Join the discussion @ p2p.wrox.c

Java Programming
o 24-Hour Trainer

Yakov Fain







JAVA" PROGRAMMING 24-HOUR TRAINER

INTRODUCTION. ..ottt ittt ittt ittt ittt ttateinneeenneeennsenns XXiX
LESSON 1 Introducing Java. . ... .o 1
LESSON 2 Eclipse IDE . ... 9
LESSON 3 Object-Oriented Programming .. ...t 17
LESSON 4 Class Methods . ... .. i 31
LESSON 5 BacktoJavaBasiCs ... 41
LESSON 6 Packages, Interfaces, and Encapsulation ......................... 55
LESSON 7 Programming with Abstract Classes and Interfaces................ 65
LESSON 8 Introducing the Graphic User Interface .......................... 75
LESSON 9 EventHandlingin Ul ... ... . e 89
LESSON 10 Introductionto Java Applets .......... ... 103
LESSON 11 Developing a Tic-Tac-Toe Applet . ... . i m
LESSON 12 Developing a Ping-PongGame. ..., 123
LESSON 13 ErrorHandling . ... 133
LESSON 14 Introduction to Collections .......... .. .. i 143
LESSON 15 Introduction to Generics ...t 155
LESSON 16 Working with Streams . ... . . 163
LESSON 17 Java Serialization. ... ... 175
LESSON 18 Network Programming . ... . i 185
LESSON 19 Processing E-MailswithJava ........ ... .. ... ... .. ... ... 199
LESSON 20 Introduction to Multi-Threading .......... ... ... ... 209
LESSON 21 Digging Deeper into Concurrent Execution ...................... 223
LESSON 22 Working with Databases UsingJDBC ........................... 235
LESSON 23 SwingwithJTable . ... ... . e 251
LESSON 24 Annotations and Reflection . ...... .. .. .. i 261

Continues



LESSON 25 Remote Method Invocation .......... ... ... .. . 273

LESSON 26 JavaEE 6 Overview ... ... 283
LESSON 27 Programming with Servlets ... ... ... .. 293
LESSON 28 JavaServer Pages ... ... 309
LESSON 29 Developing Web Applicationswith JSF. ....... ... ... ... .. .... 323
LESSON 30 Introducing IMS and MOM. . .. ... ... . 335
LESSON 31 Introducing JNDI . ... o 349
LESSON 32 Introduction to Enterprise JavaBeans .............. ... ... .. ..., 361
LESSON 33 Introduction to the Java Persistence APl ......... ... ... ... .. .. 375
LESSON 34 Working with RESTful Web Services ......... ... .. ... .. ... 387
LESSON 35 Introduction to Spring MVC Framework ......................... 399
LESSON 36 Introduction to Hibernate Framework ....... ... .. .. .. .. ...... 411
LESSON 37 Bringing JavaFXtothe Mix ...... ... ... ... . . i 421
LESSON 38 Java Technical Interviews. . ... .. 435
APPENDIX What'sonthe DVD?. . ... .. 447



Java®’ Programming
24-HOUR TRAINER






Java® Programming
24-HOUR TRAINER

Yakov Fain

WILEY
Wiley Publishing, Inc.



Java® Programming 24-Hour Trainer

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-88964-0

ISBN: 978-1-118-05817-6 (ebk)
ISBN: 978-1-118-05818-3 (ebk)
ISBN: 978-1-118-05819-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http: //booksupport
.wiley.com. For more information about Wiley products, visit www .wiley.com.

Library of Congress Control Number: 2010942181

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress

are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Java is a registered trademark of Oracle, Inc. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.


http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

In memory of my friend, Felix Rubinchik.






ABOUT THE AUTHOR

YAKOV FAIN works as a software architect for Farata Systems, a company
that provides consulting services in the field of development of enterprise
applications. He has authored several technical books and lots of articles
on software development. Sun Microsystems has awarded Mr. Fain with
the title of Java Champion, which has been given to only 150 people in
the world. He leads the Princeton Java Users Group. Yakov’s Twitter ID
is @yfain.

ABOUT THE TECHNICAL EDITOR

ELLIOTTE RUSTY HAROLD is originally from New Orleans, to which he returns periodically in search
of a decent bowl of gumbo. However, he currently resides in the Prospect Heights neighborhood

of Brooklyn with his wife Beth, dog Thor, and cat Marjorie. He is the author of numerous books
including Refactoring HTML, Java Network Programming, Java 1/O, and Processing X ML with
Java. His open source projects include the XOM Library for processing XML with Java and the
Amateur media player.






CREDITS

EXECUTIVE EDITOR VICE PRESIDENT AND EXECUTIVE GROUP
Robert Elliott PUBLISHER
Richard Swadley
PROJECT EDITOR
Charlotte Kughen, The Wordsmithery LLC VICE PRESIDENT AND EXECUTIVE PUBLISHER
Barry Pruett
TECHNICAL EDITOR
Elliotte Rusty Harold ASSOCIATE PUBLISHER
Jim Minatel
PRODUCTION EDITOR
Kathleen Wisor PROJECT COORDINATOR, COVER
Katie Crocker
COPY EDITOR
Sadie Kleinman COMPOSITOR
Jeff Lytle, Happenstance Type-O-Rama
EDITORIAL DIRECTOR

Robyn B. Siesky PROOFREADERS
Nancy Carrasco
EDITORIAL MANAGER Jen Larsen, Word One New York
Mary Beth Wakefield
INDEXER
FREELANCER EDITORIAL MANAGER Robert Swanson

Rosemarie Graham
COVER DESIGNER
MARKETING MANAGER Michael E. Trent
Ashley Zurcher
COVER IMAGE
PRODUCTION MANAGER © FotografiaBasica / iStockPhoto.com
Tim Tate






ACKNOWLEDGMENTS

FIRST OF ALL I want to thank my family for understanding that stealing time from family to write a
computer book is OK.

I’d also like to thank Elliotte Rusty Harold from Google for his valuable comments during a
technical edit of this book. Elliotte himself has authored more than 20 computer books (see
http://www.elharo.com) and is respected in the Java community around the world. His
comments on my lessons ranged from the philosophical to a simple “I don’t agree with this
solution.” I have addressed all of them.

Three people volunteered to help me with the book: Nick Golubyev (Singapore), Dmitry Danileyko
(Russia), and Viktor Gamov (USA). They wrote several code samples for the book, which really
saved me time! Thank you, guys!

Big thanks to the Wiley editors for doing a great job of editing and for not cursing me for not meet-
ing deadlines.


http://www.elharo.com




CONTENTS

INTRODUCTION XXix

-

LESSON 1: INTRODUCING JAVA

Why Learn Java? 1
Setting the Goals 2
The Life Cycle of a Java Program 2
JDK and JRE 3
Java SE and EE 3
Downloading and Installing JDK in Windows 3
Your First Java Program: Hello World 4
Compiling and Running Hello World 6
Try It 7
Lesson Requirements 7
Step-by-Step 7
LESSON 2: ECLIPSE IDE 9
Introducing Eclipse IDE 9
Downloading and Installing Eclipse 10
Creating Hello Project in Eclipse 1"
Creating the HelloWorld Class in Eclipse 13
Java Packages 13
Completing Code Generation 14
Try It 15
Lesson Requirements 15
Step-by-Step 15
LESSON 3: OBJECT-ORIENTED PROGRAMMING 17
Classes and Objects 17
Variables, Constants, and Data Types 19
Declaring Variables 19
Constants 19
Primitive Data Types 19
Variable Scope 20

Wrappers, Autoboxing, and Unboxing 21



CONTENTS

Program Comments 21
First Useful Program 22
Conditional Statement if 25
switch Statement 26
Inheritance 26
Method Overriding 27

Try It 28
Lesson Requirements 28
Hints 28
Step-by-Step 28

LESSON 4: CLASS METHODS 31

Method Arguments 31

Method Overloading 31

Constructors 32

The Keyword super 34

The Keyword this 34

Passing by Value or by Reference 36

Variable Scopes 37

The Keyword static 37

Try It 38
Lesson Requirements 38
Step-by-Step 39

LESSON 5: BACK TO JAVA BASICS 41

Arrays 4

Loops 42

Debugging Java Programs 46

More about if and switch Statements 48
The Flavors of if Statements 49
The switch Statement 50

Command-Line Arguments 51

Try It 52
Lesson Requirements 52
Step-by-Step 52

LESSON 6: PACKAGES, INTERFACES, AND ENCAPSULATION 55

Java Packages 55

Encapsulation 56

Access Levels

XVi

57



CONTENTS

The Keyword final 57
final Variables 57
final Methods 58
final Classes 58

Interfaces 58
Marker Interfaces 60

Casting 60

Try It 62
Lesson Requirements 62
Step-by-Step 62

LESSON 7: PROGRAMMING WITH ABSTRACT CLASSES
AND INTERFACES 65

Abstract Classes 65
Assignment 65
Solution with an Abstract Class 66

Polymorphism 68
Making the Interface Solution Polymorphic 69

Interfaces versus Abstract Classes 70

Try It 71
Lesson Requirements 71
Step-by-Step 71

LESSON 8: INTRODUCING THE GRAPHIC USER INTERFACE 75

Swing Basics 75

Layout Managers 77
A Simple Calculator with FlowLayout 77
A Brief Introduction to Layout Managers 79
FlowLayout 79
GridLayout 79
BorderLayout 81
Combining Layout Managers 81
BoxLayout 84
GridBagLayout 84
CardLayout 86
Containers with Absolute Layout 86
More about Swing Widgets 86

Swing GUI Builders 87

Try It 87
Lesson Requirements 87
Step-by-Step 88

xvii



CONTENTS

LESSON 9: EVENT HANDLING IN Ul 89
Introduction to Event Listeners 89
Teaching the Calculator to Calculate 20

Registering Components with ActionListener 91
Finding the Source of an Event 91
How to Pass Data between Objects 93
More Swing Listeners 96
How to Use Adapters 97
Inner Classes 98
Anonymous Inner Classes 99
Closures 100
Try It 100
Lesson Requirements 100
Step-by-Step 101

LESSON 10: INTRODUCTION TO JAVA APPLETS 103
An Unofficial History of Java Applets 103
Restrictions of Java Applets 104
Learning HTML on the Run 105
Writing Applets Using Swing 107
Try It 109

