www.raspberrypicookbook.com, where it
is contained in the folder ArduinoHello. Just follow the link to this book and then
click Code.

Use File→New to create a new sketch, and paste the following text into it before
uploading it to the Arduino.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.println("Hello Raspberry Pi");
 delay(1000);
}

As soon as the sketch is uploaded onto the Arduino, it will start sending the message
“Hello Raspberry Pi” over serial. You won’t see this until you open the serial monitor
(Figure 16-3) by clicking the icon that looks like a magnifying glass on the right of the
toolbar.

16.2 Communicating with the Arduino by Using the Serial Monitor | 439

Figure 16-3. Viewing messages with the serial monitor

The serial monitor has a drop-down list in the bottom-right corner, where you can
select the baud rate (speed of communication). If this isn’t already set to 9600, change
it to that value.

Discussion
In some of the later recipes in this chapter (Recipes 16.10 and 16.11), you look at
writing your own custom code to communicate with Python programs running on
the Raspberry Pi so that you don’t need to have the Arduino IDE running.

A more generic approach is to use something called PyFirmata, which avoids the
need for any programming on the Raspberry Pi. See Recipe 16.3 for details.

See Also
Arduino is quite easy to learn; here are some links to books and online resources to
get you started:

• Programming Arduino: Getting Started with Sketches (Tab Books) by Simon Monk
• The official Arduino Getting Started Guide

440 | Chapter 16: Arduino and Raspberry Pi

• The Adafruit Arduino lesson series
• Arduino Cookbook (O’Reilly) by Michael Margolis

16.3 Setting Up PyFirmata to Control an Arduino from a
Raspberry Pi
Problem
You want to use an Arduino as an interface board for your Raspberry Pi.

Solution
Connect the Arduino to a USB socket of the Raspberry Pi so that the computer can
communicate and send power to the Arduino.

Next, install the Firmata sketch onto the Arduino and the PyFirmata onto your Rasp‐
berry Pi. This entails installing the Arduino IDE, so if you haven’t already done so,
follow Recipe 16.1.

The Arduino IDE includes Firmata, so all you have to do to install Firmata onto your
Arduino board is to upload a sketch. You will find the sketch at File→Examples→Fir‐
mata→StandardFirmata.

Once Firmata is installed, the Arduino waits for communication from the Raspberry
Pi.

Now you need to install PyFirmata, the other half of the link. This requires the use of
the PySerial library, so follow Recipe 9.6 to install this.

You can now download and install PyFirmata by using these commands:

$ git clone https://github.com/tino/pyFirmata.git
$ cd pyFirmata
$ sudo python setup.py install

You can try out the PyFirmata library from the Python console. Enter the following
commands to turn on the built-in LED on Arduino pin 13 (marked with an L) and
then turn it off again.

$ sudo python
Python 2.7.3 (default, Jan 13 2013, 11:20:46)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.

>>> import pyfirmata
>>> board = pyfirmata.Arduino('/dev/ttyACM0')
>>> pin13 = board.get_pin('d:13:o')
>>> pin13.write(1)

16.3 Setting Up PyFirmata to Control an Arduino from a Raspberry Pi | 441

>>> pin13.write(0)
>>> board.exit()

Discussion
The preceding code first imports the PyFirmata library and then makes an instance of
Arduino called board, using the USB interface (/dev/ttyACM0) as its parameter. You
can then gain a reference to one of the Arduino pins (in this case, 13) and set it to be
a digital output. The d is for digital, 13 is the pin number, and o is for output.

To set the output pin high, use write(1), and to set it low, use write(0). You can also
use True and False in place of 1 and 0.

Figure 16-4 shows an Arduino with the rows of connections down both sides of the
board.

Figure 16-4. I/O pins on an Arduino Uno

442 | Chapter 16: Arduino and Raspberry Pi

The pins at the top marked 0 to 13 can be used as digital inputs or outputs. Some of
these pins are also used for other things. Pins 0 and 1 are used as a serial interface,
and are in use when the USB port is being used; and pin 13 is attached to the on-
board LED marked with an L. The digital I/O pins 3, 5, 6, 9, 10, and 11 have a ~ sym‐
bol next to them that indicates that they can be used for PWM output (see Recipe
10.3).

On the other side of the board, there is one set of connectors that supplies power at
5V and 3.3V, and six analog inputs marked A0 to A5.

An Arduino Uno on its own uses about 50 mA, which, given that the Raspberry Pi
itself is probably using about 10 times that, makes it perfectly possible to power the
Arduino from the USB connection of the Raspberry Pi. However, if you start attach‐
ing a lot of external electronics to the Arduino, and the current consumption increa‐
ses, then you may want to power the Arduino from its own power adapter by using
the DC barrel socket. This will accept 7V to 12V DC.

The only real downside of using Firmata is that because all instructions have to come
from the Raspberry Pi, it doesn’t make much use of Arduino’s ability to run inde‐
pendently. For advanced projects, you will probably end up writing your own Ardu‐
ino code that receives instructions from the Raspberry Pi and/or sends messages to
the Raspberry Pi while it gets on with other tasks.

See Also
The following recipes look at using the full range of Arduino pin features with PyFir‐
mata: 16.4, 16.5, 16.6, 16.7, and 16.8.

You can find the official pyFirmata documentation at pyFirmata’s GitHub page.

16.4 Writing Digital Outputs on an Arduino from a
Raspberry Pi
Problem
You want to control Arduino digital outputs from Python on a Raspberry Pi.

Solution
In Recipe 16.3, you flashed the built-in LED (labeled with an L) on the Arduino
board. Here, you build on this to attach an external LED and write a short Python
program to make it blink.

16.4 Writing Digital Outputs on an Arduino from a Raspberry Pi | 443

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 270Ω resistor (see “Resistors and Capacitors” on page 474)
• LED (see “Opto-Electronics” on page 476)

As an alternative to using a breadboard and an LED, you could plug in one color
channel of a Squid RGB LED (Recipe 9.10).

Connect the breadboard, fastening the components to the Arduino as shown in
Figure 16-5.

Figure 16-5. Wiring diagram for Arduino and LED

If you haven’t already done so, follow Recipe 16.3 to set up PyFirmata.

The following Python script makes the LED blink at a rate of about 1 Hz. Open an
editor (nano or IDLE) and paste in the following code. As with all the program exam‐
ples in this book, you can also download the program from the Code section of http://
www.raspberrypicookbook.com, where it is called ardu_flash.py.

444 | Chapter 16: Arduino and Raspberry Pi

import pyfirmata
import time

board = pyfirmata.Arduino('/dev/ttyACM0')
led_pin = board.get_pin('d:10:o')

while True:
 led_pin.write(1)
 time.sleep(0.5)
 led_pin.write(0)
 time.sleep(0.5)

Discussion
This is very similar to connecting an LED to a Raspberry Pi (Recipe 10.1). However,
note that since Arduino outputs can supply a lot more current than Raspberry Pi out‐
puts, you can use a smaller value resistor and make the LED a bit brighter. Arduino
outputs are also 5V rather than 3.3V.

If you want the user interface to control the LED like you had in Recipe 10.8 (and
shown in Figure 16-6), it’s pretty straightforward to modify the code. You can find the
modified program, called ardu_gui_switch.py, on the book’s website. Remember, this
will not work from the SSH command line. You need to have access to the Raspberry
Pi’s graphical environment so that you can see the user interface.

Figure 16-6. A user interface for turning things on and off

See Also
See Recipe 10.1 for controlling an LED directly from a Raspberry Pi.

16.5 Using PyFirmata with TTL Serial
Problem
You want to use PyFirmata, but over the serial connection (RXD and TXD on the
GPIO connector) rather than by USB.

Solution
Use a level converter to connect the RXD pin of the Raspberry Pi to the Tx pin of the
Arduino, and the TXD pin of the Raspberry Pi to the Rx pin of the Arduino.

16.5 Using PyFirmata with TTL Serial | 445

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 270Ω and 470Ω resistors (see “Resistors and Capacitors” on page 474) or a four-

way bidirectional level converter (see “Modules” on page 476)

If you are using the level converter module, connect the breadboard as shown in
Figure 16-7.

Figure 16-7. Wiring diagram, using a level converter module for serial communication
with an Arduino

If, on the other hand, you are using the pair of resistors, then connect the breadboard
as shown in Figure 16-8.

The Arduino Rx input is fine with just 3.3V from the Raspberry Pi TXD pin; how‐
ever, the 5V coming from the Arduino Tx pin must be dropped to the 3V expected by
the Raspberry Pi.

You will need to set up PyFirmata—see Recipe 16.3. The Arduino side of the project
remains exactly the same as Recipe 16.4, where USB is used instead of the serial con‐
nection. There is one change that you need to make to the Python program running
on the Raspberry Pi—change the device name from /dev/ttyACM0 to /dev/ttyAMA0,
as the serial port has a different device name from the USB interface.

446 | Chapter 16: Arduino and Raspberry Pi

Figure 16-8. Wiring diagram, using a pair of resistors for serial communication with an
Arduino

The following Python script makes the LED blink at a rate of about 1 Hz. Open an
editor (nano or IDLE) and paste in the following code. As with all the program exam‐
ples in this book, you can also download the program from the Code section of http://
www.raspberrypicookbook.com, where it is called ardu_flash_ser.py.

import pyfirmata
import time

board = pyfirmata.Arduino('/dev/ttyAMA0')
led_pin = board.get_pin('d:13:o')

while True:
 led_pin.write(1)
 time.sleep(0.5)
 led_pin.write(0)
 time.sleep(0.5)

Discussion
The level conversion is necessary because the Raspberry Pi serial port connections,
RXD and TXD, operate at 3.3V, whereas the Arduino Uno operates at 5V. While it is
OK for the 5V Arduino to use a 3.3V signal, the reverse is not true and a 5V signal
connected to the 3.3V RXD pin is likely to damage the Raspberry Pi.

16.5 Using PyFirmata with TTL Serial | 447

See Also
You can also easily adapt the other examples that use PyFirmata (Recipes 16.5
through 16.8) to use a serial rather than USB connection, simply by changing the
device name in the Python program.

16.6 Reading Arduino Digital Inputs Using PyFirmata
Problem
You want to read Arduino digital inputs from Python on a Raspberry Pi.

Solution
Use PyFirmata to read a digital input on the Arduino.

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• Tactile push switch (see “Miscellaneous” on page 477)

Connect the breadboard, fastening the components to the Arduino as shown in
Figure 16-9.

If you haven’t already done so, follow Recipe 16.3 to set up PyFirmata.

The following Python script prints out a message every time the switch is pressed. It’s
very similar to the program in (switch.py). Open an editor (nano or IDLE) and paste
in the following code. As with all the program examples in this book, you can also
download the program from the Code section of http://www.raspberrypicook
book.com, where it is called ardu_switch.py. Just follow the link to this book and then
click Code.

import pyfirmata
import time

board = pyfirmata.Arduino('/dev/ttyACM0')
switch_pin = board.get_pin('d:4:i')
it = pyfirmata.util.Iterator(board)
it.start()
switch_pin.enable_reporting()

while True:
 input_state = switch_pin.read()
 if input_state == False:

448 | Chapter 16: Arduino and Raspberry Pi

 print('Button Pressed')
 time.sleep(0.2)

Figure 16-9. Wiring diagram for Arduino and push switch

When you run it, nothing will happen for a second or two, while the Firmata sketch
starts and establishes communication with the Raspberry Pi. But, once it starts up,
each time you press the button, a message will appear:

$ sudo python ardu_switch.py
Button Pressed
Button Pressed
Button Pressed

Discussion
PyFirmata uses the concept of an Iterator to monitor the Arduino input pin. The
reasons for this are bound up in the implementation of Firmata. This means that you
can’t simply read the value of an Arduino input pin on demand; instead, you have to
create a separate Iterator thread that manages the reading of the switch by using the
commands:

it = pyfirmata.util.Iterator(board)
it.start()

16.6 Reading Arduino Digital Inputs Using PyFirmata | 449

You then also have to enable reporting for the pin you are interested in by using the
command:

switch_pin.enable_reporting()

A side effect of this mechanism is that when you press Ctrl-C to exit the program, it
won’t exit properly. There is no nice way to kill the Iterator thread other than to
open another Terminal window or SSH session and kill the process (Recipe 3.26).

If the only Python process running is this program, you can kill it with the command:

$ sudo killall python

Simply disconnecting the Arduino from the Raspberry Pi, which will break the com‐
munication link, will also cause the Python program to exit.