Lesson Requirements 109
Step-by-Step 109

LESSON 11: DEVELOPING A TIC-TAC-TOE APPLET 1M1
The Strategy m
Coding Tic-Tac-Toe 12
Try It 121

Lesson Requirements 121
Step-by-Step 121

LESSON 12: DEVELOPING A PING-PONG GAME 123
The Strategy 123
The Code 124

The User Interface 124
The Constants 127
The Engine 128
Finishing the Ping-Pong Game 130

xviii



CONTENTS

Try It 131
Lesson Requirements 132
Hints 132
Step-by-Step 132

LESSON 13: ERROR HANDLING 133

Stack Trace 133

Java Exceptions 134

Exception Hierarchy 135

try/catch Blocks 136

The throws Clause 137

The finally Clause 137

The throw Operator 138

Creating Your Own Exceptions 139

Try It 141
Lesson Requirements 141
Step-by-Step 142

LESSON 14: INTRODUCTION TO COLLECTIONS 143

Arrays Revisited 143

Classes ArrayList and Vector 144

Collection Interfaces from java.util 146

Classes Hashtable and HashMap 147
Class Properties 148

Enumeration and Iterator 149

Class LinkedList 150

Class BitSet 151

Try It 152
Lesson Requirements 152
Step-by-Step 153

LESSON 15: INTRODUCTION TO GENERICS 155

Generics with Classes 155

Defining Generics 157

Wild Cards 158

Bounded Wild Cards 159

Generic Methods 160

What to Read Next 161

Try It 161
Lesson Requirements 161

Step-by-Step 162

Xix



CONTENTS

LESSON 16: WORKING WITH STREAMS 163
Byte Streams 164
Buffered Streams 165
Character Streams 166
Data Streams 171
The Class File 171
Try It 172

Lesson Requirements 172
Step-by-Step 172

LESSON 17: JAVA SERIALIZATION 175
The Class ObjectOutputStream 176
The Class ObjectinputStream 178
The Interface Externalizable 179
Class Versioning 182
Serializing into Byte Arrays 182
Try It 183

Lesson Requirements 183
Step-by-Step 184

LESSON 18: NETWORK PROGRAMMING 185
Reading Data from the Internet 186
Connecting through HTTP Proxy Servers 189
How to Download Files from the Internet 189
The Stock Quote Program 191
Socket Programming 193

Why Use Sockets? 194
The Stock Quote Server with Sockets 194
Try It 197
Lesson Requirements 197
Hints 197
Step-by-Step 198

LESSON 19: PROCESSING E-MAILS WITH JAVA 199
Protocols and Servers 199
Creating Birthday Mailer 200

Required Supporting Classes 200
Writing the Mail Sender 201

How to Retrieve E-Mails 204

XX



CONTENTS

Useful Open-Source Components 205
Try It 206
Lesson Requirements 206
Step-by-Step 206
LESSON 20: INTRODUCTION TO MULTI-THREADING 209
The Class Thread 210
The Interface Runnable 21
Sleeping Threads 212
How to Kill a Thread 214
Thread Priorities 216
Thread Synchronization and Race Conditions 216
Thread States 219
Wait and Notify 219
Try It 222
Lesson Requirements 222
Step-by-Step 222
LESSON 21: DIGGING DEEPER INTO CONCURRENT EXECUTION 223
Joining Threads 223
Goodies from java.util.concurrent 224
ReentrantLock versus Synchronized 225
Executor Framework 225

A Brief Introduction to Concurrent Collections 229
SwingWorker Thread 230
Try It 233
Lesson Requirements 233
Step-by-Step 233
LESSON 22: WORKING WITH DATABASES USING JDBC 235
JDBC Driver Types 236
Creating a Database with Derby 236
Sample JDBC Program 238
Processing Result Sets 241
The PreparedStatement Class 243
The CallableStatement Class 244
The ResultSetMetaData Class 244
Scrollable Result Sets and RowSet 246
Transactional Updates 247

Connection Pools and DataSources 248

XXi



CONTENTS

Try It 248
Lesson Requirements 248
Hint 248
Step-by-Step 249

LESSON 23: SWING WITH JTABLE 251

JTable and the MVC Paradigm 251

The Model 252
Mandatory Callbacks of Table Models 253
Optional Callbacks of Table Models 256

Introduction to Renderers 257

Summary 259

Try It 259
Lesson Requirements 259
Hint 259
Step-by-Step 260

LESSON 24: ANNOTATIONS AND REFLECTION 261

Java Annotations Basics 262
@Override 263
@Deprecated 264
@Inherited 264
@Documented 264

Custom Annotations 264

Reflection 267

Run-Time Annotation Processing 270

Summary 271

Try It 272
Lesson Requirements 272
Step-by-Step 272

LESSON 25: REMOTE METHOD INVOCATION 273

Developing Applications with RMI 274
Defining Remote Interfaces 274
Implementing Remote Interfaces 275
Registering Remote Objects 276
Writing RMI Clients 277
Security Considerations 278
Finding Remote Objects 279

xXii



CONTENTS

Try It 279
Lesson Requirements 280
Hints 280
Step-by-Step 280

LESSON 26: JAVA EE 6 OVERVIEW 283

The Big Picture 284
JCP, JSR, and Other Acronyms 284
Tiers of Java EE Applications 285
Containers versus Application Servers 287

Profiles and Pruning 288

Miscellaneous Concepts 288

Try It 289
Lesson Requirements 289
Hints 289
Step-by-Step 289

LESSON 27: PROGRAMMING WITH SERVLETS 293

The Big Picture 293

The Thin Client 294

How to Write a Servlet 295

How to Deploy a Servlet 296

Installing the GlassFish Plug-In for Eclipse 297

How to Create a Servlet with Eclipse 298

Browser-Servlet Data Flow 301

HTTP Get and Post Requests 301

Session Tracking 302
Cookies 302
URL Rewriting 303
Server-Side HttpSession 303
Filters 304

Event Listeners 305

Asynchronous Servlets 306

Try It 307
Lesson Requirements 307
Hints 307
Step-by-Step 307

LESSON 28: JAVASERVER PAGES 309

Embedding Java Code into HTML 310

Implicit JSP Objects 31

xxiii



CONTENTS

XXiv

Overview of the JSP Tags 312
Directives 312
Declarations 312
Expressions 313
Scriptlets 313
Comments 313
Standard Actions 313

Error Pages 314

JavaBeans 315
Using JavaBeans in JSP 316
How Long Does a Bean Live? 316

Loading JSP from Servlets 317

Tag Libraries 318

JSTL 320

Try It 320
Lesson Requirements 321
Step-by-Step 321

LESSON 29: DEVELOPING WEB APPLICATIONS WITH JSF 323
The Big Picture 324
Managed Beans 324
Creating a JSF Website 326

Templating 326
Page Navigation 331

Converters and Validators 333

Try It 334
Lesson Requirements 334
Hints 334
Step-by-Step 334

LESSON 30: INTRODUCING JMS AND MOM 335

Messaging Concepts and Terminology 335

Two Modes of Message Delivery 337

JMS API Overview 337

Types of Messages 338

How to Send a Message 338

How to Receive a Message 340

How to Publish a Message 343

How to Subscribe for a Topic 343

Message Selectors 344



CONTENTS

Administering Objects in Open MQ 345
Try It 346
Lesson Requirements 346
Hints 347
Step-by-Step 347
LESSON 31: INTRODUCING JNDI 349
Java Naming and Directory Interface 349
Administering JNDI Objects in GlassFish 350
Accessing the GlassFish Naming Service with JNDI 352
Injection of JNDI Resources 355
DataSource and JNDI 355
Lightweight Directory Access Protocol 357
Try It 358
Lesson Requirements 358
Step-by-Step 359
LESSON 32: INTRODUCTION TO ENTERPRISE JAVABEANS 361
Who Needs EJB Containers? 361
Types of EJBs 362
Stateless Session Beans 363
The Bean 363
The Client’s View 363
The Server 366
Asynchronous Methods 367
Stateful Session Beans 368
Singleton Beans 369
Deploying EJB 370
Message-Driven Beans 371
Timer Service 372
Summary 372
Try It 372
Lesson Requirements 373
Hint 373
Step-by-Step 373
LESSON 33: INTRODUCTION TO THE JAVA PERSISTENCE API 375
The Big Picture 375
Mapping Objects to Database Tables 376

JPQL

378

XXV



CONTENTS

EntityManager 379
A Brief Introduction to the Criteria API 380
Bean Validation 382
Try It 382
Lesson Requirements 382
Step-by-Step 382
LESSON 34: WORKING WITH RESTFUL WEB SERVICES 387
The SOAP Web Services 387
The RESTful Web Services 388
The RESTful Stock Server 388
Try It 397
Lesson Requirements 397
Hints 397
Step-by-Step 397
LESSON 35: INTRODUCTION TO SPRING MVC FRAMEWORK 399
Bean Wiring 400
Overview of Spring MVC 400
Processing HTML with Spring 402
Understanding the Spring Web MVC Workflow 402
Processing HTML Forms 406
Try It 409
Lesson Requirements 409
Step-by-Step 409
LESSON 36: INTRODUCTION TO HIBERNATE FRAMEWORK 41
The Big Picture 411
Installing and Configuring Hibernate 412
Adding Hibernate Jars to an Eclipse Project 412
Testing the Database Connection 413
Configuring Hibernate with a DBMS 413
Retrieving Data with Hibernate 415
Try It 417
Lesson Requirements 417
Hints 417
Step-by-Step 418

XXVi



CONTENTS

LESSON 37: BRINGING JAVAFX TO THE MIX 421
Consuming Stock Quotes with JavaFX 421
Code Walkthrough 422

Reading JavaFX Code 425
The HTML Client 429
Try It 431
Lesson Requirements 432
Hint 432
Step-by-Step 432

LESSON 38: JAVA TECHNICAL INTERVIEWS 435
Getting the Interview 435
Doing Well at the Interview 436
Considering the Offer 437
Interviewing Enterprise Developers 438
To Get or Not to Get Certified? 439
Technical Questions and Answers 439
Epilogue 446

APPENDIX: WHAT’S ON THE DVD? 447
Using the DVD on a PC 447
Using the DVD on a Mac 448
What'’s on the DVD? 448
Troubleshooting 448
Customer Care 449

INDEX 451

XXVii






INTRODUCTION

IT DOESN'T TAKE a rocket scientist to notice the recent serious decline in the publishing of computer
books, to say nothing of computer magazines. I enjoy reading books about software and visit the
nearby Barnes and Noble at least twice a month. During the last three years the number of book-
cases dedicated to computer books has shrunk substantially.

Today newly baked programmers prefer Google to books. They don’t realize that Google is OK
when you know what you are looking for, while books can give you a new perspective on how other
people develop software.

During a recent visit to a major bookstore I noticed a series of books on digital photography. I'm
one of the legions of people who are thinking of replacing a point-and-shoot camera with a digital
SLR such as a Nikon D90. There were about 10 different thin books on that shelf, and I picked the
one on the D90. It was about 65 pages long. I quickly skimmed the pages, learning that compared to
a pocket camera one of the main advantages of D-SLR is the ability it gives you to change lenses. On
top of that, these cameras use a small mirror that enables you to see exactly what you’re shooting,
plus you can take more shots per second. Not much information for a $25 book.

The secret was that the book came with a DVD, which contained 80 minutes of instructional
videos! The printed part of the book and the DVD complemented each other. The wannabe
photographers don’t want to read books.

The new generation of computer programmers doesn’t want to read either. They want to watch
videos. They can be YouTube videos on how to do something, or screencasts. The material has
to be prepared for easy consumption.

But because not everything in the world of software can be videotaped, future computer books will
still include several hundred pages — some code samples and short instructions will go there.

Remember those 1,500-page Bibles on software? It seems that their days are over. These days a
500-page computer book can be considered thick. Five years from now a 200-page software book
will become the standard. But books will come with DVDs on which the authors walk you through
all the examples mentioned on paper.

I like this new 24-Hour Trainer series from Wiley Publishing. This is not to say that you can learn
the software covered in these books within 24 hours. It’s about having a trainer that’s with you
24 hours a day. Each book in this series is a set of short chapters containing a minimum of theory
but accompanied by an instructional DVD with screencasts recorded by the author.

WHO THIS BOOK IS FOR

This book is for anyone who wants to learn how to program with the Java language. No previous
programming experience is expected.



INTRODUCTION

This tutorial can be used by Java developers looking for simple working examples that use certain
features of the language.

Accomplished Java developers can also use this book as a refresher while preparing for a technical
job interview.

This tutorial can be used by university students who are interested in learning from a practitioner
who has spent 20-plus years developing enterprise software for a living.

College professors should appreciate the fact that each lesson ends with a “Try It” section — a pre-
pared home assignment for each lesson.

WHAT THIS BOOK COVERS

To be called a Java developer, a person has to know not only the core syntax of this programming
language, but also the set of server-side technologies called Java EE (Enterprise Edition). This book
covers both. At the time of this writing, the latest version of core Java is 6, and the latest release of
Java EE is also 6.

Java is a general-purpose language — you can program applets running under control of a Web
browser, stand-alone applications that run independently on the user’s computer, and applications
that connect to remote servers. Java is used for writing applications running in mobile devices, cars,
or in household appliances.

The first 25 lessons of this book cover a program that can run on users’ computers. The next 12 are
about Java EE technologies used for Java programs that run on servers. The final lesson is dedicated
to the process of getting prepared for Java technical job interviews.

This book doesn’t cover Java programming for mobile devices.

HOW THIS BOOK IS STRUCTURED

XXX

This book is a tutorial. Each lesson walks you through how to use certain elements and techniques
of the Java language or gives an introduction to the server-side Java EE technologies. The “Try It”
sections serve as continuations of materials explained in the lessons. The screencasts included on the
DVD usually illustrate how the author compiles and runs code samples included in the lessons. You
can choose to read the lesson and then try to run the example on your own, or you can read the les-
son, watch the video, and then try to run the examples. After this part is done, start working on the
assignments from the “Try It” section.

This book contains 38 lessons, which are not formally broken into sections. The first 25 lessons
cover Java SE topics. Lessons 26 through 34 cover Java EE topics. Lessons 35 and 36 introduce you
to popular third-party frameworks Spring and Hibernate. Lesson 37 demonstrates an application
that utilizes several Java EE technologies. And, finally, Lesson 38 helps you to get prepared for the
technical interview when you decide to look for a Java-related job.



INTRODUCTION

The lessons are short and to the point. The goal is to explain the material quickly so you can start
applying it hands-on as soon as possible. Some readers may feel that more explanation of certain
subjects are required, and they are encouraged to do some extra research; there are lots and lots of
online materials available on any Java-related subject. But the coverage of the material given in this
book definitely helps in understanding what to focus on and what to look for.

WHAT YOU NEED TO USE THIS BOOK

To do the examples in this book, you do not need to purchase any software—freely available soft-
ware is used here. Installing Java Development Kit and Eclipse IDE is explained in the first two les-
sons, and this is all you need for Lessons 1 through 25. In Lesson 26, you install Java Application
Server GlassFish, which is used for explanation of the materials in Lessons 26 through 34. If you
decide to learn third-party frameworks Spring and Hibernate, you need to download and configure
their software libraries as explained in Lessons 34 and 35. Whenever you need to download certain
software, detailed instructions are given in the book and/or in the screencasts included on the DVD.

From the hardware perspective, you can use either PC running Windows or one of the Apple com-
puters running Mac OS. Linux fans are also able to run all book samples. You should have at least
1GB of RAM on your computer to run all code examples from this book. But adding more memory
can make your Java compiler and Eclipse IDE work faster.

HOW TO READ THIS BOOK

This book is a tutorial, and I assume in each lesson that the reader is already familiar with the mate-
rials from those that came before it. If you are new to Java, I highly recommend that you read this
book sequentially.

Each lesson except the last one has a corresponding video screencast on the accompanying DVD, in
which I either work on the assignment from the “Try It” section of the lesson or simply install and
configure some software. Ideally, you should try to do all the assignments from the “Try It” sections
on your own, and use the videos only if you get stuck or don’t understand the instructions. But if
you prefer to learn by following the instructor, just watch the video first and then try to repeat the
same actions on your own. Whatever works is fine.

Java is a multi-platform language and programs written for Microsoft Windows, say, should work
the same way in Mac OS or on Linux computers. I’'m using a Mac, but also have special software
that enables me to run Microsoft Windows. In this book I use the open-source Eclipse Integrated
Development Environment, which exists on all major platforms and looks pretty much the same
on each. So regardless of your preferred operating system, you’ll be able to run all the code samples
from this book.

XXXi



INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

References like this one point you to the DVD or www.wrox.com to watch the
instructional video that accompanies a given lesson.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
»  We show file names, URLs, and code within the text like so: persistence.properties.

> We present code like the following:

We use a monofont type with no highlighting for most code examples.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in this
book is available for download at www.wrox.com. You will find the code snippets from the source
code are accompanied by a download icon and note indicating the name of the program, so you
know it’s available for download and can easily locate it in the download file. Once at the site, sim-
ply locate the book’s title (either by using the Search box or by using one of the title lists) and click
the Download Code link on the book’s detail page to obtain all the source code for the book.

J

Available for
download on
Wrox.com

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

Code Filename

XXXii


http://www.wrox.com
http://www.wrox.com

INTRODUCTION

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-88964-0.

After you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

The author will also maintain up-to-date code samples in the code repository hosted by Google at
the follOWing address: http://code.google.com/p/practicaljava/.

This website also contains a sample online store application contributed by Nick Golubyev. Even
though this application was not used in the book, it serves as a good example of an end-to-end appli-
cation developed with Java EE 6 technologies. You can find the application by clicking the Source tab
in the folder java-ee. You can find instructions on building the online store under the tab Wiki.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors. A com-
plete book list including links to each book’s errata is also available at wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

xXxiii


http://www.wrox.com/dynamic/books/download.aspx
http://code.google.com/p/practicaljava/
http://www.wrox.com

INTRODUCTION

At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1.  Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3.  Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post
Your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXiV



Introducing Java

Today Java is one of the most popular programming languages for everything from programming
games to creating mission-critical applications such as those for trading on Wall Street or control-
ling Mars rovers. In this lesson you are introduced to some of the very basic Java terms, and you
will download and install the Java Development Kit (JDK) and compile your first program.

WHY LEARN JAVA?

The Java programming language was originally created in 1995 by James Gosling from Sun
Microsystems (currently a subsidiary of Oracle Corporation). The goal was to provide a sim-
pler and platform-independent alternative to C++. You’ll see what platform independence
means a little later, in the section “The Life Cycle of a Java Program.” For now, let’s look at
some of the reasons why Java can be your language of choice.

Java is a general-purpose programming language that’s used in all industries for almost any
type of application. If you master it, your chances of getting employed as a software developer
will be higher than if you specialize in some domain-specific programming languages.

There are around six million professional Java developers in the world and the majority of
them are ready to share their knowledge by posting blogs and articles or simply answering
technical questions online. If you get stuck solving some problem in Java, the chances are very
high that you’ll find the solution on the Internet.

Since the pool of Java developers is huge, project managers of large and small corporations like
to use Java for the development of new projects — if you decide to leave the project for what-
ever reason, it’s not difficult to find another Java programmer to replace you. At this point

you may ask, “Does that also mean that my Java skills will be easily replaceable?” To improve
your value and employability you need to master not only the syntax of the language, but also
the right set of Java-related technologies that are in demand (you’ll learn them in this book).

Not only is Java open-source, but there are millions of open-source projects being devel-
oped in Java. Joining one of these projects is the best way to get familiar with the process
of project development and secure your very first job without having any prior real-world
experience as a programmer.



2 | LESSON1 INTRODUCING JAVA

The Java language is object-oriented (O0), which allows you to easily relate program constructs to
objects from the real world (more on this in Lessons 3-7).

There are plenty of technical features that make Java the right choice for many projects, and you’ll
have a chance to see this for yourself while reading this book, watching the screencasts from the
accompanying DVD, and deploying all code samples from the book on your computer.

SETTING THE GOALS

The goal of this rather slim tutorial is to give you just enough information about most of the Java
language elements, techniques, and technologies that are currently being used in the real world. The
first half of the book is more about the Java language itself, while the second is about server-side
Java technologies, and this is where Java shines in the enterprise world.