See Also
This is very similar to connecting a switch directly to a Raspberry Pi (Recipe 12.1),
and if you just have one switch, there is no real benefit in using an Arduino like this.

16.7 Reading Arduino Analog Inputs Using PyFirmata
Problem
You want to read Arduino analog inputs from Python on a Raspberry Pi.

Solution
Use PyFirmata to read an analog input on the Arduino.

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 10kΩ trimpot (see “Resistors and Capacitors” on page 474)

Connect the breadboard, holding the components to the Arduino as shown in
Figure 16-10.

450 | Chapter 16: Arduino and Raspberry Pi

Figure 16-10. Wiring diagram for Arduino and trimpot

If you haven’t already done so, follow Recipe 16.3 to set up PyFirmata.

The following Python script (ardu_adc.py) will display both the raw reading from the
analog input and the voltage at the analog input. It is very similar to the program in
(adc_test.py).

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called ardu_adc.py.

import pyfirmata
import time

board = pyfirmata.Arduino('/dev/ttyACM0')
analog_pin = board.get_pin('a:0:i')
it = pyfirmata.util.Iterator(board)
it.start()
analog_pin.enable_reporting()

while True:
 reading = analog_pin.read()
 if reading != None:
 voltage = reading * 5.0
 print("Reading=%f\tVoltage=%f" % (reading, voltage))
 time.sleep(1)

16.7 Reading Arduino Analog Inputs Using PyFirmata | 451

The analog reading will be a value between 0.0 and 1.0:

$ sudo python ardu_adc.py
Reading=0.000000 Voltage=0.000000
Reading=0.165200 Voltage=0.826000
Reading=0.784000 Voltage=3.920000
Reading=1.000000 Voltage=5.000000

Discussion
The program is very similar to that of Recipe 16.6. An Iterator must be used, and
the same problems of stopping the program apply.

The if statement is needed, because if the first read is made before the actual reading
from the analog input has happened, then the read will return None rather than a
number. The if statement effectively causes the program to ignore any null readings.

See Also
To use digital inputs, see Recipe 16.6.

16.8 Analog Outputs (PWM) with PyFirmata
Problem
You want to control the brightness of an LED by using PWM through an Arduino.

Solution
Use PyFirmata to send commands to an Arduino to generate a PWM signal on one of
its outputs.

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 270Ω resistor (see “Resistors and Capacitors” on page 474)
• LED (see “Opto-Electronics” on page 476)

Connect the breadboard, holding the components to the Arduino as shown in
Figure 16-11.

If you haven’t already done so, follow Recipe 16.3 to set up PyFirmata.

452 | Chapter 16: Arduino and Raspberry Pi

Figure 16-11. Wiring diagram for Arduino PWM control of an LED

The following Python script (ardu_pwm.py) will prompt you to enter a value for the
PWM power and then set the LED brightness accordingly. Open an editor (nano or
IDLE) and paste in the following code. As with all the program examples in this
book, you can also download the program from the Code section of http://www.rasp
berrypicookbook.com, where it is called ardu_pwm.py.

import pyfirmata

board = pyfirmata.Arduino('/dev/ttyACM0')
led_pin = board.get_pin('d:10:p')

while True:
 duty_s = raw_input("Enter Brightness (0 to 100):")
 duty = int(duty_s)
 led_pin.write(duty / 100.0)

With the value entered as 100, the LED should be at full brightness. The brightness
decreases as the number decreases:

$ sudo python ardu_pwm.py
Enter Brightness (0 to 100):100
Enter Brightness (0 to 100):50
Enter Brightness (0 to 100):10
Enter Brightness (0 to 100):5
Enter Brightness (0 to 100):

16.8 Analog Outputs (PWM) with PyFirmata | 453

Discussion
The sketch for this is actually very straightforward. You define the output as PWM
output using the command:

led_pin = board.get_pin('d:10:p')

The p is for PWM. But remember, this only works on Arduino pins marked with a ~
symbol.

We can also modify the slider control (Figure 16-12) so that it will operate through
PyFirmata. You can download this sketch as ardu_gui_slider.

Figure 16-12. A user interface for controlling brightness

See Also
Although an Arduino can deliver 40 mA to an output—roughly 10 times the current
available on a Raspberry Pi GPIO pin, it’s still not enough to directly drive a motor or
high-power LED module. For these, you would need to use the circuit described in
Recipe 11.4, modified to use an Arduino output pin rather than a Raspberry Pi GPIO
pin.

16.9 Controlling a Servo Using PyFirmata
Problem
You want to control the position of a servo motor by using an Arduino.

Solution
Use PyFirmata to send commands to an Arduino to generate the pulses necessary to
control the position of a servo motor.

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• LED (see “Integrated Circuits” on page 475)

454 | Chapter 16: Arduino and Raspberry Pi

Connect the breadboard as shown in Figure 16-13.

Figure 16-13. Wiring diagram for Arduino controlling a servo motor

If you have not already done so, follow Recipe 16.3 to set up PyFirmata.

The following Python script (ardu_servo.py) will prompt you to enter a value for the
servo’s angle and then set the arm of the servo motor accordingly.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called ardu_servo.py.

import pyfirmata

board = pyfirmata.Arduino('/dev/ttyACM0')
servo_pin = board.get_pin('d:11:s')

while True:
 angle_s = raw_input("Enter Angle (0 to 180):")

16.9 Controlling a Servo Using PyFirmata | 455

 angle = int(angle_s)
 servo_pin.write(angle)

With the value entered as 0, the servo should be at one end of its travel. Changing this
to 180 sends it to the other end, and 90 puts it somewhere in the middle:

$ sudo python ardu_servo.py
Enter Angle (0 to 180):0
Enter Angle (0 to 180):180
Enter Angle (0 to 180):90

Discussion
The sketch for this is actually very straightforward. You define the output as a servo
output by using the command:

led_pin = board.get_pin('d:11:s')

The s is for servo. This can be used on any of the Arduino digital pins.

If you’ve built Recipe 11.1, you will notice that, by comparison, there is no jitter of the
servo when used with an Arduino in this way.

See Also
The straight Raspberry Pi–only solution to using a servo motor is described in Rec‐
ipes 11.1, 11.2, and 11.3.

16.10 Custom Communication with an Arduino over TTL
Serial
Problem
You want to exchange data with an Arduino by using the serial interfaces of both
devices, without using PyFirmata.

Solution
Use a level converter or pair of resistors to connect the RXD pin of the Raspberry Pi
to the Tx pin of the Arduino, and the TXD pin of the Raspberry Pi to the Rx pin of
the Arduino.

To make this recipe, you will need:

• Arduino Uno (see “Modules” on page 476)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)

456 | Chapter 16: Arduino and Raspberry Pi

• 270Ω and 470Ω resistors (see “Resistors and Capacitors” on page 474) or a four-
way bidirectional level converter (see “Modules” on page 476)

• 10kΩ trimpot (see “Resistors and Capacitors” on page 474)

If you are using the level converter module, then connect the breadboard as shown in
Figure 16-14.

Figure 16-14. Wiring diagram for serial communication with an Arduino

If, on the other hand, you are using the pair of resistors, then connect the breadboard
as shown in Figure 16-15.

The Arduino Rx input is fine with just 3.3V from the Raspberry Pi TXD pin; how‐
ever, the 5V coming from the Arduino Tx pin must be dropped to the 3V expected by
the Raspberry Pi.

You will need to disable serial port logging and install PySerial by following Recipe
9.6.

The following Python script (ardu_pi_serial.py) will prompt you to enter a command
of either l or r. If you enter l, then the built-in Arduino LED will toggle on and off.
If, on the other hand, you enter r, the Arduino will read the analog value from its
analog input A0 and send back a number between 0 and 1023 as the reading.

16.10 Custom Communication with an Arduino over TTL Serial | 457

Figure 16-15. Wiring diagram for serial communication with an Arduino (using resis‐
tors)

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called ardu_pi_serial.py.

import serial

ser = serial.Serial('/dev/ttyAMA0', 9600)

while True:
 command = raw_input("Enter command: l - toggle LED, r - read A0 ")
 if command == 'l' :
 ser.write('l')
 elif command == 'r' :
 ser.write('r')
 print(ser.readline())

You also need to upload the following sketch, ArduinoSerial, onto your Arduino Uno.
You can paste it into a new sketch window, and it is available with the rest of this
book’s programs for download.

#include "SoftwareSerial.h"

int ledPin = 13;
int analogPin = A0;

SoftwareSerial ser(8, 9); // RX, TX

boolean ledOn = false;

void setup()

458 | Chapter 16: Arduino and Raspberry Pi

{
 ser.begin(9600);
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 if (ser.available())
 {
 char ch = ser.read();
 if (ch == 'l')
 {
 toggleLED();
 }
 if (ch == 'r')
 {
 sendAnalogReading();
 }
 }
}

void toggleLED()
{
 ledOn = ! ledOn;
 digitalWrite(ledPin, ledOn);
}

void sendAnalogReading()
{
 int reading = analogRead(analogPin);
 ser.println(reading);
}

Run the program and test that the built-in L LED on the Arduino toggles on and off
using the l command. Then try setting the trimpot to different positions and take
analog readings by sending the r command:

$ sudo python ardu_pi_serial.py
Enter command: l - toggle LED, r - read A0 l
Enter command: l - toggle LED, r - read A0 l
Enter command: l - toggle LED, r - read A0 r
0

Enter command: l - toggle LED, r - read A0 r
540

Enter command: l - toggle LED, r - read A0 r
1023

16.10 Custom Communication with an Arduino over TTL Serial | 459

Discussion
The code in the Python program uses the PySerial library to open a connection onto
the serial port. The main program loop then repeatedly asks for commands and pro‐
cesses them, in both cases by writing the single-character command to the serial port.
In the case of the r command, it also reads a line from the serial connection and then
prints it.

Note that, despite appearances, here the result of serial.readline is a string. If you
need to convert this into a number, you can use the function int to convert it. For
example:

line = ser.readline()
value = int(line)

The Arduino sketch is a little more complicated. The example sketch provided can
easily be modified to add more inputs or outputs and respond to more commands.

This sketch does not use the Arduino’s hardware serial port, as this is generally used
by its USB connection. Instead, an Arduino library called SoftwareSerial is used to
allow pins 8 and 9 to be used as Rx and Tx, respectively.

As with all Arduino sketches, there must be a setup function that is called one time
when the Arduino starts up and a loop function is called repeatedly.

The setup function begins serial communication and sets the pin for the built-in
LED (on Arduino pin 13) to be an output.

The loop function first checks to see if any serial messages have arrived by using the
ser.available function call. If there is a message to process, it reads the character,
and the following if clauses call the appropriate helper function to process the com‐
mand.

See Also
For more information about the SoftwareSerial library, see http://arduino.cc/en/Refer
ence/SoftwareSerial.

The alternative to writing your own custom code for communication is to use PyFir‐
mata (Recipe 16.3).

In addition to communicating over serial, you can communicate with the Arduino
using I2C (Recipe 16.11).

460 | Chapter 16: Arduino and Raspberry Pi

16.11 Custom Communication with an Arduino over I2C
Problem
You want to exchange data with an Arduino, using the I2C interfaces of both devices.

Solution
The I2C bus has the concept of master and slave devices. The master device controls
the bus and a number of slave devices can be connected to one master, with each slave
having its own address.

You will install a sketch on the Arduino that makes it an I2C slave device and use the
SMBus Python library to write an I2C program for the Raspberry Pi. The SDA, SCL,
and ground connections of both devices need to be connected to each other, and the
Arduino powered separately or from the 5V supply of the Raspberry Pi.

To make this recipe, you need:

• Arduino Uno (see “Modules” on page 476)
• Male-to-female jumper wires (see “Prototyping Equipment” on page 474)

Connect the breadboard, holding the components to the Arduino as shown in
Figure 16-16.

The Arduino board used here is the latest Arduino Uno R3. If you have an older
board that doesn’t have the two dedicated SCL and SDA pins, then you can connect
the Raspberry Pi SDA and SCL pins to Arduino pins A4 and A5.

16.11 Custom Communication with an Arduino over I2C | 461

Figure 16-16. Wiring diagram for I2C communication with an Arduino

Install the following sketch onto the Arduino. You can find it, named ArduinoI2C, in
the program downloads for this book at http://www.raspberrypicookbook.com.