The brevity of some of the lessons may make you wonder if it’s even possible to explain a subject in
just 10 pages while there are whole books devoted for the same topic. My approach is to cover just
enough for you to understand the concept, important terms, and best practices. Prerecorded screen-
casts on the DVD will help you to repeat the techniques explained in the lesson on your own.

There are plenty of additional materials online that will help you to study any specific topic more
deeply. But you’ll get a working and practical knowledge about Java just by using the materials
included with this book.

The goal of this book is not just to get you familiar with the syntax of the Java language, but to give
you practical Java skills that will allow you to develop business applications either on your own or
by working as a team member in a larger-scale project.

THE LIFE CYCLE OF A JAVA PROGRAM

There are different types of programming languages. In some of them you write the text of the
program (aka the source code) and can execute this program right away. These are interpreted lan-
guages (e.g., JavaScript).

But Java requires the source code of your program to be compiled first. It gets converted to either
machine-specific code or a bytecode that is understood by some run-time engine or a virtual machine.

Not only will the program be checked for syntax errors by a Java compiler, but some other libraries of
Java code can be added (linked) to your program after the compilation is complete (deployment stage).

In this lesson you write a very basic Java program that will output the words “Hello World” on your
computer’s screen.

Technically you can write the source code of your Java program in any plain text editor that you
prefer (Notepad, TextEdit, vi, etc.), but to compile your program you’ll need additional tools and
code libraries that are included in the Java Development Kit (JDK).



Downloading and Installing JDK in Windows | 3

JDK AND JRE

If you are planning to use a specific computer to develop Java programs, you’ll need to download
and install JDK. If you are planning to use this computer only to run Java programs that were com-
piled somewhere else, you just need the Java Runtime Environment (JRE).

If you have JDK installed on your machine, it includes JRE.

Java’s platform independence comes from the fact that your Java program doesn’t know under
which operating system (OS) or on which hardware it’s being executed. It operates inside the prein-
stalled JRE that is pretty much the same on every platform.

Since you’ll be learning how to develop Java programs, download JDK from the following website:
http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html.

JAVA SE AND EE

But before rushing to the downloading process, you need to get familiar with two more terms: Java
SE (Standard Edition) and Java EE (Enterprise Edition). The latter includes the server-side tools and
libraries that you’ll get familiar with starting in Lesson 26.

For now, just download the latest version of the JDK SE Development Kit. (The letter U followed by
a number represents the update number of Java 6.)

Select the platform (Windows, Linux, Solaris) on which you are planning to develop Java programs
and continue the download process.

JDK for Mac OS X is preinstalled on Apple’s computers and no additional
installing is required. The current version of [DK, which comes with computers
running Snow Leopard, is [DK 6. It’s located in directory /Library/Java. In this
book we’ll be using Java for the Windows OS, but Java is cross-platform and
the book examples will work under MAC OS and Linux as well.

DOWNLOADING AND INSTALLING JDK IN WINDOWS

After selecting the Windows platform and clicking the ey it TR A S
Download button you’ll see a Login for Download g
screen, which is optional: You can skip this step. = et i

whirhiiz & Binary File
from: hktpeffrds-ped.sun.com

Click Save File on the pop-up screen, as shown in Woud youlke bo save this flc?
Figure 1-1 (the file name depends on the version Cancel
of JDK).

FIGURE 1-1


http://www.oracle.com/technetwork/java/javase/downloads/jdk6-jsp-136632.html

4 | LESSON1 INTRODUCING JAVA

After the file is saved, start this executable 15 Java(TM) SE Davalopmant Kit 6 Updata 19 - Custom Satup X
and the installation wizard will lead you ;g.: Custom Setup QSun
through the process. Read and accept the Dl R RE
liCCnse agreement and CliCk the button NeXt. Select optional Features ko install From the list below, You can change your choice of Festures after
. i inn by 1sing the A Programs iy in the Cnnkrol Panel

Note the item at the bottom of the left box S
. . I T _ = = i = :
in Figure 1-2 — it is an open-source database = Jova(T) € ovekoment 0
management system (DBMS) called Java DB. -~ [ S 1o, T il e

b =3 = | Fublic JRE
You’ll need JavaDB for Lesson 22. It
A couple of minutes into the installation pro-
cess you'll see a pop-up window asking you Instal to;
where to install JRE. I’ll assume that you’ve S B Es S 5 0) (_cpenge... |
accepted the default directory (c:\Program
Files\Java\jre6), but you can select a dif- s Jl_tet>_Jil ol _]

ferent one. Shortly, you should see a message  FIGURE 1-2
telling you that installation was successful.
Click Finish.

At the end of the installation process you’ll see a website suggesting you register the install. This
step is optional.

If you have previous versions of JDK installed on your computer, each of them will be sitting in its
own directory, e.g., c: \Program Files\Java\jdkl.6.0_019. But for a sanity check, I always open
a command line window and enter java -version at the command prompt. Figure 1-3 shows the
confirmation that I really have JRE 1.6.0_19 (Java 6 is also referred to as Java 1.6).

vironment <lu 6.
£ UM Chunild 16 - mode . sharing)

fC:~Documents and Settings>Administrator’

FIGURE 1-3

Congratulations! Your JDK and JRE are installed.

YOUR FIRST JAVA PROGRAM: HELLO WORLD

Historically, the first program you write while learning a new programming language is the pro-
gram Hello World. If you visit the website www.helloworldexample.net/ you’ll see how to write
this program in many different languages, including Java.

To start writing a Java program you could use any plain text editor — I’ll use Notepad. The file that
contains Java code must be saved in a file with its name ending in . java.

Enter the following code in the text editor.


http://www.helloworldexample.net/

Your First Java Program: Hello World | 5

‘) LISTING 1-1: HelloWorld.java

Available for
download on

Wrox.com public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World");
}

Create a directory, c:\PracticalJava\Lessonl, and save the program you just created in the file
HelloWorld.java (if you use Notepad, select All Files in the Save as Type drop-down to avoid auto-
attachment of the . txt suffix).

Keep in mind that Java is a case-sensitive language, which means that if you named the program
HelloWorld with a capital H and a capital W, you should not try to start the program helloworld.
Your first dozen syntax errors will be caused by improper capitalization.

What follows is a really short explanation of some of the terms and language elements used in the
HelloWorld program. You’ll get more comfortable with them after mastering the first several lessons
in this book.

Our first program contains a class, HelloWorld. Give the Java class and its file the same name.
(There could be exceptions to this rule, but not in this simple program.) While writing Java pro-
grams you create classes, which often represent objects from real life. You’ll learn more about
classes in Lesson 3.

The class Helloworld contains a method, main (). Methods in Java classes represent functions
(actions) that a class could perform. A Java class may have several methods, but if one of them is
called main () and is declared (if it has a method signature), as in our class, this makes this Java
class executable. If a class doesn’t have a method main (), it can be used from other classes, but you
can’t run it as a program.

The method main () calls the method printin() to display the text “Hello World” on the screen.
Here is the method signature (similar to a title) of the method main ():

public static void main(String[] args)
This method signature includes the access level (public), instructions on usage (static), return
value type (void), name of the method (main), and argument list (String[] args).
> The keyword public means that the method main () can be accessed by any other Java class.

> The keyword static means that you don’t have to create an instance of this class to use this
method.

> The keyword void means that the method main () doesn’t return any value to the calling
program.

> The keyword string[] args tells us that this method will receive an array of characters as
the argument (you can pass external data to this method from a command line).



6 | LESSON1 INTRODUCING JAVA

The main () method is the starting point of your program. You can write a program in Java SE that
consists of more than one class, but at least one of them has the method main (), otherwise the pro-
gram won’t start. A Java class can have more than one method. For example, the class Employee can
have the methods updateaddress (), raiseSalary (), changeName (), etc.

The body of the method main () contains the following line:
System.out.println("Hello World") ;

The preceding printin() method is used to print data on the system console (command window).
Java’s method names are always followed by parentheses.

System here represents another Java class.
The dot notation System.out means that the variable out is defined inside the class System.

out.println() tells you that there is an object represented by a variable called out and it has a
method called println().

You will be using this dot notation to refer to class methods or variables.

Compiling and Running Hello World

Now you need to compile this program. The javac compiler is a part of JDK, so open a command
window on your PC, change the current directory to c:\PracticalJava\Lessonl and try to com-
pile the program:

cd PracticalJdava\Lessonl
javac HelloWorld.java

Oops. [ got an error telling me that javac is not recognized as an internal or external command,
operable program, or batch file. The OS doesn’t know where javac is located. You need to add the
directory in which the javac compiler resides to the system variable PATH. In Windows OS, go to
Control Panel, click the System icon, select the tab Advanced, and click Environment Variables. Edit
the system variable PATH so it starts with the following: C: \Program Files\Java\jdkl.6.0_19\
bin; By the time you’ll be reading this book the Java version number may be different so check the
name of the directory before modifying the system variable PATH.

Restart your command window and now the OS should be able to find javac. Get into the directory
where HelloWorld. java is located and repeat the compilation command.

You won’t see any confirmation of a successful compilation; just type dir to confirm that a new file
named HelloWorld.class has been created. This proves that your program has been successfully
compiled.

If the program has syntax errors, the compiler prints error messages. In this case fix the errors, and
recompile the program again. You may need to do it more than once until the file Helloworid
.class is successfully created.

Now run the program by typing the command

java HelloWorld



Trylt | 7

Note that this time we used the term java, which starts the Java Virtual Machine (JVM). The
words “Hello World” are displayed in the command window. In Figure 1-4 is a screenshot that
shows the compilation command, the content of the folder after the compilation, and the output of

the HelloWorld program.

IC:~PracticalJavasL nl*javac HelloWorld. java

Ame AN
Uolume Serial Numbe

sclury of “PractivaldavasLessund

<{DIR>

IC:\PracticalJavasLessonl?

FIGURE 1-4

TRY IT

In this lesson your goal is to write your first Java program that outputs the words “Hello World.”

Lesson Requirements

For this lesson download and install the current version of JDK from http://java.sun.com/
javase/downloads/index. jsp. Set the value of the system PATH variable to include the bin direc-
tory, where your Java compiler (javac) and other executables were installed.

Step-by-Step
1.  Open a plain text editor of your choice and enter the text of the Hello World program.
2. Save the program in the file Helloworld.java.
3.  Compile the program in the command window using the command javac Helloworld.java.
4

. Run the program by using the command java HellowWorld.

Please select Lesson 1 on the DVD with the print book, or watch online at

www . wrox . com/go/ fainjava to view the video that accompanies this lesson.


http://java.sun.com/javase/downloads/index.jsp
http://www.wrox.com/go/fainjava
http://java.sun.com/javase/downloads/index.jsp




Eclipse IDE

While your first Java program was written in a plain text editor and compiled from a com-
mand window, this is not a productive way of developing software. Professional programmers
use one of the Integrated Development Environments (IDEs), which include an editor, a com-
piler, type-ahead help, a debugger, and a lot more (you’ll get familiar with these features later
in this lesson). There several popular Java IDEs, such as Eclipse, NetBeans, Intellif IDEA, and
RAD. Some are free, and some are not.

Eclipse is by far the most widely used IDE, and I’ll be using it for compiling and running most
of the examples in this book. But switching from one IDE to another is a pretty simple pro-
cess, and if you see that in some areas one IDE makes you more productive than the other, just
use the best one for the job. For example, NetBeans IDE can offer great help if you’ll be devel-
oping the server-side Java EE applications explained later in the book (starting in Lesson 26).

INTRODUCING ECLIPSE IDE

Eclipse IDE is an open-source product that was originally created with a substantial code
donation by IBM to the Java community, and from that moment Eclipse was a 100% commu-
nity-driven product. It started as an IDE for developing Java programs, but today it’s a devel-
opment platform used for building thousands of tools and plug-ins. Some people are using its
Rich Client Platform (RCP) API to develop user interfaces (Uls) for applications. Other Java
languages are also supported by Eclipse. Visit the downloads page to see a just a portion of the
Eclipse-based products available: www.eclipse.org/downloads.

Besides being an IDE, Eclipse supports plug-in development, and each developer can add only
those plug-ins that he or she is interested in. For example, there is a plug-in to display UML
diagrams, another offers a reporting system, and there are plug-ins for developing applications
in C, Adobe Flex, and others.


http://www.eclipse.org/downloads

10 | LESSON2 ECLIPSEIDE

DOWNLOADING AND INSTALLING ECLIPSE

At work, I use Eclipse IDE for Java EE Developers. Opening aclipsa-jes.-galilao-SR2-win32.zip
Each version of Eclipse IDE has a name. At the time ¥ou have chosen to open
of this writing, the current version is called Helios. E:ﬁ:ﬂ’“ﬁ;;:‘;:;‘:‘;"“"
In Windows OS, my first download window looks as Froms hitps fmiror.cs.ritcdy
shown in Figure 2-1 (note jee in the file name). intialistolk et ciio e e e
O Openwith | WinRARLZIM (dofault) “
The installation of Eclipse IDE comes down to a ) 5ave Fie
simple unzipping of the downloaded file into a disk [T 0t cotomobicaly e s Mo Hhis From pow ons
drive of your choice. You’ll find the file eclipse.exe
in the Eclipse folder — just run this program. You’ll o ][ o= )
immediately see a pop-up window asking you to select
a workspace, which is a directory on your hard disk FIGURE 2-1

where one or more of your projects is going to be stored.

If you want to create an application in Eclipse, you start with creating a project. In the real world,
the source code of a decent-size application can consist of several Eclipse projects.

For this book I selected the following workspace directory: c:\PracticalJava\workspace.

Eclipse Java EE IDE starts with a Welcome panel — just close it by clicking the little x on the
Welcome tab. Figure 2-2 is a snapshot of the freshly installed IDE with an empty workspace.

3 Java KL - Eclipse
Fls Ede Mragatt Sedrch Progect fun Window  Help

i H-0-Q-:G-6G- OO F-:0: 2 | @ swwa ke
[ Projact Explorer 17} ] = T B2 outne =[] TaskList

An outine b5 not avalsble.

(5 Madknrs 12 7] Prapertins | 864 Servers | B8 Cwta Source Explorer | [ Srippets
0 kems
Description = Resource Fath Locsk...  Typs

0 Rems selected

FIGURE 2-2



Creating Hello Project in Eclipse | 11

To be precise, you are looking at Java EE perspective (note the Java EE tab at the top), which is a
collection of views. On the left you see a Project Explorer view. The area in the middle is reserved
for the code editor view — you start using it as soon as you create your first Java class. The Outline
view is on the right — you’ll see the names of your classes, methods, and variables (see Lesson 3)
there when they are available.

There are many other views that you can open and close by yourself by selecting Window => Show
View. These include Console, Search, Servers and others.

Since you are just starting to learn the language, there is no need to work in the Java EE perspec-
tive — you can get by in the Java perspective. Click the little icon with the plus sign by the Java
EE tab and select “Java perspective.” You’ll see a slightly different set of views with the Package
Explorer and Hierarchy views on the left, Task List on the right, and Problems, Javadoc and
Declaration tabs at the bottom, as shown in Figure 2-3.

3} Java - Cclipsa E]@|E|

Fle Cde mavigste Sesrch Fromet Fun window Help

H-0-Q-  BHG MG (B2 2ave [4® vake
13 package boplor E1 %2 therarchy| = O = 0| [ reskust i3 =
| wB e 4d
b A b Acther
1% Uncategarized
2= outine i3 =

A cuthne b not avadable,

T prottems 11 0 Javadec | [ pecleation
0 Rewns
Descrption Rasource. Path Lecat..  Type

FIGURE 2-3

CREATING HELLO PROJECT IN ECLIPSE

In Lesson 1 you simply created the class Helloworld, but in Eclipse you have to create the project
first. Select File > New = Java Project and enter Hello as the name of the project in the pop-up win-
dow, as shown in Figure 2-4.



12 | LESSON2 ECLIPSEIDE

You can select the version of the JRE you
want to work with. In Lesson 1 I’ve installed
the JDK and JRE of version 1.6.0_19, but you
may have more than one version of JRE, and
Eclipse can compile the code that will run in
another version of JRE. This is a pretty nice
feature of Eclipse IDE — it doesn’t come with
its own JRE, but it allows you to pick the ver-
sion that fits your needs. In some cases you
have to compile the code with older versions
of JRE if you know that this program will
have to run in the older JVM:s.

After you click Next, the next window will
ask you to specify the folder where compiled
Java classes of the Hello project should be cre-
ated. By default, Eclipse creates a Hello folder
for this project with a bin sub-folder for
compiled classes and an src sub-folder for the
source code. In Lesson 1 both Helloworld
.java and HelloWorld.class were sitting in
the same folder, which is a bad practice.

Don’t change the name of the output direc-
tory — just click Finish on that window. In
Figure 2-5 you see a new project, Hello, in the
Package Explorer view of Eclipse.

This project has an empty folder, src — you
can save the source code of Helloworld.java
there when ready. The JRE folder contains all
required libraries supporting the JVM where
HelloWorld will run.

These library files have . jar in their names.
Java SDK comes with a jar utility that allows
you to create a file archive that contains one
or more compiled classes. While the JRE
folder contains classes created by developers
of the JRE itself, most real-world applications
consist of groups of files (packages) located in
one or more jars.

It doesn’t make much sense to put the only
HelloWorld class inside the jar, but as your
sample applications grow, you’ll see how to
group and compress files in jars.

L3 New Java Project

Create a Java Project » J]

Create a lava penjert in the vaorkspare or in an eetemal locakion.

Project name: | Helo]
Caontents
() Create new project in workspace

() Create project from existing source

JRE
() Use an execuklon emvironmenk JRE: Javask-1.b v
(Ol se & project speritic TRE:

() se default RF (rurrently 'jdk1.A.0_197 Configure 1RFs...

Project layout
(_}Use project Folder as root For sources and dass files

(%) Create separate folders for sources and dlass files Continiwe defad. ..

‘Warking sets

["]dd profect to warking sets

@ net> || rmsh | [ concel

FIGURE 2-4

Q Java - Eclipse

File Edk Source Refactor Mawvigate Search Project Run Window Help
r4- $-0-Q-
[£ package Expior £

9_.!' Herarchy| — O

F= |
Lm £rC
= B JRE System Library 7

+ [ recources. jar

B rkjar - Co0F
# oo jese jar - C

F o joejar - ©

H [ charsets jar -
® e dnsns.jar - 2
+ e Ioraledatajar
B me sunjer_peovider jar -
+ e sunmerani.jar
® i sungkest 1jar - Oy

FIGURE 2-5



Java Packages | 13

CREATING THE HELLOWORLD CLASS IN ECLIPSE

Our Hello project will contain one Java 3 New Java Class =1
proj = |[O][%]
class: HellowWorld from Lesson 1. Select Java Class N
File & New = Class and enter HelloWorld in Craste an Javaclps L=
the Name field in the pop-up window shown
in Figure 2'6 Source folder: lelafsrc Drowise...
) Fackage: com.practicaliava.lessonz
Then enter com.practicaljava.lesson2 in [CIEnclasing bype:
the Package field. This is a new addition that
was not present in the previous version of kg Lol TN
Maodifiers: (=) public {J default
HelloWorld. | Jabstract | |Final |
Superclacs: java lang Ohject
Interfaces: Add... |
Packages in Java are used to better organize Wh'“""‘"”"'*“ﬂ':;*:“"“’-’“r"d”‘“‘-’( .
. . . | public static void main(String[] args!
multi-file projects and for data protection. = S
It’s not unusual for a project to have several Iyl nheried sbetract methods
hundreds of Java classes. Keeping them all in °°"°“"""Lb“ddémz;r:::;c;“m:“p“m"d““ Yoo bt}
one directory is never a good idea. Hence the
files will be located in various directories and
sub-directories. ,5 e

What are the naming conventions for pack-
ages? Java developers use so-called reverse-
domain name conventions. Let’s say you work on a project called Sales for a company called Acme,
which has an Internet site at acme . com. Then every package name will start with the reverse URL of
the company, followed by the project name: com.acme.sales.

FIGURE 2-6

All Java classes that belong to this package would be stored in the following directory structure:
com/acme/sales.