#include <Wire.h>

int SLAVE_ADDRESS = 0x04;
int ledPin = 13;
int analogPin = A0;

boolean ledOn = false;

void setup()
{
 pinMode(ledPin, OUTPUT);
 Wire.begin(SLAVE_ADDRESS);
 Wire.onReceive(processMessage);
 Wire.onRequest(sendAnalogReading);
}

void loop()
{

462 | Chapter 16: Arduino and Raspberry Pi

}

void processMessage(int n)
{
 char ch = Wire.read();
 if (ch == 'l')
 {
 toggleLED();
 }
}

void toggleLED()
{
 ledOn = ! ledOn;
 digitalWrite(ledPin, ledOn);
}

void sendAnalogReading()
{
 int reading = analogRead(analogPin);
 Wire.write(reading >> 2);
}

You need to follow Recipe 9.3 to set up Raspberry Pi for I2C communication.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called ardu_pi_i2c.py.

import smbus
import time

for RPI revision 1, use "bus = smbus.SMBus(0)"
bus = smbus.SMBus(1)

This must match what's in the Arduino Sketch
SLAVE_ADDRESS = 0x04

def request_reading():
 reading = int(bus.read_byte(SLAVE_ADDRESS))
 print(reading)

while True:
 command = raw_input("Enter command: l - toggle LED, r - read A0 ")
 if command == 'l' :
 bus.write_byte(SLAVE_ADDRESS, ord('l'))
 elif command == 'r' :
 request_reading()

The test program is very similar to the one used to demonstrate serial communica‐
tion in Recipe 16.10. It’s designed to show communication in both directions. Enter‐

16.11 Custom Communication with an Arduino over I2C | 463

ing the l command toggles the Arduino’s built-in LED on and off, and using the r
command reports a reading from the Arduino’s A0 analog input. You can use a male-
to-male jumper wire to connect A0 to 3.3V, 5V, or GND on the Arduino to get differ‐
ent readings:

$ sudo python ardu_pi_i2c.py
Enter command: l - toggle LED, r - read A0 l
Enter command: l - toggle LED, r - read A0 l
Enter command: l - toggle LED, r - read A0 r
184
Enter command: l - toggle LED, r - read A0

Discussion
The Arduino acts as the I2C slave in this arrangement and must therefore be given an
address so that the master running on the Raspberry Pi can identify it if there is more
than one slave device connected. In this case, the address is set to 0x04 and held in
the SLAVE_ADDRESS variable.

The setup function in the Arduino then sets up two callback functions that will be
used. The function processMessage will be invoked whenever the onReceive event
occurs. This will happen whenever a command is sent from the Raspberry Pi. The
other callback function, sendAnalogReading, is associated with the onRequest event.
This occurs when the Raspberry Pi requests data, and will read the analog value,
divide it by four to make it fit into a single byte, and then send it back to the Rasp‐
berry Pi.

The Python counterpart to this sketch first creates a new instance of SMBus called bus.
This takes a single argument of 1. This is the I2C port on the Raspberry Pi to be used.
This will be 1 unless you are using the very first version of the Raspberry Pi (revision
1). These boards have a black audio connector rather than the light blue connector of
the revision 2 boards. If you have one of these older boards, use 0 as the argument
here. The I2C port available at the GPIO connector was swapped between these two
revisions.

The program prompts the user for a command (l or r). If the command is l, it writes
the character l to the Arduino, which in turn causes the onReceive handler (process
Message) to be run. This in turn will call toggleLED.

If, on the other hand, the user enters the r command, then the request_reading
function will be called. This will call read_byte in the SMBus library, which will cause
the onRequest event in the Arduino sketch to be invoked.

464 | Chapter 16: Arduino and Raspberry Pi

You may be wondering why it is OK to connect the 5V Arduino directly to the I2C
connections of the Raspberry Pi, without the level converter module that you had to
use for serial communications (see Recipe 16.5). The reason is that the I2C bus stan‐
dard operates at whatever voltage the pull-up resistors connected to SDA and SCL
use. In this case, the Arduino Uno has no pull-up resistors connected to the I2C lines.
These are provided by the Raspberry Pi, which pulls them up to 3.3V.

Although the Arduino has no pull-up resistors on the I2C lines,
this is not true of all I2C devices. If the I2C device operates at 5V,
make sure that it has no pull-up resistors (but if it does, you can
usually remove them relatively easily).

See Also
For the serial equivalent to this setup, see Recipe 16.10.

16.12 Using Small Arduinos with a Raspberry Pi
Problem
You want to use an Arduino board with a Raspberry Pi, but would like something
more compact.

Solution
Use one of the small breadboard-friendly Arduino boards.

Figure 16-17 shows an Arduino Pro Mini board. Boards like this have the great
advantage that they can be plugged directly into the breadboard along with other
components needed for the project. The Pro Mini board is also available in a 3.3V
version, which avoids any need for level conversion when you’re using it with a Rasp‐
berry Pi.

16.12 Using Small Arduinos with a Raspberry Pi | 465

Figure 16-17. Arduino Pro Mini and programmer interface

Discussion
Some of these boards, such as the Pro Mini shown in Figure 16-17, require a USB
programming interface. You can program them from the Raspberry Pi, or another
computer if that proves problematic.

In addition to official Arduino boards, you can also find many low-cost clones that
can make a great companion to the Raspberry Pi.

See Also
Other boards to consider are:

• Teensy
• Arduino Micro
• Arduino Nano

16.13 Getting Started with an aLaMode Board and a
Raspberry Pi
Problem
You want to use an aLaMode board to interface external electronics with the Rasp‐
berry Pi.

466 | Chapter 16: Arduino and Raspberry Pi

Solution
The aLaMode board (see Table A-3) shown in Figure 16-18 is a wonderful board that
is essentially an Arduino Uno with a Raspberry Pi GPIO socket in one corner. The
aLaMode fits neatly onto the Raspberry Pi and allows you to use Arduino shields
without the need for lots of extra wires. Although designed for the original Raspberry
Pi, this board can also be used with the Raspberry Pi 2.

Note that the board in Figure 16-18 is shown without the header sockets needed to
attach Arduino shields.

Figure 16-18. aLaMode interface board

The installation instructions in Recipe 16.1 will also set up aLaMode in your Arduino
environment. From the Tools menu of the Arduino IDE, choose Board and then ALa‐
Mode (Figure 16-19).

You also need to set the serial port to /devttyS0 before programming the aLaMode,
which takes place through the serial connection.

16.13 Getting Started with an aLaMode Board and a Raspberry Pi | 467

Figure 16-19. aLaMode board type on the Arduino IDE

Discussion
All the Firmata recipes in this chapter will work with the aLaMode, along with the
custom serial communication example of Recipe 16.10. The only modification neces‐
sary is in the Python programs communicating with the aLaMode, as they must use
the serial port rather than the USB port.

The aLaMode is hardwired to the Arduino’s Tx and Rx pins with built-in level
conversion.

468 | Chapter 16: Arduino and Raspberry Pi

When using Firmata, you need to change the port from /dev/ttyACM0 to /dev/
ttyAMA0:

board = pyfirmata.Arduino('/dev/ttyAMA0')

Similarly, if you are writing your own custom code, you will need to change the line
that opens the serial connection so that it looks like this:

ser = serial.Serial('/dev/ttyAMA0', 9600)

To try the aLaMode, just load the Standard Firmata sketch onto the aLaMode and
then run the Python program ardu_flash_ser.py (Recipe 16.5).

Some of the interesting features of the aLaMode board are:

• It can be powered from the 5V line of the Raspberry Pi GPIO connector or a sep‐
arate 5V power adapter connected to its micro-USB socket.

• The RTC is connected directly to the Raspberry Pi rather than the Arduino side
of the board.

• Arduino shields can be attached, with a high degree of compatibility (Recipe
16.14).

• It can be an I2C slave. In addition to being linked by serial, the aLaMode’s I2C
connections are also connected to those of the Raspberry Pi (Recipe 16.11).

• It has a micro SD card reader.
• It has headers for direct connection to servo motors (Recipe 16.9).

The aLaMode does suffer from one minor design flaw—with the
Arduino shield headers soldered in place, the analog inputs A0 to
A5 can easily touch the bare metal of the RJ45 Ethernet socket of
the Raspberry Pi. To avoid this, place a couple of layers of electrical
insulating tape over the top surface of the Ethernet socket on the
Raspberry Pi before attaching the aLaMode (Figure 16-20).

16.13 Getting Started with an aLaMode Board and a Raspberry Pi | 469

Figure 16-20. Insulating the RJ45 connector on a Raspberry Pi

See Also
The official aLaMode instructions can be found at http://bit.ly/1d2YMxh.

16.14 Using an Arduino Shield with an aLaMode Board
and a Raspberry Pi
Problem
You want to use an Arduino shield with a Raspberry Pi.

470 | Chapter 16: Arduino and Raspberry Pi

Solution
Use an aLaMode interface board. You may find that the board requires the Arduino-
style header sockets for shields to be soldered into place.

As an example, you’ll connect an Arduino LCD shield to the aLaMode
(Figure 16-21).

To make this recipe, you need:

• aLaMode Board (see “Modules” on page 476)
• Freetronic (or other) Arduino LCD shield (see “Modules” on page 476)

Figure 16-21. Using an LCD Arduino shield with an aLaMode

As with all the program examples in this book, you can also download this sketch
from the Code section of http://www.raspberrypicookbook.com, where it is called Ala‐
ModeShield.

#include <LiquidCrystal.h>

// pins for Freetronics LCD Shield

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

void setup()

16.14 Using an Arduino Shield with an aLaMode Board and a Raspberry Pi | 471

{
 lcd.begin(16, 2);
 lcd.print("Counting!");
}

void loop()
{
 lcd.setCursor(0, 1);
 lcd.print(millis() / s1000);
}

Simply upload the sketch onto the aLaMode and you should see the message “Count‐
ing” appear on the top row of the display, while the bottom row should show a num‐
ber that counts the seconds.

Discussion
This example used the Freetronics LCD shield. There are a number of other LCD dis‐
play shields, and some have different pin allocations. If you use a different module,
you’ll need to change the line:

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

The parameters are the Arduino pins to be used for the following LCD connections:
rs, enable, d4, d5, d6, and d7, in that order.

See Also
The reference material for the Arduino LiquidCrystal library can be found at http://
arduino.cc/en/Reference/LiquidCrystal.

472 | Chapter 16: Arduino and Raspberry Pi

APPENDIX A

Parts and Suppliers

Parts
The following tables will help you to find the parts used in this book. Where possible,
I have listed product codes for a few suppliers.

There are now many electronic component suppliers that cater to the maker and elec‐
tronics hobbyist. Some of the most popular are listed in Table A-1.

Table A-1. Parts suppliers
Supplier Website Notes
Adafruit http://www.adafruit.com Good for modules

Digikey http://www.digikey.com/ Wide range of components

MakerShed http://www.makershed.com/ Good for modules, kits, and tools

MCM Electronics http://www.mcmelectronics.com/ Wide range of components

Mouser http://www.mouser.com Wide range of components

SeeedStudio http://www.seeedstudio.com/ Interesting low-cost modules

SparkFun http://www.sparkfun.com Good for modules

MonkMakes http://www.monkmakes.com Electronic Kits for Raspberry Pi, etc.
Pimoroni https://shop.pimoroni.com UK-based manufacturer of interesting HATs and retailer

Polulu https://www.pololu.com/ Great for motor controllers and robots

CPC http://cpc.farnell.com/ UK-based; wide range of components

Ciseco http://shop.ciseco.co.uk/ Suppliers of PiLite, Humble Pi, etc.

Farnell http://www.farnell.com/ International; wide range of components

Maplin http://www.maplin.co.uk/ UK-based; bricks and mortar component and Pi store

Proto-pic http://proto-pic.co.uk/ UK-based; stock SparkFun and Adafruit modules

473

The other great source of components is eBay.

Searching for components can be time-consuming and difficult. The Octopart com‐
ponent search engine can be very helpful in tracking down parts. MonkMakes, Ada‐
fruit, and Sparkfun all have packs of components to get you started.

Prototyping Equipment
Many of the hardware projects in this book use jumper wires of various sorts. Male-
to-female leads (to connect the Raspberry Pi GPIO connector to a breadboard) and
male-to-male (to make connections on the breadboard) are particularly useful.
Female-to-female are occasionally useful for connecting modules directly to GPIO
pins. You rarely need leads longer than 3 inches (75mm). Table A-2 lists some jumper
wire and breadboard specifications, along with their suppliers.

A handy way to get started with a breadboard, jumper wires, and some basic compo‐
nents is to buy a starter kit like the Electronics Starter Kit for Raspberry Pi by Monk‐
Makes.com.

Table A-2. Prototyping equipment
Description Suppliers
M-M jumper wires SparkFun: PRT-08431; Adafruit: 759

M-F jumper wires SparkFun: PRT-09140; Adafruit: 825

F-F jumper wires SparkFun: PRT-08430; Adafruit: 794

Half-sized breadboard SparkFun: PRT-09567; Adafruit: 64

Pi Cobbler Adafruit: 1105

Raspberry Leaf (26 pin) Adafruit: 1772
Raspberry Leaf (40 pin) Adafruit: 2196
Electronics Starter Kit for Raspberry Pi Amazon; monkmakes.com
Adafruit PermaProto for Pi (half breadboard) Adafruit: 1148
Adafruit PermaProto for Pi (full breadboard) Adafruit: 1135
Adafruit PermaProto HAT Adafruit: 2314
DC barrel jack-to-screw terminal adapter (female) Adafruit: 368

Resistors and Capacitors
Table A-3 shows resistors and capacitors used in this cookbook and some suppliers.

474 | Appendix A: Parts and Suppliers

Table A-3. Resistors and capacitors
Part Suppliers
270Ω 0.25W resistor Mouser: 293-270-RC

470Ω 0.25W resistor Mouser: 293-470-RC

1kΩ 0.25W resistor Mouser: 293-1k-RC

3.3kΩ 0.25W resistor Mouser: 293-3.3k-RC

4.7kΩ 0.25W resistor Mouser: 293-4.7k-RC

10 kΩ trimpot Adafruit: 356; SparkFun: COM-09806; Mouser: 652-3362F-1-103LF

Photoresistor Adafruit: 161; SparkFun: SEN-09088

330nF capacitor Mouser: 80-C330C334K5R

Thermistor T0 of 1k Beta 3800 NTC Mouser: 871-B57164K102J (Note: Beta is 3730)

Transistors and Diodes
Table A-4 lists transistors and diodes used in this cookbook and some suppliers.

Table A-4. Transistors and diodes
Part Suppliers
FQP30N06L N-channel logic level MOSFET transistor Mouser: 512-FQP30N06L; Sparkfun: COM-10213

2N3904 NPN bipolar transistor SparkFun: COM-00521; Adafruit: 756

1N4001 diode Mouser: 512-1N4001; SparkFun: COM-08589; Adafruit: 755

TIP120 Darlington transistor Adafruit: 976; CPC: SC10999
2N7000 MOSFET transistor Mouser: 512-2N7000; CPC: SC06951

Integrated Circuits
Table A-5 lists integrated circuits used throughout this cookbook and some suppliers.

Table A-5. Integrated circuits
Part Suppliers
7805 voltage regulator SparkFun: COM-00107; Adafruit: 2164; Mouser: 511-L7805CV, CPC: SC10586

L293D motor driver SparkFun: COM-00315; Adafruit: 807; Mouser: 511-L293D; CPC: SC10241

ULN2803 Darlington driver IC SparkFun: COM-00312; Adafruit: 970; Mouser: 511-ULN2803A; CPC: SC08607

DS18B20 temperature sensor SparkFun: SEN-00245; Adafruit: 374; Mouser: 700-DS18B20; CPC: SC10426

MCP3008 eight-channel ADC IC Adafruit: 856; Mouser: 579-MCP3008-I/P; CPC: SC12789

TMP36 temperature sensor SparkFun: SEN-10988; Adafruit: 165; Mouser: 584-TMP36GT9Z; CPC: SC10437

Parts and Suppliers | 475

Opto-Electronics
Table A-6 lists opto-electronic cooptmponents used throughout this cookbook and
some suppliers.

Table A-6. Opto-electronics
Part Suppliers
5mm red LED SparkFun: COM-09590; Adafruit: 299

RGB common cathode LED SparkFun: COM-11120; eBay

TSOP38238 IR sensor SparkFun: SEN-10266; Adafruit: 157

Modules
Table A-7 lists modules used in this cookbook and some suppliers.

Table A-7. Modules
Part Suppliers
Raspberry Pi camera module Adafruit: 1367; MCM: 28-17733; CPC: SC13023

Arduino Uno SparkFun: DEV-11021; Adafruit: 50; CPC: A000066

Level converter, four-way SparkFun: BOB-11978; Adafruit: 757

Level converter eight-way Adafruit: 395

LiPo boost converter/charger SparkFun: PRT-11231

PowerSwitch tail Adafruit: 268

16-channel servo controller Adafruit: 815

Motor driver 1A dual SparkFun: ROB-09457

RasPiRobot board V3 Adafruit: 1940; Amazon

MonkMakes RasPiRobot Rover Kit Amazon

Pi Plate Adafruit: 801

PIR motion detector Adafruit: 189

Venus GPS module SparkFun: GPS-11058

Methane sensor SparkFun: SEN-09404

Gas sensor breakout board SparkFun: BOB-08891

ADXL335 triple-axis accelerometer Adafruit: 163

4x7-segment LED with I2C backpack Adafruit: 878

Bicolor LED square-pixel matrix with I2C backpack Adafruit: 902

aLaMode interface board Makershed: MKWY1; Seeedstudio: ARD10251P

Freetronics Arduino LCD shield www.freetronics.com

RTC module Adafruit: 264

16x2 HD44780 compatible LCD module SparkFun: LCD-00255; Adafruit: 181

476 | Appendix A: Parts and Suppliers

Part Suppliers
Sense HAT Adafruit: 2738
Adafruit Capacitative Touch HAT Adafruit: 2340
Stepper Motor HAT Adafruit: 2348
16 Channel PWM HAT Adafruit: 2327
Pimoroni Explorer HAT Pro pimoroni.com; Adafruit: 2427
Squid Button monkmakes.com; Amazon
Raspberry Squid RGB LED monkmakes.com; Amazon
I2C OLED display 128x64 pixels eBay

Miscellaneous
Miscellaneous tools and components used in this cookbook and some suppliers are
listed in Table A-8.

Table A-8. Miscellaneous
Part Suppliers
1200mAh LiPo battery Adafruit: 258

5V relay SparkFun: COM-00100

5V panel meter SparkFun: TOL-10285

Standard servomotor SparkFun: ROB-09065; Adafruit: 1449

9g mini servomotor Adafruit: 169

5V 1A power supply Adafruit: 276

Low power 6V DC motor Adafruit: 711

0.1 inch header pins SparkFun: PRT-00116; Adafruit: 392

5V 5-pin unipolar stepper motor Adafruit: 858

12V, 4-pin bipolar stepper motor Adafruit: 324

Magician chassis with gearmotors SparkFun: ROB-10825

6×AA battery holder Adafruit: 248

Tactile push switch SparkFun: COM-00097; Adafruit: 504

Miniature slide switch SparkFun: COM-09609; Adafruit: 805

Rotary encoder Adafruit: 377

4×3 keypad SparkFun: COM-08653

Piezo buzzer SparkFun: COM-07950; Adafruit: 160

Reed switch Adafruit: 375

Parts and Suppliers | 477

APPENDIX B

Raspberry Pi Pinouts

Raspberry Pi 3/2 model B, B+, A+, Zero
Figure B-1 shows the pinout for the current 40-pin GPIO Raspberry Pi.

Figure B-1. 40-pin Raspberry Pi GPIO pinout

479

Raspberry Pi model B rev. 2, A
If you have a Raspberry Pi, it is most likely to be a model B rev. 2 board, as shown in
Figure B-2.

Figure B-2. Raspberry Pi model B rev 2 and model A GPIO pinout

Raspberry Pi model B rev. 1
The very first released version of the Raspberry Pi model B (rev. 1) has some minor
pinout differences to the rev. 2 that followed. This is the only version of the Rasp‐
berry Pi that is not compatible with later pinouts. The incompatible pins that changed
are highlighted in bold in Figure B-3.

Figure B-3. Raspberry Pi model B rev 1 GPIO pinout

480 | Appendix B: Raspberry Pi Pinouts

Index

Symbols
!= (not equal to) operator, 134
#! (shebang character), 122
& command, 90
+ (concatenate) operator, 126
< (less than) operator, 134
<> (not equal to) operator, 134
= (set a value) operator, 134
== (equal to) operator, 134
> (greater than) operator, 134
> command, 67, 88
>>> prompt, 121
[:] notation, 130, 148
[] notation, 141, 151
{} notation, 150, 155
| (pipe command), 89

A
Abiword word processor, 97
AC devices, controlling, 252
accelerometers, 368
acknowledgments, xiv
Adafruit

Adafruit library, 277, 398
Capacitative Touch HAT, 379
jumbo-sized LED display, 388
parts and suppliers, 473
Perma-Proto boards, 231
piezo buzzers, 245
Servo Motor HAT, 276
Stepper Motor HAT, 293

addition, 125
addressable RGB LED strips, 403
add_event_detect function, 265

aLaMode boards, 466
aliases, creating, 91
analog accelerometers, 368
analog meters, 263
analog voltage sensors, 353
analog-to-digital converters (ADCs)

MCP3008 ADC chip, 353, 368
resistive sensors and, 358
SPI setup for, 204
temperature measurement and, 359

and operator, 135
append function, 143
apt-get command, 74, 97
Arduino boards

aLaMode boards, 466
Arduino shields, 470
benefits of, 435
communication over I2C, 461
communication over TTL serial, 445, 456
communication using serial monitor, 439
compact boards, 465
controlling from Raspberry Pi, 441
controlling servo motors, 454
programming from Raspberry Pi, 437
reading analog inputs, 450
reading analog outputs, 452
reading digital inputs, 448
vs. Raspberry Pi, 435
writing digital outputs to, 443

arithmetic operators, 125
as keyword, 167
assignment operator, 125
Atari 2600, 104
atmospheric pressure measurement, 363

481

automatic boot option, 19

B
background programs, 90
battery power supply, 216
bit banging, 204
Bluetooth wireless accessories, 11, 25
boot behavior, changing, 19
bottle library, 409
bounce (switches), 267, 313
breadboards

compact Arduino boards and, 465
connection of, 206
durability of, xii
solderless, 208

break statement, 137
Broadcom chip, 362

C
camera module

installation of, 22
using for computer vision, 182

capacitative touch sensors, 379
capacitors, charging/discharging, 338
case conversion, 131
cases, selecting, 3, 17
cat command, 66, 89
cd (change directory) command, 59
Charlieplexing, 260
Cheerlights project, 425
chmod command, 71
chown (change owner) command, 72
Chromium web browser, 99
classes

creating specialized versions of, 160
defining, 158
including methods in, 159

clock frequency, increasing, 15
close function, 161
code

applying to list items, 146
repositories for, xi, 78
using code examples, xiii

command line
accessing commands in history, 83
hiding output to the terminal, 90
redirecting output to a file, 88
redirecting output to a program, 89

commands

automated run at regular intervals, 81
automated run on startup, 78
creating aliases to, 91
repeating, 83, 135
running conditionally, 132

comparison operators, 133
compass, 373
complex conditions, specifying, 135
components and tools, list of suppliers, 473
composite video output, 12
comprehensions language feature, 149
computer vision (CV)

benefits of, 179
counting coins with, 183
face detection, 188
installing, 179
motion detection with, 189
optical character recognition, 193
USB camera setup, 180
using Raspberry Pi camera module for, 182

concatenation
of files, 89
of strings, 126

conditions, 133
console cables, connection of, 36
console emulators, 104
copying, files/folders, 62
counting objects, with computer vision, 183
cp (copy) command, 62
CPU (central processing unit), monitoring of,

84, 362, 418, 423
crontab command, 81
CTRL key commands, 64
CUPS (Common Unix Printing System), 51