If some of the Java classes are specific to domestic sales, while others are used in international
sales, you will create two more sub-directories: com/acme/sales/domestic and com/acme/sales/
international.

While directory names are separated by a forward slash or backslash, the corresponding Java pack-
ages are separated with periods. Java has a special keyword package, and its declaration has to be
the first line of the class (program comments don’t count). For example:

package com.acme.sales.domestic;

Let’s assume that you work for a company called Practical Java on project Lesson2; the name of the
package will be com.practicaljava.lesson2, which is exactly what I’ve entered in the Package
field shown in Figure 2-6.

Besides being used for better organization of Java classes, packages help in controlling data access.
You learn about this feature in the section “Access Levels” in Lesson 6.



14 | LESSON 2 ECLIPSEIDE

COMPLETING CODE GENERATION

You may have noticed that I also checked off the box asking Eclipse to generate the main method
for me.

Click Finish, and in a couple of seconds Eclipse will generate for you the initial code for the class
HelloWorld, as shown in Figure 2-7.

{3 Java - Hello/src/com/practicaljavallesson2/HelloWorld. java - Eclipse

File Edt Source Retactor Navigate Search Project Run ‘Window Help

[ B-0-Qr  BHG- OO - F
[£ Package Explor £ $2 therarchy | = O || [1] lelloworkd.java £2
4_—‘ i ¥ g parkage com.practicaljava. lesson?:
= 1 Helln ’
- @ puhlin class HellnWorid {
(=l e

= B com,practicahava.lessonz .

ER Hietoviorid. fava e

# B\ JRE System Library [Javase-1.6] PR ATgs

public static vold maln(Stringl] args)
ra /f TUDU Auto-gensrated method stub

FIGURE 2-7

The generated code is shown in Eclipse’s editor view. It starts with the package statement, and the
class declaration with the method name goes next.

Type in the line System.out.println("Hello World") ; under the TODO comment (comments are
explained in the next section), and save the code by pressing the little diskette image on the toolbar
or using the Ctrl+S key combination.

As you type in the code, Eclipse displays context-sensitive help suggesting a selection of possible
values, minimizing guesswork and typing errors. I made a snapshot, shown in Figure 2-8, right after
entering System. o:

public clasa HelloWorld |

T
* @param args

public static void main(String[] arga) |

v // TODD Auto-generaced method stub =
4 Systam.d|
| 1 OF O+ Print SITRA = Shstam The "standard” output strcam, This stream is arcady
[ S open and ready bo accept output data, Typically this
ctream corresponds to display output or another

] it deshinaninn speified by the host ervrmnment
wruser.

For cimple stand-alone Java applications, a bypical
weay bn wieke A hne of ourpedt data s

Systlem.oul.println{data)

i i 2 Caa tha wowdwe Lo mabhode in clace T s me O vnnm
Brezs 'Cid45paca’ to thew Tamplata Broporals Press "Tab' from propozal table or dick For Focus

FIGURE 2-8



Trylt | 15

By default, saving the code results in an invocation of the compiler. If you didn’t make any syntax
errors, Eclipse will create HelloWorld.class in the bin directory of the Hello project. In case of
compilation errors, Eclipse puts a little red round bullet in front of problematic lines.

Now you can run the program by pressing the

round green button on the toolbar. The output e P A (T

Of the program Wlll be ShOWn ln the Console lerminated:> Helluworld [Java Application] C:\Proge am Files) Java jdk1 .6,0_1 9k javaw.exe
. . . Hellu World

view panel in the lower part of Eclipse IDE, as

in Figure 2-9.

The format of this book doesn’t have space for
more detailed coverage of all the features of
Eclipse. The good news is that there are plenty
of tutorials describing every feature of Eclipse FIGURE 2-9
at www.eclipse.org/documentation.

Writable Senart Insert 10:40

TRY IT

In this lesson your goal is to write, compile, and run HelloWorld in Eclipse IDE.

Lesson Requirements

For this lesson download and install the current version of Eclipse IDE for Java EE Developers from

www.eclipse.org/downloads.

Step-by-Step

1.  Create the Hello project in Eclipse IDE.

2. Create a new Java class, Helloworld, with the method main (), as described earlier.
3. Compile the program by clicking Save.
4

. Run the program by clicking the green button in the Eclipse toolbar.

Please select Lesson 2 on the DVD with the print book, or watch online at
www . wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.eclipse.org/documentation
http://www.eclipse.org/downloads
http://www.wrox.com/go/fainjava




Object-Oriented Programming

Starting from this lesson you’ll be studying various elements of the Java language with brief
descriptions to get you started programming in the shortest possible time. But you are cer-
tainly encouraged to refer to the extensive Java documentation that’s available online at

http://java.sun.com/javase/6/docs/.

CLASSES AND OBJECTS

Java is an object-oriented language, which means that it has constructs to represent objects
from the real world. Each Java program has at least one class that knows how to do certain
things or how to represent some type of object. For example, the simplest class, Hel1loworld,
knows how to greet the world.

Classes in Java may have methods (aka functions) and fields (aka attributes or properties).

Let’s create and discuss a class named car. This class will have methods, describing what this
type of vehicle can do, such as start the engine, shut it down, accelerate, brake, lock the doors,
and so on.

This class will also have some fields: body color, number of doors, sticker price, and so on.

‘) LISTING 3-1: Class Car

Available for
download on

Wrox.com class Car({

String color;
int numberOfDoors;

void startEngine {
// Some code goes here
}
void stopEngine {
int tempCounter=0;

continues


http://java.sun.com/javase/6/docs/

18 | LESSON3 OBJECT-ORIENTED PROGRAMMING

LISTING 3-1 (continued)

// Some code goes here

Lines that start with double slashes are comments, which will be explained later in this lesson.

Car represents common features for many different cars: All cars have such properties as color
and number of doors, and all of them perform similar actions. You can be more specific and cre-
ate another Java class called car. It’s still a car, but with some properties specific to the model
James Bond. You can say that the class JamesBondcar is a subclass of car, or, using Java syntax,
JamesBondCar extends Car.

‘) LISTING 3-2: Class JamesBondCar

Available for
download on

Wrox.com class JamesBondCar extends Car{

int currentSubmergeDepth;
boolean isGunOnBoard=true;
final String MANUFACTURER;

void submerge {
currentSubmergeDepth = 50;
// Some code goes here

}
void surface {
// Some code goes here

But even after defining all the properties and methods for the class JamesBondcar you can’t drive it,
even on the computer screen. A Java class is like a blueprint in construction or engineering, and until
you build real objects based on this blueprint you can’t use them.

Creating objects, aka instances, based on classes is the equivalent of building real cars based on
blueprints. To create an instance of a class means to create the object in the computer’s memory
based on the class definition.

To instantiate a class (to put one more car on the road), you’ll declare a variable of this class’s type,
and use the new operator for each new instance of the car:

JamesBondCar carl = new JamesBondCar () ;
JamesBondCar car2 = new JamesBondCar () ;

Now the variables carl and car2 can be used to refer to the first and second instance of the
JamesBondCar respectively. To be precise, declaring the variables pointing at the instances is needed
if you are planning to refer to these instances in the program. The statement new JamesBondCar ()
creates the instance, too. You can create many cars based on the same specification. Even though
they all represent the same class, they may have different values in their properties — some of them
are red, some of them have two doors while others have four, etc.



Variables, Constants, and Data Types | 19

VARIABLES, CONSTANTS, AND DATA TYPES

Some values representing an object can change over time (variables) and some remain the same (con-
stants). This section will shed more light on the use of both types.

Declaring Variables

Java is a statically typed language: The program variables must be declared (named and typed) first,
and then you can assign them values either at the time of declaration or later on in one of the class
methods. For example, the variable isGunonBoard has been initialized during its declaration in
Listing 3-2, and currentSubmergeDepth got its value in the method submerge ().

The class car from Listing 3-1 defines a variable color of type String, which is used to represent
text values.

Constants

To store values that never change, you need to declare a constant — just add the keyword f£inal to
the declaration line, as in Listing 3-2:

final String MANUFACTURER;

Java developers usually render the names of constants in upper case. The value of a constant can
be assigned only once, and since you are creating an instance of a specific car, its manufacturer is
known and can’t change during the life span of this object:

MANUFACTURER = "J.B. Limited";

Even though you don’t have to initialize final variables during their declaration, it is a good practice
to follow. The preceding example should be written as

final String MANUFACTURER="J.B. Limited";

Primitive Data Types

There are eight primitive data types in Java: Four are for integer values, two are for values with
a decimal point, one is for storing single characters, and one is for Boolean data that allows

only either true or false as a value. Following are some examples of variable declarations and
initializations:

int chairs = 12;

char grade = 'A';

boolean cancelJob = false;

double nationalIncome = 23863494965745.78;

float hourlyRate = 12.50f; // add an f at the end of

//float literals

long totalCars = 46372836483921; // add an 1 at the end

// of long literals



20 | LESSON3 OBJECT-ORIENTED PROGRAMMING

The following table summarizes some characteristics of the Java data types.

PRIMITIVE TYPE SIZE MIN VALUE MAX VALUE WRAPPER CLASS
byte 8 bits -128 127 Byte
short 16 bits -32,768 32,767 Short
int 32 bits -2,147,483,648 2,147,483,647 Integer
long 64 bits -9,223,372,036, 9,223,372,036, Long
854,775,808 854,775,807
float 32 bits Single precision float- Single precision float- Float
ing point; see Java ing point; see Java
language specification language specification
athttp://bit athttp://bit
.1y/9nlwjh .1y/9nlwjh
double 64 bits Double precision float- Double precision float- Double
ing point; see Java ing point; see Java
language specification language specification
athttp://bit athttp://bit
.1ly/9nlwjh .1ly/9nlwjh
char 16 bits Unicode O Unicode 2 in a power Character
of 16 value
boolean - false (not a min) true (nota max) Boolean

Have you noticed that the char data type uses two bytes of memory to store the data? This allows
you to store character sets that have a lot more symbols than traditional alphabets because a single
byte can only represent 256 characters, while two bytes can represent 65,536 characters.

Following are some examples of variable declarations and initializations:

int chairs = 12;

boolean canceldob = false;

double nationalIncome = 23863494965745.78;
float hourlyRate = 12.50f;

long totalCars = 4637283648392L;

The last two literals in the preceding list end with the letters £ and L to indicate that you want to
store these data as float and long data types correspondingly. But most likely, the double datatype
should fit all your needs in non-integer calculations.