D
Darlington driver chips, 287
data

exchanging, 456, 461
grouping in classes, 158
logging to USB flash drives, 383
saving complex structures, 163
sending sensor data to ThingSpeak, 427
transferring between devices, 204

date/time, setting, 92
dates, formatting, 156
DC motors

controlling direction of, 281
controlling speed of, 279

482 | Index

debouncing, 313
deleting, files/directories, 68
development tools, 118
devices, listing connected, 87
df command, 93
DHCP (Dynamic Host Configuration Proto‐

col), 28
diameter method, 187
dictionaries

accessing, 151
creating, 150
iterating over, 153
removing items from, 152

digital displays, 382
digital inputs

clock time, remembering, 332
debouncing button presses, 313
external pull-up resistors, 315
GPS module, 325
keyboard presses, 301, 329
keypads, 320
mouse movements, 331
movement detection, 323
reading Arduino digital imputs, 448
rotary encoders, 316
switches, 303-315

digital temperature sensors, 365
diodes, 279, 475
directories

changing, 59
creating, 67
deleting using Terminal, 68
determining current, 59
home directories, 59
listing contents of, 60
moving up in, 59
root directories, 60

displaying
file contents, 66
file permissions, 70
hidden files, 61
messages from Arduino boards, 439
sensor values, 382
value of a variable, 123
web display of sensor readings, 415

Displayotron Pimoroni HAT, 394
displays (see also monitors)

4-digit LED, 387
addressable RGB LED strips, 403

alphanumeric LCD HATs, 394
alphanumeric LCD modules, 396
digital displays, 382
hiding output to, 90
I2C LED matrix, 389
OLED graphical displays, 400
Sense HAT LED matrix, 392

distance measurement, 376
division, 125
DPDT (Double Pole Single Throw) switches,

311
DS1307 chip, 332
DS18B20 digital temperature sensor, 359, 365
DVI monitor connectors, 12
Dweet, 430
dynamic overclocking, 15

E
echo command, 67
editing

files, 63
Python programs, 118

EEPROM chips, 232
electronic component suppliers, list of, 473
Electronics Starter Kit, 343
elements

accessing in a list, 142
adding to a list, 143
applying code to in lists, 146
creating sublists of, 148
determining position in lists, 146
removing from lists, 144
sorting, 147
splitting from a string, 145

else clause, 165
email messages, 170, 418
enumerate command, 146
equal to (==) operator, 134
error messages, 164
escape characters, 126
events, scheduling, 81, 265, 313
exception handling, 164
execute permissions, 72
Explorer HAT Pro, 222
extend function, 143
external electronics, connection of (see GPIO

connectors)

Index | 483

F
face detection, 188
fart detecting projects, 352
File Manager, moving files with, 55
file permissions

changing, 71
displaying, 70
permission denied messages, 69
understanding permissions strings, 70

files
changing ownership of, 72
combining, 89
copying using Terminal, 62
creating from command line, 88
creating one-line files, 66
deleting with Terminal, 68
displaying hidden files, 61
editing from command line, 63
fetching from command line, 77
file modes, 162
listing using wildcard character, 61
locating, 82
moving using graphical interface, 55
navigating filesystem with Terminal, 58
preventing accidental deletion of, 69
reading from, 162
renaming using Terminal, 63
saving data structures to, 163
sharing with Mac OS, 44
uncompressing, 87
viewing contents of, 66
writing to, 161

finally clause, 165
find command (Linux), 82
find function (Python), 129
findCircle function, 183
Firmata sketch, 441
float function, 128
floating input, 305
FM radio transmitter, 111
folders

copying using Terminal, 62
renaming using Terminal, 63

for command, 135, 146, 153
for loops, exiting, 137
formatting strings, 155
Freetronics LCD shield, 472
full_name method, 160
functions

applying to lists, 149
calling, 138
defining, 138

G
game console emulators, 104
gas sensors, 349
gearmotors, 283
GIMP (GNU Image Manipulation Program),

113
Git code management system, 78
Gnumeric spreadsheet software, 97
GPIO (general-purpose input/output) connec‐

tors
breadboard connection, 206
controlling hardware with (see hardware

control)
controlling using Web interfaces, 409
digital inputs for, 303-335
Explorer HAT Pro, 222
HAT (Hardware At Top), 231
I2C device setup, 200
I2C tools, 202
interface for turning on/off, 253
Pi Compute Module, 234
Pi Plate prototyping boards, 226
Pi Zero, 236
pinouts by model, 195, 479
power supply, 216
Raspberry Squid button, 212
Raspberry Squid LED, 210
RaspiRobot boards, 224
reducing risk of damage, 199, 214, 242
Sense HAT interface board, 220
serial port access using Python, 204
serial port testing, 205
signal conversion, 214
SPI setup, 203
using Python with, 201

GPIO.cleanup method, 242
GPS (global positioning system) module, 325
greater than (>) operator, 134
grep command, 83
gunzip command, 87
gyroscopes, 371

H
H-Bridge chips/modules, 281, 291
Haar-like feature detection, 188

484 | Index

hardware basics
breadboards, 206-210
converting 5V signals, 214-216
Explorer HAT Pro, 222
GPIO connectors, 195-199
I2C setup and use, 200-203
Minicom installation, 205
Perma-Proto Pi HAT, 231
Pi Compute Module, 234
Pi Plate Prototyping boards, 226
Pi Zero, 236
power supplies, 216-220
PySerial installation, 204
Raspberry Squid, 210-214
RaspPiRobot boards, 224
Sense HAT setup, 220
SPI (Serial Peripheral Interface) setup, 203

hardware control (see also motors)
analog meters, 263
interrupt service routines, 265
LEDs, 239-245, 256-262
piezo-electric buzzers, 245
switching high-power devices, 247-253
through web interfaces, 409
user interfaces, 253, 379

hashing functions, 151
HAT (Hardware At Top)

Adafruit Servo Motor HAT, 276
alphanumeric LCD HATs, 394
Capacitative Touch HAT, 379
Displayotron Pimoroni HAT, 394
Explorer HAT Pro, 222
for stepper motors, 293
Perma-Proto Pi HAT, 231
Sense HAT, 220, 363
Unicorn HAT, 408

HC-SR04 rangefinders, 301
HD44780-compatible LCD modules, 396
HDMI monitor connectors, 12
headless configurations, 36
heatsinks, 4
history command, 83
HTML (HyperText Markup Language), 413
HTTP requests, 168
humidity measurement, 363

I
I2C devices

data exchange with Arduino, 461

disabling, 294
LED display, 387
LED matrix display, 389
setup of I2C module, 200
using I2C tools, 202

i2cDetect diagnostic tool, 203
Iceweasel web browser, 99
IDLE Python development tool, 118
if command, 132, 135
IFTTT (If This Then That) Maker channel, 418,

430
images (see also computer vision; displays)

capturing screen shots, 73
capturing still, 23
capturing video, 24
editing software, 113
webcams, 101

import command, 166
IndentationError: unexpected indent, 120
Inertial Management Unit (IMU), 371
inheritance, 160
init.d folder, 79
initializer method, 161
input, prompting for, 124

(see also digital inputs)
insert function, 143
instructions, repeating, 135
insufficient privileges, 69
int function, 128
interface boards, 220-226, 435, 441
Internet

wired connection to, 27
wireless connection to, 34

Internet of Things (IoT)
Cheerlights project, 425
controlling GPIO outputs, 409
defined, 409
responding to tweets, 430
sending email with IFFTTT, 418
sending sensor data to ThingSpeak, 427
sending tweets using ThingSpeak, 423
web display of sensor readings, 415

Internet radio, 114
Interrupt Service Routines (ISRs), 265
Invalid argument messages, 182
IP address

discovery of, 29
setting a static, 31

Iterators, 449

Index | 485

K
keyboards

connection of, 10
selecting, 11

keypads, 320
keypresses, intercepting, 301, 329
keys

associating with values, 150
iterating over, 153
key errors, 151

kill/killall commands, 85
Kodi media center, 95

L
L293D chip, 281, 291
LCD shields, 471
LCDs

alphanumeric LCD HATs, 394
alphanumeric LCD modules, 396

LEDs
4-digit LED displays, 387
addressable RGB LED strips, 403
Cheerlights project participation, 425
connection of, 239
controlling brightness of, 243
controlling color of, 256
controlling high-power, 247
leaving GPIO pins in safe state, 242
LED matrix displays, 389
OLED (Organic LED) displays, 400
Raspberry Squid LED, 210
Sense Hat LED matrix display, 392
sliding power control, 255
using multiple, 260

led_state variable, 308
len function, 129, 143
less than (<) operator, 134
level converter modules, 215, 445
libraries

bottle library, 409
GPIO connectors, 201
HTTP requests, 168
importing, 166
mcpi library, 176
PyFirmata library, 441
Pygame library, 329
PySerial library, 204
random library, 167
RPi.GPIO library, 243

RRB3 library, 301
SMTP, 170
Squid library, 210
termios library, 301
thread library, 173
time library, 175
web servers, 172

light intensity, measuring, 342
lightweight processes, 174
Linux OS

date command, 92
df command, 93
File Manager, 55
find command, 82
listing connected devices, 87
LX Terminal, 57
running commands from Python, 170
top command, 85

LiPo (lithium polymer) batteries, 219
lists

accessing elements of, 142
adding elements to, 143
applying functions to, 149
creating, 141
creating from strings, 145
creating sublists, 148
determining length of, 143
enumeration of, 146
iterating over, 146
removing elements from, 144
saving complex data structures, 163
sorting, 147

local echo, 205
logical operators, 135
logout button, 20
lookup tables, 150
loops, exiting, 137
low-power mode, 22
lower function, 131
lowercase, 131
ls command (list), 60, 70
lsusb command, 87
LX Terminal (see Terminal)

M
Mac OS

file sharing with, 44
NAS connection with, 49
screen sharing with, 46

486 | Index

Magician Chassis, 297
magnetic north, finding, 373
magnetometers, 371
magnets, detecting, 374-376
Maker Channels, 418
MCP3008 ADC chips, 353, 368
mcpi library, 176
media center, setup for, 95, 114
methane gas sensors, 349
methods, defining, 159
mice

connection of, 10
selecting, 11

microcontroller boards, 435
(see also Arduino boards)

Minecraft Pi edition, 105, 176
Minecraft servers, 107
minicom, installing, 205
mkdir command, 67
modules

alphanumeric LCD modules, 396
camera module configuration, 23
camera module installation, 22
camera module used for computer vision,

182
GPS module, 325
H-Bridge, 281, 291
HD44780-compatible LCD modules, 396
I2C setup, 200
level converter modules, 445
list of suppliers, 476
Pi Compute, 234
PIR (Passive InfraRed) motion detector, 323
RTC (Real Time Clock), 332
using Python, 166

monitors (see also displays)
adjusting picture size on, 13
adjusting resolution on, 12
composite video/TV, 12
connecting, 10
connecting DVI or VGA, 12
screen sharing with Mac OS, 46
selecting, 13
serial monitors, 439
using analog meter as, 263

more command, 66
MOSFET (Metal Oxide Semiconductor Field

Effect Transistor), 247
motion software, 101

motors
continuous, 272
controlling with RaspiRobot boards, 224,

295
DC motors, 279-287
for robot rover, 297
servo motors, 269-279
sliding power control for, 255
stepper motors, 287-297

mouse movements, interpreting, 331
movement detection, 189, 323
multiple inheritance, 161
multiplication, 125
multithreading, 173
mv (move) command, 63

N
naming/renaming

files/folder, 63
networks, 33
variables, 123

nano editor, 64
natural gas detectors, 352
Neopixels, 403
netmask settings, 32
Network Attached Storage (NAS), 48
network connection/control

console cable connection, 36
file sharing with Mac OS, 44
IP address discovery, 29
network attached storage, 48
printing through, 51
RDP remote control, 43
screen sharing with Mac OS, 46
setting network name, 33
setting static IP address, 31
SSH remote control, 39
VNC remote control, 41
wired connection, 27
wireless connection, 34

network name, setting, 33
new_switch_position variable, 311
NOOBS (New Out of the Box Software)

download and installation of, 7
not equal to (!=) operator, 134
not equal to (<>) operator, 134
not operator, 135
numbers

converting strings to, 128

Index | 487

converting to strings, 127
formatting, 155
generating random numbers, 167

numeric keypads, 320

O
object class, 160
objects

counting with computer vision, 183
detecting motion with computer vision, 189

office applications, installing, 97
old_input_state variable, 308
OLED (Organic LED) displays, 400
one-line files, 66
Open Arena, 110
open function, 161
OpenCV computer vision, 180
OpenELEC , 95
operating system

selection of, 7
working within, 55-93

(see also files; directories; programs)
optical character recognition, 193
opto-isolator component, 252, 476
or operator, 135
orientation information, 371
output, displaying, 123

(see also displays; monitors)
overclocking, 15
overscan, changing settings for, 14