VARIABLE SCOPE

If you declare a variable inside any method, the variable has a local scope (for example,
adjustedTax in Listing 3-5 is local). This means that it’s only visible for the code within this
method (calcTax). When the method completes its execution, all local variables are automati-
cally removed from memory by Java’s garbage collector. Actually the scope is tighter than that.


http://bit.ly/9nlwjh
http://bit.ly/9nlwjh
http://bit.ly/9nlwjh
http://bit.ly/9nlwjh

Program Comments | 21

It’s accessible within the method only after the variables are declared, and only within the block
in which it is declared. For instance, a variable declared inside a for loop will not be excessive
outside the for loop even inside the same method.

If a variable has to be accessible from more than one class method, declare it on a class level.

Listing 3-5 shows the class Tax, where grossIncome, dependents, and state are class or member
variables. These variables are “alive” while the Tax object exists in memory. They can be shared and
reused by all methods within the class and they can even be visible from external classes.

If a variable is declared with a static qualifier (see Lesson 4), it’s shared by all
instances of the class.

WRAPPERS, AUTOBOXING, AND UNBOXING

All primitive data types have corresponding wrapper classes that contain useful methods dealing
with respective data types. The wrapper classes serve two purposes:

1. They contain a number of useful functions for manipulation with their primitive counterparts.
For example, the class Integer offers such useful methods as conversion of a String into an int,
or turning an int into a float, and more. The Tnteger class also allows you to set the minimum
and maximum values for the number in question.

2. Some Java collections can’t store primitives (such as ArrayList) and so primitives have to be
wrapped into objects. For example,
ArraylList myLotteryNumbers = new ArrayList();

myLotteryNumbers.add (new Integer (6));
myLotteryNumbers.add (new Integer (15));

You don’t need to explicitly create a new instance for every primitive as in the preceding code snip-
pet. You can simply write myLotteryNumbers.add (6) ; and the primitive value 6 will automatically
be wrapped into an instance of the Integer class. This feature is called autoboxing.

On the same note, the next line is also valid:

int luckyNumber= myLotteryNumber.get (23);

Even though get (23) will return the value of the 24" element (the numbering in Java collections
starts with zero) as an Integer object, that object will automatically be converted into a primitive.
This is called unboxing.

PROGRAM COMMENTS

While writing code in Java, you should add comments, the text that explains what the program
does. Programs are being read a lot more often than they are being written. At some point, other
software developers will read and try to understand your code. Be nice and make their job easier.
A typical software developer doesn’t like writing comments (regardless of what programming lan-
guage he or she uses).



22

LESSON 3 OBJECT-ORIENTED PROGRAMMING

I can suggest to you a simple technique: Write comments first and only then the code. By the time
your program is written it’s already commented. You can write comments pretty much every-
where — before or inside the class, or inside the methods.

In Java you can use three types of comments:
> Block comments that contain more than one line of text located between the symbols /* and */.
For example:

/* This method will calculate the cost of shipping, handling,
and all applicable taxes
*/

The compiler ignores the text in comments and you can write whatever you want.

> If you want to write a short comment that fits on a single line, just start this line with two
forward slashes (//). For example:

// This method will calculate the cost of shipping

> Some comments start with /** and end with */. These are used by a special utility, javadoc,
that can automatically extract the text from these comments and create program documenta-
tion. To get a feeling for what javadoc can generate, look at the documented API for Java
ﬁsdfhttp://java.sun.com/javase/6/docs/api/overview—summary.html.

If you’d like to learn how to use the javadoc utility, refer to its program documentation at
http://java.sun.com/javase/6/docs/technotes/guides/javadoc/index.html.

First Useful Program

It’s time to write a program that does something more useful than print “Hello World.” This pro-
gram will emulate the calculation of state tax. The goal is to show you how Java classes communi-
cate, how methods are called, and how variables can be used.

First you need to decide what Java class(es) you need to write for the task at hand. Then think about
the properties (class variables) and methods (functions) these classes should have.

Declaring a Tax Class with Properties

Since you are planning to calculate tax, it doesn’t take a rocket scientist to figure out that you need
to define a class called Tax. Start with the class name and curly braces — this is the simplest class
you can create:

class Tax({

}

What data does this class need to perform tax calculations? You’ll definitely need to know the gross
income of a person for the tax year. This is a good candidate for a property of this class. Properties
in Java are represented by variables. Pick one of the numeric data types. Gross income is not always


http://java.sun.com/javase/6/docs/api/overview-summary.html
http://java.sun.com/javase/6/docs/technotes/guides/javadoc/index.html

Program Comments | 23

an integer number, so let’s use the double data type, as it’s a number with a decimal point. You
could use float instead, but you expect to process some very large incomes:

class Tax({
double grossIncome;

You also need to know what state the person lives in — taxation rules vary by state. These are some of
the abbreviations for the states in the USA: N'Y, NJ, CT. Use the data type String for storing text data:

class Tax{
double grossIncome;
String state;

Add one more property for dependents of the taxable person. Integer will work just fine here — a
person can’t have two and a half dependents:

class Tax{
double grossIncome;
String state;
int dependents;

Adding a Method to the Tax Class

Variables store data, and methods perform actions. It’s time for actions. The first method, calcTax (),
will calculate the state tax based on the values of gross income, number of dependents, and state:

‘) LISTING 3-3: Class Tax

Available for

download on
Wrox.com

class Tax{
double grossIncome;
String state;
int dependents;

public double calcTax() {

return 234.55;

The calcTax () method signature tells the following;:
> Any external class can access this method (public).
>  This method will return a value of type double.

»  The name of the method is calcTax.



24 | LESSON 3 OBJECT-ORIENTED PROGRAMMING

The empty parentheses after the method name mean that it does not have any arguments or, in
other words, it does not need any values from outside Tax to perform calculations. As a matter of
fact, this version of calcTax () doesn’t use any data for calculation — it just returns a hard-coded
tax value of $234.55.

How do you decide if a method should return a value? If your method performs some calculations and
has to give a value back to a calling program, it has to return a value. If a method directly modifies the
class variables or simply outputs data somewhere (monitor, disk, server) it may not need to return any

values. You still need to declare a “no return” in a method signature by using a special keyword, void:

public void PrintAnnualTaxReturn() {

//Code goes here

With the Java return statement a method can return data contained in a variable to a calling pro-
gram, for example:

return calculatedTax;

Keep in mind that if you declare a return type in the method signature but forget to include the
return statement in the body of the method, the Java compiler will give you an error.

Declaring Another Class: TestTax

Tax will know how to calculate tax, but in a real-world application you’ll have many classes that
represent the various workflows of this process. For example, you may need to create a class
called customer. Depending on the type of employment or income, accountants use many differ-
ent forms to file taxes, and each form can be represented by a separate class: Form1040, Form1099,
and so on.

Each of these classes represents some entity, but none of them is an executable program — none of
them will have the method main (). You need to create one more class to start the application and
instantiate other classes as needed. I'll call this class TestTax. The class TestTax should be able to
perform the following actions:

»  Create an instance of the class Tax.

> Assign customer’s data (gross income, state, dependents) to the class variables of the class Tax.
> Call the method calcTax ().
>

Print the result on the screen.

The class TestTax will be stored in a separate file named TestTax. java.

‘) LISTING 3-4: Class TestTax

Available for class TestTax{
dm:;‘?gg"ﬂ" public static void main(String[] args) {
Tax t = new Tax(); // creating an instance



Program Comments | 25

t.grossIncome= 50000; // assigning the values
t.dependents= 2;
t.state= "NJ";

double yourTax = t.calcTax(); //calculating tax

// Printing the result
System.out.println("Your tax is " + yourTax) ;

In the preceding code we’ve declared a variable, t, of type Tax.

The method main () is an entry point to the tax-calculation program. This method creates an instance
of the class Tax and the variable t points to a place in your computer’s memory where the Tax object
was created. From now on, if you want to refer to this object use the variable t.

The following three lines assign values to the properties of the object Tax:

t.grossIncome= 50000; // assigning the values
t.dependents= 2;
t.state= "NJ";

After that you can calculate tax by calling the method calcTax (), and the result returned by this
method will be assigned to the variable yourTax. The method calcTax () still returns the hard-
coded value, but you’ll fix this in the “Try It” section of this lesson. The last line just displays the
result on the system console.

At this point we already have two classes communicating with each other (TestTax and Tax).

Conditional Statement if

We make decisions all the time: “If she says this I’ll answer with that, otherwise I’ll do something
else.” Java has an if statement that determines whether some condition is true or false. Based on the
answer to this question the execution of your program will be routed.

If the condition expression returns true, the code between the first curly braces will be executed;
otherwise the code after the else statement will take place. For example:

if (totalOrderPrice > 100){
System.out.println("You'll get a 20% discount");
}
else(
System.out.println("Order books for more than a" +
" $100 to get a 20% discount");

Because this code sample has only one statement to execute in the if and else clauses, using curly
braces is not a must, but they make the code more readable and prevent you from introducing hard-
to-find bugs if, later on, you need to add more code in an if statement.



26 | LESSON3 OBJECT-ORIENTED PROGRAMMING

switch Statement

The switch statement is an alternative to if. The case label in the switch condition (taxCode) is
evaluated and the program goes to one of the following case clauses:

int taxCode=someObject.getTaxCode (grossIncome) ;
switch (taxCode) {
case 0:
System.out.println("Tax Exempt") ;
break;
case 1:
System.out.println("Low Tax Bracket");
break;
case 2:
System.out.println("High Tax Bracket");
break;
default:
System.out.println("Wrong Tax Bracket");

The preceding code will call only one printin() method. Do not forget to put the break at the
end of each case statement so the program will jump out of the switch statement after processing
a case; otherwise the code will “fall-through” and print more than one line even though a taxcode
can have only one value.

Inheritance

In object-oriented languages the term inheritance means an ability to define a new class based on an
existing one (not from scratch).

Imagine that the class Tax calculates tax properly in all states except New Jersey, which has intro-
duced new educational tax deductions. If you have a kid in college, this makes you eligible for an
additional $500 deduction from your taxes. In this case you have to either change the method
calcTax ()in the class Tax to introduce a special case for New Jersey, or create another class based
on Tax and add this new functionality there.