P
parameters, defining, 138
parts and suppliers, 473
passwords, changing, 18
performance

maximizing, 15
monitoring processor activity, 84

Perma-Proto Pi HAT, 231
photo-TRIAC switch, 252
photoresistors, 342, 358
photos, 23
Pi 2 B, 1
Pi Cobbler, 208
Pi Compute module, 234
Pi Plate prototyping boards, 226
Pi Store, 100
Pi Zero, 1, 236
Pi-View converters, 12

PiBow Coupé , 3
picamera module, 183
pickling feature, 163
picture size, adjusting, 13
piezo-electric buzzers, 245
pip package manager, 76
pipe command (|), 89
PIR (Passive InfraRed) motion detector, 323
polling, 266, 430
pop command, 144, 152
port forwarding, 103
potential dividers, 357
power supply

batteries, 216
for robot rover, 298
selection of, 5, 269, 279
sliding control for, 255
USB, 96
WiFi adapters and, 35
with RaspiRobot boards, 296

PowerSwitch Tail II, 252
print command, 124
printing, 51
privileges, superuser, 69
Pro Mini boards, 465
programs

redirecting output to, 89
running as services, 79
running from command line, 169
running in background, 90
running Linux from Python, 170
running multiple simultaneously, 173
running on regular intervals, 81
running on startup, 78

prototyping boards, 226-234, 474
pseudorandom number sequences, 167
pull-up/pull-down resistors, 305, 315
pulse width modulation (PWM), 243, 255, 269,

452
push switches

connection of, 303
three-position, 309
toggling, 306
two-position, 308

Putty terminal software, 38
pwd (print working directory), 59
PyFirmata library, 441
Pygame library, 329
PySerial library, 204

488 | Index

Python
actions, delaying, 175
arithmetic operators in, 125
characters, changing case in, 131
classes

creating specialized, 160
defining, 158

command-line arguments in, 169
commands

entering via console, 121
running conditionally, 132
running Linux, 170

conditions, specifying complex, 135
dates/times, formatting, 156
development tools, 118
dictionaries and, 150-153
exception handling, 164
files

reading from, 162
saving to, 163
writing to, 161

functions, defining, 138
GPIO connectors and, 201
instructions, repeating, 135
Internet programming with, 168-173
LEDs, controlling brightness with, 243
libraries, installing, 76
lists and, 141-153
loops, breaking out of, 137
methods, defining, 159
Minecraft Pi and, 176
modules, using, 166
multitasking in, 173
numbers

converting to strings, 127
formatting, 155
generating random, 167

programs, running from Terminal, 122
serial port access, 204
strings

converting to numbers, 128
creating, 125
determining length of, 129
extracting portions of, 130
finding string positions, 129
joining, 126
replacing characters in, 131

Terminal, running programs from, 122
Tkinter user interface framework, 253, 382

user input, reading, 124
values

comparing, 133
naming, 123
returning multiple, 157

variables, displaying values of, 123
version selection, 117

Q
quadrature encoders, 316

R
radio transmitters, 111
random numbers, generating, 167
range command, 136
rangefinders, 376
Raspberry Pi

connecting the system, 10
controlling Arduino boards from, 441
controlling hardware with, 239-267
controlling motors with, 269-301
digital inputs for, 303-335
displays for, 387-408
hardware basics, 195-237
network connection and control of, 27-53
operating system functions, 55-93
pinouts by model, 195, 479
programming an Arduino from, 437
ready-made software for, 95-115
recommended model, xii, 1
sensors for, 337-385
setting date and time on, 92
setup and management, 1-26
shutting down, 20
vs. Arduino boards, 435

Raspberry Squid, 210-214, 265, 425
Raspbian operating system

installing, 7
Python versions included in, 117
selecting version, 7

raspi-config tool
boot behavior management, 19
configuring camera module, 23
documentation, 15
I2C setup, 200
invoking, 9
overscan settings, 14
password management, 18

RaspiRobot boards, 224, 295

Index | 489

raw_input command, 124
RDP (Remote Desktop Protocol), 43
read function, 163
read-only files, editing, 72
readline method, 163
rebooting, 20
reed switches, 374
relays, switching high-power devices with, 249
remote control

console cable setup of, 36
RDP setup of, 43
SSH setup of, 39
VNC setup of, 41

replace function, 131
resistive sensors, using with ADC, 358

(see also sensors)
resistors

list of suppliers, 474
pull-up/pull-down, 305, 315
reducing voltage with, 355
selecting for LEDs, 240
signal conversion with, 214
soldering to Pi Plate, 227
variable resistors, 337

resolution, adjusting, 12
RGB LED strips, 403
rm (remove) command, 68
robot rover

battery pack for, 298
control program for, 299, 301
Magician Chassis assembly, 297
peripherals for, 301

rotary (quadrature) encoder, 316
RPi.GPIO library, 204, 243
RRB3 library, 301
RTC (Real Time Clock) module, 332

S
Safari Books Online, xiii
Samba, installation/configuration of, 48
screen captures, 73
screen sharing, 46
scripts

running as services, 79
running on regular intervals, 81
running on startup, 78

scrot screen capture software, 73
SD cards

determining free space on, 93

editing /boot/config.txt file on, 12
formatting, 10
selecting, 10
writing to with NOOBS, 7

searching, with find command, 82
Secure Shell (SSH), setup of, 39
security issues

automatic boot option, 20
passwords, 18

Sense HAT
detecting magnets using, 375
environmental measurements using, 363
getting started with, 220
Inertial Management Unit (IMU) of, 371
LED matrix displays, 392
magnetometer in, 373

sensors
accelerometers, 221, 368
analog voltage, 353
atmospheric pressure, 221, 363
capacitative touch, 379
displaying sensor values, 382, 415
distance, 376
gyroscopes, 221
logging data from, 383
magnetic north, finding, 373
magnetometer, 221
magnets, 374-376
methane gas, 349
orientation information, 371
photoresistors, 342, 358
reducing voltage for measurement, 355
relative humidity, 221, 363
sending sensor data to ThingSpeak, 427
temperature, 221, 345, 359, 365
thermistors, 345
using resistive sensors, 337-342
using resistive sensors with ADC, 358

serial communication, installing minicom for,
205

serial console, 39
serial monitor, 439
serial port

accessing from Python, 204
testing, 205

servo motors
controlling, 269, 454
controlling many, 276
controlling precisely, 273

490 | Index

HAT (Hardware At Top) for, 276
position of, 272
power supply, 269, 271, 276, 279

ServoBlaster device driver software , 269-276
set a value (=) operator, 134
setup/management

Bluetooth wireless accessories, 25
camera module installation, 22
cases, 3
changing boot behavior, 19
maximizing performance, 15
monitor connection, 10
monitor picture size adjustment, 13
operating system selection, 7
passwords, 18
power supply, 5
shut down, 20
system connection, 10
writing to SD cards, 7

shebang character (#!), 122
shut down, 20
signal conversion, 214
SimpleCV computer vision, 179

(see also computer vision (CV))
sketches, 439
sleep function, 175
slide switches, 308
SMTP (Simple Mail Transfer Protocol), 170
SODIMM memory, 234
software

FM radio transmitter, 111
from the Pi Store, 100
image editing software, 113
installing with apt-get, 74, 97
Internet radio, 114
media center, 95
Minecraft Pi edition, 105
Minecraft servers, 107
motion software, 101
office software, 97
Open Arena, 110
removing with apt-get, 75
vintage game console emulator, 104
web browsers, 98

sort command, 147
sounds, creating buzzing sound, 245
source code, fetching with git, 78
Sparkfun motor controllers, 281, 283

SPDT (Single Pole Double Throw) switches,
311

special characters, 126
special value .. (two dots), 59
SPI (Serial Peripheral Bus) devices, setup of,

203
split function, 145
spreadsheet applications, installing, 97
Squid Buttons, 212, 265, 304
SR-04 rangefinders, 376
SSD1306 driver chips, 400
Steinhart-Hart equation, 348
Stella console emulator, 104
step response technique, 340
stepper motors

bipolar, 291
HAT (Hardware At Top) for, 293
RaspiRobot board control, 295
unipolar, 287

storage
network attached storage, 48
SD cards, 93
USB flash drives, 383

str function, 127
strings

applying formatting strings, 155
changing case of, 131
converting numbers to, 127
converting to numbers, 128
creating, 125
creating lists from, 145
determining length of, 129
extracting part of, 130
joining, 126
locating position of, 129
replacing characters in, 131

subtraction, 125
sudo (superuser do) command, 69
superfluous output, hiding, 90
superuser privileges, 69
suppliers and parts, 473
switches

connecting push switches, 303
DPDT/SPDT, 311
reed switches, 374
slide, 308
three-position, 309
two-position, 308

sys.stdin.read function, 329

Index | 491

system command, 170
System on a Chip (SoC), 234

T
tar command, 87
Task Manager utility, 84
temperature measurement, 345, 359, 362, 363,

365
Terminal

copying files/folders in, 62
creating directories with, 67
deleting files/directories with, 68
installing software in, 74
navigating filesystem with, 58
renaming files/folders in, 63
running programs from, 122
starting sessions in, 57

terminal software, 38
termios library, 301
tesseract OCR (Optical Character Recognition),

193
text

adjusting for off-screen display of, 13
improving readability of, 12

text editors
nano editor, 64
TextMate, 46
vim editor, 66

thermistors, 345
ThingSpeak service, 423, 427
threading, 173
tightvnc, 42
time.sleep command, 313
times, formatting, 156
Tkinter user interface framework, 253, 382
TMP36 temperature sensor, 359
toggle switches, 311
tools and components, list of suppliers, 473
top command, 85
touch interfaces, 379
transistors

connecting with relays, 249
list of suppliers, 475
MOSFET transistors, 247

try/except construction, 163
try: finally: construction, 242
tuples, 157
tweets

responding to, 430

sending, 423
typographical conventions, xii

U
ULN2803 Darlington chips, 287
ultrasonic rangefinders, 376
Unicorn HAT, 408
unpickling, 164
unzipping files, 87
Uplink RJ45 socket, 28
upper function, 131
uppercase, 131
USB devices

accessing USB drives, 48
listing connected, 87
logging to USB drives, 383
USB camera setup, 180
wireless adaptors, 34

user input, prompting, 124
user interfaces, 253-256, 379

V
values

associating with keys, 150
comparing, 133
naming, 123
returning multiple, 157

variable resistors, 337
variables

creating string variables, 125
displaying values of, 123
multiple variable assignment syntax, 157
naming, 123
reading file contents into, 163
self variable, 159
this variable, 159

VGA monitor connectors, 12
video images, 24
viewing (see displaying)
vim editor, 66
vintage game console emulator, 104
VLC media player, 114
VNC (Virtual Network Connection), 41
volt meters, connection of, 263
voltage dividers, 357
voltage sensors, 353
voltage, reducing for measurement, 355

492 | Index

W
web browsers, installing, 98
web interfaces, creating, 409
web requests, 168
web servers, creating simple, 172
webcams, setup for, 101, 180
wget command, 77
while statement, 136
WiFi configuration, 34
WiFi dongles, 10, 35
wildcard (*) character

deleting files using, 68

listing files using, 61
Windows OS

NAS connection with, 48
terminal software for, 38

word processors, installing, 97
write function, 161
WS2812 RGB LED chips, 403

X
XBMC (X-Box Music Center), 95
XRDP software, 43

Index | 493

About the Author
Dr. Simon Monk (Preston, UK) has a degree in Cybernetics and Computer Science
and a PhD in Software Engineering. Simon spent several years as an academic before
he returned to the industry, cofounding the mobile software company Momote Ltd.
Simon is now a full-time author writing on many aspects of open source hardware,
including Raspberry Pi and Arduino as well as a number of general electronics books.
You can find out more about his books at http://www.simonmonk.org or follow him
on Twitter @simonmonk2.

Colophon
The animal on the cover of Raspberry Pi Cookbook is the Eurasian sparrowhawk
(Accipiter nisus), which also goes by the names northern sparrowhawk or simply
sparrowhawk. This small bird of prey is found throughout the Old World. Adult
males have bluish-gray upper plumage and orange-barred underparts; females and
younger birds are all brown with brown-barred underparts. The female is up to 25%
larger than the male.

The sparrowhawk specializes in preying on woodland birds, but can be found in any
habitat hunting garden birds in towns or cities. Males favor hunting smaller birds—
tits, finches, and sparrows; females tend to catch thrushes and starlings, and are capa‐
ble of killing birds weighing up to 18 ounces (500 grams) or more.

Eurasian sparrowhawks breed in nests that can measure up to 60 cm (2 feet) across,
built with twigs. Afterward, four or five pale blue, brown-spotted eggs are laid. Suc‐
cess of breeding relies on females maintaining a high weight; the male delivers food
to its mate. After 33 days, the chicks hatch, and they fledge after 24 to 28 days.

A juvenile sparrowhawk has a 34% chance of surviving its first year. After that, its
chance of survival more than doubles, with 69% of adults surviving from one year to
the next. The typical lifespan of these birds is four years. Mortality is greater for
young males than for young females. Despite a sharp population decline after WWII,
the sparrowhawk is the most common bird of prey in Europe. The use of organo‐
chlorine insecticides to treat seeds before sowing has been known to incapacitate or
kill sparrowhawks. Those affected lay fragile-shelled eggs that break during incuba‐
tion. After the chemicals were banned, the sparrowhawk population recovered and
remains common, classified as Least Concern by BirdLife International.

The cover image is from Cassell’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface to the Second Edition
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Setup and Management
	1.0 Introduction
	1.1 Selecting a Model of Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	1.2 Enclosing a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	1.3 Selecting a Power Supply
	Problem
	Solution
	Discussion
	See Also

	1.4 Selecting an Operating System Distribution
	Problem
	Solution
	Discussion
	See Also

	1.5 Writing a MicroSD Card with NOOBS
	Problem
	Solution
	Discussion
	See Also

	1.6 Connecting the System
	Problem
	Solution
	Discussion
	See Also

	1.7 Connecting a DVI or VGA Monitor
	Problem
	Solution
	Discussion
	See Also

	1.8 Using a Composite Video Monitor/TV
	Problem
	Solution
	Discussion
	See Also

	1.9 Adjusting the Picture Size on Your Monitor
	Problem
	Solution
	Discussion
	See Also

	1.10 Maximizing Performance
	Problem
	Solution
	Discussion
	See Also

	1.11 Changing Your Password
	Problem
	Solution
	Discussion
	See Also

	1.12 Setting the Pi to Boot Straight into a Windowing System
	Problem
	Solution
	Discussion
	See Also

	1.13 Shutting Down Your Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	1.14 Installing the Raspberry Pi Camera Module
	Problem
	Solution
	Discussion
	See Also

	1.15 Using Bluetooth
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Networking
	2.0 Introduction
	2.1 Connecting to a Wired Network
	Problem
	Solution
	Discussion
	See Also

	2.2 Finding Your IP Address
	Problem
	Solution
	Discussion
	See Also

	2.3 Setting a Static IP Address
	Problem
	Solution
	Discussion
	See Also

	2.4 Setting the Network Name of a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	2.5 Setting Up a Wireless Connection
	Problem
	Solution
	Discussion
	See Also

	2.6 Connecting with a Console Lead
	Problem
	Solution
	Discussion
	See Also

	2.7 Controlling the Pi Remotely with SSH
	Problem
	Solution
	Discussion
	See Also

	2.8 Controlling the Pi Remotely with VNC
	Problem
	Solution
	Discussion
	See Also

	2.9 Controlling the Pi Remotely with RDP
	Problem
	Solution
	Discussion
	See Also

	2.10 File Sharing on a Mac Network
	Problem
	Solution
	Discussion
	See Also

	2.11 Sharing the Pi Screen on a Mac
	Problem
	Solution
	Discussion
	See Also

	2.12 Using a Raspberry Pi for Network Attached Storage
	Problem
	Solution
	Discussion
	See Also

	2.13 Network Printing
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Operating System
	3.0 Introduction
	3.1 Moving Files Around Graphically
	Problem
	Solution
	Discussion
	See Also

	3.2 Starting a Terminal Session
	Problem
	Solution
	Discussion
	See Also

	3.3 Navigating the Filesystem Using a Terminal
	Problem
	Solution
	Discussion
	See Also

	3.4 Copying a File or Folder
	Problem
	Solution
	Discussion
	See Also

	3.5 Renaming a File or Folder
	Problem
	Solution
	Discussion
	See Also

	3.6 Editing a File
	Problem
	Solution
	Discussion
	See Also

	3.7 Viewing the Contents of a File
	Problem
	Solution
	Discussion
	See Also

	3.8 Creating a File Without Using an Editor
	Problem
	Solution
	Discussion
	See Also

	3.9 Creating a Directory
	Problem
	Solution
	Discussion
	See Also

	3.10 Deleting a File or Directory
	Problem
	Solution
	Discussion
	See Also

	3.11 Performing Tasks with Superuser Privileges
	Problem
	Solution
	Discussion
	See Also

	3.12 Understanding File Permissions
	Problem
	Solution
	Discussion
	See Also

	3.13 Changing File Permissions
	Problem
	Solution
	Discussion
	See Also

	3.14 Changing File Ownership
	Problem
	Solution
	Discussion
	See Also

	3.15 Making a Screen Capture
	Problem
	Solution
	Discussion
	See Also

	3.16 Installing Software with apt-get
	Problem
	Solution
	Discussion
	See Also

	3.17 Removing Software Installed with apt-get
	Problem
	Solution
	Discussion
	See Also

	3.18 Installing Python Packages with Pip
	Problem
	Solution
	Discussion
	See Also

	3.19 Fetching Files from the Command Line
	Problem
	Solution
	Discussion
	See Also

	3.20 Fetching Source Code with Git
	Problem
	Solution
	Discussion
	See Also

	3.21 Running a Program or Script Automatically on Startup
	Problem
	Solution
	Discussion
	See Also

	3.22 Running a Program or Script Automatically as a Service
	Problem
	Solution
	Discussion
	See Also

	3.23 Running a Program or Script Automatically at Regular Intervals
	Problem
	Solution
	Discussion
	See Also

	3.24 Finding Things
	Problem
	Solution
	Discussion
	See Also

	3.25 Using the Command-Line History
	Problem
	Solution
	Discussion
	See Also

	3.26 Monitoring Processor Activity
	Problem
	Solution
	Discussion
	See Also

	3.27 Working with File Archives
	Problem
	Solution
	Discussion
	See Also

	3.28 Listing Connected USB Devices
	Problem
	Solution
	Discussion
	See Also

	3.29 Redirecting Output from the Command Line to a File
	Problem
	Solution
	Discussion
	See Also

	3.30 Concatenating Files
	Problem
	Solution
	Discussion
	See Also

	3.31 Using Pipes
	Problem
	Solution
	Discussion
	See Also

	3.32 Hiding Output to the Terminal
	Problem
	Solution
	Discussion
	See Also

	3.33 Running Programs in the Background
	Problem
	Solution
	Discussion
	See Also

	3.34 Creating Command Aliases
	Problem
	Solution
	Discussion
	See Also

	3.35 Setting the Date and Time
	Problem
	Solution
	Discussion
	See Also

	3.36 Finding Out How Much Room You Have on the SD Card
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Software
	4.0 Introduction
	4.1 Making a Media Center
	Problem
	Solution
	Discussion
	See Also

	4.2 Installing Office Software
	Problem
	Solution
	Discussion
	See Also

	4.3 Installing other Browsers
	Problem
	Solution
	Discussion
	See Also

	4.4 Using the Pi Store
	Problem
	Solution
	Discussion
	See Also

	4.5 Making a Webcam Server
	Problem
	Solution
	Discussion
	See Also

	4.6 Running a Vintage Game Console Emulator
	Problem
	Solution
	Discussion
	See Also

	4.7 Running Minecraft Pi Edition
	Problem
	Solution
	Discussion
	See Also

	4.8 Running a Minecraft Server
	Problem
	Solution
	Discussion
	See Also

	4.9 Running Open Arena
	Problem
	Solution
	Discussion
	See Also

	4.10 Raspberry Pi Radio Transmitter
	Problem
	Solution
	Discussion
	See Also

	4.11 Running GIMP
	Problem
	Solution
	Discussion
	See Also

	4.12 Internet Radio
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Python Basics
	5.0 Introduction
	5.1 Deciding Between Python 2 and Python 3
	Problem
	Solution
	Discussion
	See Also

	5.2 Editing Python Programs with IDLE
	Problem
	Solution
	Discussion
	See Also

	5.3 Using the Python Console
	Problem
	Solution
	Discussion
	See Also

	5.4 Running Python Programs from the Terminal
	Problem
	Solution
	Discussion
	See Also

	5.5 Variables
	Problem
	Solution
	Discussion
	See Also

	5.6 Displaying Output
	Problem
	Solution
	Discussion
	See Also

	5.7 Reading User Input
	Problem
	Solution
	Discussion
	See Also

	5.8 Arithmetic
	Problem
	Solution
	Discussion
	See Also

	5.9 Creating Strings
	Problem
	Solution
	Discussion
	See Also

	5.10 Concatenating (Joining) Strings
	Problem
	Solution
	Discussion
	See Also

	5.11 Converting Numbers to Strings
	Problem
	Solution
	Discussion
	See Also

	5.12 Converting Strings to Numbers
	Problem
	Solution
	Discussion
	See Also

	5.13 Finding the Length of a String
	Problem
	Solution
	Discussion
	See Also

	5.14 Finding the Position of One String Inside Another
	Problem
	Solution
	Discussion
	See Also

	5.15 Extracting Part of a String
	Problem
	Solution
	Discussion
	See Also

	5.16 Replacing One String of Characters with Another Inside a String
	Problem
	Solution
	Discussion
	See Also

	5.17 Converting a String to Upper- or Lowercase
	Problem
	Solution
	Discussion
	See Also

	5.18 Running Commands Conditionally
	Problem
	Solution
	Discussion
	See Also

	5.19 Comparing Values
	Problem
	Solution
	Discussion
	See Also

	5.20 Logical Operators
	Problem
	Solution
	Discussion
	See Also

	5.21 Repeating Instructions an Exact Number of Times
	Problem
	Solution
	Discussion
	See Also

	5.22 Repeating Instructions Until Some Condition Changes
	Problem
	Solution
	Discussion
	See Also

	5.23 Breaking Out of a Loop
	Problem
	Solution
	Discussion
	See Also

	5.24 Defining a Function in Python
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Python Lists and Dictionaries
	6.0 Introduction
	6.1 Creating a List
	Problem
	Solution
	Discussion
	See Also

	6.2 Accessing Elements of a List
	Problem
	Solution
	Discussion
	See Also

	6.3 Finding the Length of a List
	Problem
	Solution
	Discussion
	See Also

	6.4 Adding Elements to a List
	Problem
	Solution
	Discussion
	See Also

	6.5 Removing Elements from a List
	Problem
	Solution
	Discussion
	See Also

	6.6 Creating a List by Parsing a String
	Problem
	Solution
	Discussion
	See Also

	6.7 Iterating Over a List
	Problem
	Solution
	Discussion
	See Also

	6.8 Enumerating a List
	Problem
	Solution
	Discussion
	See Also

	6.9 Sorting a List
	Problem
	Solution
	Discussion
	See Also

	6.10 Cutting Up a List
	Problem
	Solution
	Discussion
	See Also

	6.11 Applying a Function to a List
	Problem
	Solution
	Discussion
	See Also

	6.12 Creating a Dictionary
	Problem
	Solution
	Discussion
	See Also

	6.13 Accessing a Dictionary
	Problem
	Solution
	Discussion
	See Also

	6.14 Removing Things from a Dictionary
	Problem
	Solution
	Discussion
	See Also

	6.15 Iterating Over Dictionaries
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Advanced Python
	7.0 Introduction
	7.1 Formatting Numbers
	Problem
	Solution
	Discussion
	See Also

	7.2 Formatting Dates and Times
	Problem
	Solution
	Discussion
	See Also

	7.3 Returning More Than One Value
	Problem
	Solution
	Discussion
	See Also

	7.4 Defining a Class
	Problem
	Solution
	Discussion
	See Also

	7.5 Defining a Method
	Problem
	Solution
	Discussion
	See Also

	7.6 Inheritance
	Problem
	Solution
	Discussion
	See Also

	7.7 Writing to a File
	Problem
	Solution
	Discussion
	See Also

	7.8 Reading from a File
	Problem
	Solution
	Discussion
	See Also

	7.9 Pickling
	Problem
	Solution
	Discussion
	See Also

	7.10 Handling Exceptions
	Problem
	Solution
	Discussion
	See Also

	7.11 Using Modules
	Problem
	Solution
	Discussion
	See Also

	7.12 Random Numbers
	Problem
	Solution
	Discussion
	See Also

	7.13 Making Web Requests from Python
	Problem
	Solution
	Discussion
	See Also

	7.14 Command-Line Arguments in Python
	Problem
	Solution
	Discussion
	See Also

	7.15 Running Linux Commands from Python
	Problem
	Solution
	Discussion
	See Also

	7.16 Sending Email from Python
	Problem
	Solution
	Discussion
	See Also

	7.17 Writing a Simple Web Server in Python
	Problem
	Solution
	Discussion
	See Also

	7.18 Doing More Than One Thing at a Time
	Problem
	Solution
	Discussion
	See Also

	7.19 Doing Nothing in Python
	Problem
	Solution
	Discussion
	See Also

	7.20 Using Python with Minecraft Pi Edition
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Computer Vision
	8.0 Introduction
	8.1 Installing SimpleCV
	Problem
	Solution
	Discussion
	See Also

	8.2 Setting Up a USB Camera for Computer Vision
	Problem
	Solution
	Discussion
	See Also

	8.3 Using a Raspberry Pi Camera Module for Computer Vision
	Problem
	Solution
	Discussion
	See Also

	8.4 Counting Coins
	Problem
	Solution
	Discussion
	See Also

	8.5 Face Detection
	Problem
	Solution
	Discussion
	See Also

	8.6 Motion Detection
	Problem
	Solution
	Discussion
	See Also

	8.7 Optical Character Recognition
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Hardware Basics
	9.0 Introduction
	9.1 Finding Your Way Around the GPIO Connector
	Problem
	Solution
	Discussion
	See Also

	9.2 Keeping Your Raspberry Pi Safe When Using the GPIO Connector
	Problem
	Solution
	Discussion
	See Also

	9.3 Setting Up I2C
	Problem
	Solution
	Discussion
	See Also

	9.4 Using I2C Tools
	Problem
	Solution
	Discussion
	See Also

	9.5 Setting Up SPI
	Problem
	Solution
	Discussion
	See Also

	9.6 Installing PySerial for Access to the Serial Port from Python
	Problem
	Solution
	Discussion
	See Also

	9.7 Installing Minicom to Test the Serial Port
	Problem
	Solution
	Discussion
	See Also

	9.8 Using a Breadboard with Jumper Leads
	Problem
	Solution
	Discussion
	See Also

	9.9 Using a Breadboard with a Pi Cobbler
	Problem
	Solution
	Discussion
	See Also

	9.10 Using a Raspberry Squid
	Problem
	Solution
	Discussion
	See Also

	9.11 Using a Raspberry Squid Button
	Problem
	Solution
	Discussion
	See Also

	9.12 Converting 5V Signals to 3.3V with Two Resistors
	Problem
	Solution
	Discussion
	See Also

	9.13 Converting 5V Signals to 3.3V with a Level Converter Module
	Problem
	Solution
	Discussion
	See Also

	9.14 Powering a Raspberry Pi with Batteries
	Problem
	Solution
	Discussion
	See Also

	9.15 Powering a Raspberry Pi with a LiPo Battery
	Problem
	Solution
	Discussion
	See Also

	9.16 Getting Started with the Sense HAT
	Problem
	Solution
	Discussion
	See Also

	9.17 Getting Started with the Explorer HAT Pro
	Problem
	Solution
	Discussion
	See Also

	9.18 Getting Started with a RaspiRobot Board
	Problem
	Solution
	Discussion
	See Also

	9.19 Using a Pi Plate Prototyping Board
	Problem
	Solution
	Discussion
	See Also

	9.20 Making a Hardware At Top (HAT)
	Problem
	Solution
	Discussion
	See Also

	9.21 The Pi Compute Module
	Problem
	Solution
	Discussion
	See Also

	9.22 The Pi Zero
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Controlling Hardware
	10.0 Introduction
	10.1 Connecting an LED
	Problem
	Solution
	Discussion
	See Also

	10.2 Leaving the GPIO Pins in a Safe State
	Problem
	Solution
	Discussion
	See Also

	10.3 Controlling the Brightness of an LED
	Problem
	Solution
	Discussion
	See Also

	10.4 Make a Buzzing Sound
	Problem
	Solution
	Discussion
	See Also

	10.5 Switching a High-Power DC Device Using a Transistor
	Problem
	Solution
	Discussion
	See Also

	10.6 Switching a High-Power Device Using a Relay
	Problem
	Solution
	Discussion
	See Also

	10.7 Controlling High-Voltage AC Devices
	Problem
	Solution
	Discussion
	See Also

	10.8 Making a User Interface to Turn Things On and Off
	Problem
	Solution
	Discussion
	See Also

	10.9 Making a User Interface to Control PWM Power for LEDs and Motors
	Problem
	Solution
	Discussion
	See Also

	10.10 Changing the Color of an RGB LED
	Problem
	Solution
	Discussion
	See Also

	10.11 Using Lots of LEDs (Charlieplexing)
	Problem
	Solution
	Discussion
	See Also

	10.12 Using an Analog Meter as a Display
	Problem
	Solution
	Discussion
	See Also

	10.13 Programming with Interrupts
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Motors
	11.0 Introduction
	11.1 Controlling Servo Motors
	Problem
	Solution
	Discussion
	See Also

	11.2 Controlling Servo Motors Precisely
	Problem
	Solution
	Discussion
	See Also

	11.3 Controlling Many Servo Motors
	Problem
	Solution
	Discussion
	See Also

	11.4 Controlling the Speed of a DC Motor
	Problem
	Solution
	Discussion
	See Also

	11.5 Controlling the Direction of a DC Motor
	Problem
	Solution
	Discussion
	See Also

	11.6 Using a Unipolar Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	11.7 Using a Bipolar Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	11.8 Using a Stepper Motor HAT to Drive a Bipolar Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	11.9 Using a RaspiRobot Board to Drive a Bipolar Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	11.10 Building a Simple Robot Rover
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Digital Inputs
	12.0 Introduction
	12.1 Connecting a Push Switch
	Problem
	Solution
	Discussion
	See Also

	12.2 Toggling with a Push Switch
	Problem
	Solution
	Discussion
	See Also

	12.3 Using a Two-Position Toggle or Slide Switch
	Problem
	Solution
	Discussion
	See Also

	12.4 Using a Center-Off Toggle or Slide Switch
	Problem
	Solution
	Discussion
	See Also

	12.5 Debouncing a Button Press
	Problem
	Solution
	Discussion
	See Also

	12.6 Using an External Pull-up Resistor
	Problem
	Solution
	Discussion
	See Also

	12.7 Using a Rotary (Quadrature) Encoder
	Problem
	Solution
	Discussion
	See Also

	12.8 Using a Keypad
	Problem
	Solution
	Discussion
	See Also

	12.9 Detecting Movement
	Problem
	Solution
	Discussion
	See Also

	12.10 Adding GPS to the Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	12.11 Intercepting Keypresses
	Problem
	Solution
	Discussion
	See Also

	12.12 Intercepting Mouse Movements
	Problem
	Solution
	Discussion
	See Also

	12.13 Using a Real-Time Clock Module
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Sensors
	13.0 Introduction
	13.1 Using Resistive Sensors
	Problem
	Solution
	Discussion
	See Also

	13.2 Measuring Light
	Problem
	Solution
	Discussion
	See Also

	13.3 Measuring Temperature with a Thermistor
	Problem
	Solution
	Discussion
	See Also

	13.4 Detecting Methane
	Problem
	Solution
	Discussion
	See Also

	13.5 Measuring a Voltage
	Problem
	Solution
	Discussion
	See Also

	13.6 Reducing Voltages for Measurement
	Problem
	Solution
	Discussion
	See Also

	13.7 Using Resistive Sensors with an ADC
	Problem
	Solution
	Discussion
	See Also

	13.8 Measuring Temperature with an ADC
	Problem
	Solution
	Discussion
	See Also

	13.9 Measuring the Raspberry Pi CPU Temperature
	Problem
	Solution
	Discussion
	See Also

	13.10 Measuring Temperature, Humidity, and Pressure with a Sense HAT
	Problem
	Solution
	Discussion
	See Also

	13.11 Measuring Temperature Using a Digital Sensor
	Problem
	Solution
	Discussion
	See Also

	13.12 Measuring Acceleration with an MCP3008 Module
	Problem
	Solution
	Discussion
	See Also

	13.13 Using the Inertial Management Unit (IMU) of the Sense HAT
	Problem
	Solution
	Discussion
	See Also

	13.14 Finding Magnetic North with the Sense HAT
	Problem
	Solution
	Discussion
	See Also

	13.15 Sensing a Magnet with a Reed Switch
	Problem
	Solution
	Discussion
	See Also

	13.16 Sensing a Magnet with the Sense HAT
	Problem
	Solution
	Discussion
	See Also

	13.17 Measuring Distance
	Problem
	Solution
	Discussion
	See Also

	13.18 Capacitative Touch Sensing
	Problem
	Solution
	Discussion
	See Also

	13.19 Displaying Sensor Values
	Problem
	Solution
	Discussion
	See Also

	13.20 Logging to a USB Flash Drive
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Displays
	14.0 Introduction
	14.1 Using a Four-Digit LED Display
	Problem
	Solution
	Discussion
	See Also

	14.2 Displaying Messages on an I2C LED Matrix
	Problem
	Solution
	Discussion
	See Also

	14.3 Using the Sense HAT LED Matrix Display
	Problem
	Solution
	Discussion
	See Also

	14.4 Displaying Messages on an Alphanumeric LCD HAT
	Problem
	Solution
	Discussion
	See Also

	14.5 Displaying Messages on an Alphanumeric LCD Module
	Problem
	Solution
	Discussion
	See Also

	14.6 Using an OLED Graphical Display
	Problem
	Solution
	Discussion
	See Also

	14.7 Using Addressable RGB LED Strips
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. The Internet of Things
	15.0 Introduction
	15.1 Controlling GPIO Outputs Using a Web Interface
	Problem
	Solution
	Discussion
	See Also

	15.2 Displaying Sensor Readings on a Web Page
	Problem
	Solution
	Discussion
	See Also

	15.3 Sending Email and Other Notifications with IFTTT
	Problem
	Solution
	Discussion
	See Also

	15.4 Sending Tweets Using ThingSpeak
	Problem
	Solution
	Discussion
	See Also

	15.5 CheerLights
	Problem
	Solution
	Discussion
	See Also

	15.6 Sending Sensor Data to ThingSpeak
	Problem
	Solution
	Discussion
	See Also

	15.7 Responding to Tweets Using Dweet and IFTTT
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Arduino and Raspberry Pi
	16.0 Introduction
	16.1 Programming an Arduino from Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	16.2 Communicating with the Arduino by Using the Serial Monitor
	Problem
	Solution
	Discussion
	See Also

	16.3 Setting Up PyFirmata to Control an Arduino from a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	16.4 Writing Digital Outputs on an Arduino from a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	16.5 Using PyFirmata with TTL Serial
	Problem
	Solution
	Discussion
	See Also

	16.6 Reading Arduino Digital Inputs Using PyFirmata
	Problem
	Solution
	Discussion
	See Also

	16.7 Reading Arduino Analog Inputs Using PyFirmata
	Problem
	Solution
	Discussion
	See Also

	16.8 Analog Outputs (PWM) with PyFirmata
	Problem
	Solution
	Discussion
	See Also

	16.9 Controlling a Servo Using PyFirmata
	Problem
	Solution
	Discussion
	See Also

	16.10 Custom Communication with an Arduino over TTL Serial
	Problem
	Solution
	Discussion
	See Also

	16.11 Custom Communication with an Arduino over I2C
	Problem
	Solution
	Discussion
	See Also

	16.12 Using Small Arduinos with a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	16.13 Getting Started with an aLaMode Board and a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	16.14 Using an Arduino Shield with an aLaMode Board and a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	Appendix A. Parts and Suppliers
	Parts
	Prototyping Equipment
	Resistors and Capacitors
	Transistors and Diodes
	Integrated Circuits
	Opto-Electronics
	Modules
	Miscellaneous

	Appendix B. Raspberry Pi Pinouts
	Raspberry Pi 3/2 model B, B+, A+, Zero
	Raspberry Pi model B rev. 2, A
	Raspberry Pi model B rev. 1

	Index
	About the Author