Every person inherits some features from his or her parents. A similar mechanism exists in Java. The
special keyword extends is used to indicate that one class has been inherited from another:

class NJTax extends Tax({

}

The class NgTax will have all the features the class Tax has, plus you can add new properties and
methods to it. In such a setup, the class Tax is called a superclass, and NJTax is called a subclass.
You can also use the terms ancestor and descendent, respectively. This new class will have access to
all variables and methods of its superclass, unless those have a private or package access level, which
will be discussed in Lesson 5.



Program Comments | 27

Let’s extend the behavior of the class Tax in NdTax. The latter will have a method called
adjustForStudents ():

‘) LISTING 3-5: Class NJTax

Available for class NJTax extends Tax{
download on
Wrox.com .
double adjustForStudents (double stateTax) {

double adjustedTax = stateTax - 500;
return adjustedTax;

To use this new method, the TestTax class should instantiate NJTax rather than Tax as it did in
Listing 3-4:

NJTax t= new NJTax() ;

Now you can call methods defined in the class Tax as well as those from NJTax using the reference
variable t, for example:
NJTax t= new NJTax();

double yourTax = t.calcTax();
double totalTax = t. adjustForStudents (yourTax) ;

I’ve added a new functionality to the tax-calculation program without changing the code of the
class Tax. The preceding code fragment also shows how you can pass a result of processing from one
method to another. The value of the variable yourTax was calculated by calcTax () and is passed to
the method adjustForStudents () as an argument.

Method Overriding

Yet another important term in object-oriented programming is method overriding. Imagine Tax
with 20 methods. Most of them work fine for all states, but there is one method that is not valid for
New Jersey. Instead of modifying this method in the superclass, you could create another method
in the subclass with the same name and argument list. If a subclass has that method with the same
name and argument list, it will override (suppress) the corresponding method of its ancestor.

Method overriding comes in handy in the following situations:

> The source code of the superclass is not available, but you still need to change its
functionality.

The original version of the method is still valid in some cases and you want to keep it intact.
You use method overriding to enable polymorphism, which will be explained in Lesson 7.

You’ll have a chance to try method overriding in the “Try It” section. In Lesson 4 you learn about
method overloading, which is a completely different animal.



28 | LESSON3 OBJECT-ORIENTED PROGRAMMING

TRYIT

In this section you create in Eclipse the tax-calculation application described in this lesson, and then
modify it to replace the hard-coded value returned by the method calcTax () with some calcula-
tions. After this is done, you’ll subclass the class Tax and override calcTax ().

Lesson Requirements

For this lesson you must have Eclipse IDE installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson3 folder in the download.

Hints

This lesson has only brief introductions to basic Java language constructs. The online Java tutorial
may be handy while completing this and future assignments. It’s available at http://download
.oracle.com/javase/tutorial/java/index.html.

Step-by-Step

1. In Eclipse, create a new project named Lesson 3.

2. Create a new Tax class (File ©» New > Class). Enter the code shown in Listing 3-3.
3. Create another class, TestCalc, and input the code from Listing 3-4.
4

. Save both classes and run Testcalc (right-click and select Run As = Java Application). The
console view should display “Your tax is 234.55,” as shown in Figure 3-1.

{3 Java TaxCalelsre/TestTax.java Eclipse

Fle Edt Source Refactor Navigate Search Froject Run ‘Window Help

B0 QU B @G P © o
[£ package 21 T8 Hicraech | T O || [1] Tax.java [3) TestTaxjova 52
= \'-_'—‘4 iy class TestTax{

- c;! Hello E public static vold main(Stringl] args)d

: i Tax t = new Tax(); // cr 1ng a
= 12 TaxCal i . u

= t.grossincome= S0UU0;

S el

-5 (ool pakaus) T.dependents= Z;:
B [ Texievs i anace™ "Ni";

i m4 IRE System Library [Javas-1 duuble yourTax = L.calcTax(): //calculating tax

ff Printlng Lhe resultl
System, out.printin{“Your tax is " + yourTax);

[£. Problems | @ Javadoc |[E], Declaration | B Console 2
=lemmaled > TestTax [Java Application] C:\Proyram Fikes) Javaljdkl 6,0_1 90 javaw.exe (May 5, 20100
Your tax is 274.55

FIGURE 3-1


http://www.wrox.com
http://download.oracle.com/javase/tutorial/java/index.html
http://download.oracle.com/javase/tutorial/java/index.html

Trylt | 29

5. Replace the return of a hard-coded value with some tax calculations. Let’s say that if the
gross income was less than $30,000 you will deduct $ percent for state tax. If it’s greater
than $30,000 you will deduct 6 percent. Modify the code of calcTax as follows. Run the
program several times, modifying the values of the class variables of the class Tax. Make sure
that the tax value on the console is properly calculated.

public double calcTax() {
double stateTax=0;
if (grossIncome < 30000) {
stateTax=grossIncome*0.05;
}
else{
stateTax= grossIncome*0.06;
}

return stateTax;

6. Create the NJTax class shown in Listing 3-35.

7. Change the functionality of calcTax () by overriding it in NoTax. The new version of
calcTax ()should lower the tax by $500 before returning the value.

8. Modify the code of the TestTax class to instantiate NgTax instead of Tax. Observe that the
$500 deduction is properly calculated.

To get the sample database files you can download Lesson 3 from the book’s website at www . wrox. com.

www . wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 3 on the DVD with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com/go/fainjava




Class Methods

Methods contain code for actions or functions a class can perform. In this lesson you’ll learn
how to declare and call them.

METHOD ARGUMENTS

Each class method performs some functionality, such as calculating tax, placing an order, or
starting the car. If a method requires some external data to perform its function, such data can
be provided in the form of arguments or parameters, as in the function adjustForStudents ()
shown in Listing 3-5, which has one argument: stateTax.

In the method signature you need to declare the data type and the name of each argument, for
example:

int calcLoanPayment (int amount, int numberOfMonths, String state) {
// Your code goes here

}

When you call a function, Java run time tries to find the function that has been declared with
the specified signature. For example, if you try to call the preceding function like this:

calcLoanPayment (20000, 60);

Java compiler will give you an error complaining that no calcLoanPayment () function has
been found that expects just two arguments.

METHOD OVERLOADING

If you want to allow the calling of a function with different numbers of arguments, you need
to create multiple versions of this function. For example, you can create a function that will



32

LESSON 4 CLASS METHODS

use the state of New York to spare developers from providing the state as an argument. If most of
the loan calculation is done for New Yorkers, such a function may be a good idea.
int calcLoanPayment (int amount, int numberOfMonths) {

// Your code for New York loan calculation goes here

}

Method overloading means having a class with more than one method having the same name but
different argument lists. A method can be overloaded not only in the same class but in a descendant
too. For example, the class L.oancalulator can have the function calclLoanPayment () defined with
three arguments, while its descendant MyL.oanCalculator may have a two-argument version of
calcLoanPayment ().

Why overload methods in your classes? To provide users of these classes with a more flexible appli-
cation program interface (API). In Lesson 1 you use the JDK function printin() declared in the
class PrintStream (see Figure 4-1 or its JavaDoc description at http://java.sun.com/javase/6/
docs/api/java/io/PrintStream.html). The function printin () has been overloaded there to
give Java developers the freedom to call “the same” method with different types of arguments. In
reality they are calling different methods with the same name.

void |println()
Terminates the current line by writing the line separator string.

void |println(boolean x)
Prints a boolean and then terminate the line.

void |println(char x)
Prints a character and then terminate the line.

void |println(char[] x)
Prints an array of characters and then terminate the line.

void [println(double x) ) ‘
Prints a double and then terminate the line.

void |println(float x)
Prints 4 float and then terminate the line.

void [printla(int x)
Prints an integer and then terminate the line.

void|priatla(long x) i .
Prints a long and then terminate the line.

void|println(Ubject x)
Prints an Object and then terminate the line.

void |println(String x)
Prints a String and then terminate the line.

FIGURE 4-1

CONSTRUCTORS

When a program creates an instance of a class, Java invokes the class’s constructor — a special
method that is called only once when the instance is being built with the operator new:

Tax t = new Tax();


http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html
http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

Constructors | 33

Parentheses in the preceding code snippet mean that this code calls a no-argument constructor on
the class Tax. Even if you didn’t declare a constructor on a class, Java will create a no-argument
constructor for you.

Constructors have the following characteristics:
> They are called when the class is being instantiated.
> They must have the same name as the class they’re in.

>  They can’t return a value and you don’t specify the keyword void as a return type.

Typically constructors are used to assign initial values to class variables, and in the next code snippet
a three-argument constructor is defined:

‘) LISTING 4-1: Class Tax with constructor

Available for class Tax {

download on . .
Wrox.com double grossIncome; // class variables

String state;
int dependents;

// Constructor

Tax (double gi, String st, int depen) {
grossIncome = gi; // class variable initialization
state = st;
dependents=depen;

Creating an instance of this class can look like this:

Tax t = new Tax(65000,"NJ",3);

Note the difference in the initialization of the class variables: Here you pass the values during the
class instantiation via the constructor’s arguments, while in Listing 3-4 it took four lines of code to
create an instance of Tax and then initialize the variables. If a constructor with arguments has been
defined in a class, you can no longer use a default no-argument constructor — you have to explicitly
write one if needed.

The code snippet above declares the variable t that points at an instance of the object Tax in memory.
To refer to any specific field or call a method on this instance, you’ll need to use so-called dot-notation —
the name of the reference variable followed by a dot and the name of the field or a method. For example,

Public static void main(){

Tax t = new Tax (65000, "NJ",3);
t.dependents = 4; // changing the number of dependents from 3 to 4



34 | LESSON4 CLASS METHODS

THE KEYWORD SUPER

If a method is overridden in a subclass, there are two versions of the method with the same signa-
ture. If you just call a method by name, e.g. calcTax () in the class NgTax from Lesson 3, the JVM
will call the overridden version of the method. Once in a while you may need to call the ancestor’s
version of a method. The keyword super enables you to explicitly call the method or a constructor
from the ancestor’s class, for example super.calcTax ().

If one class is inherited from another, each of them may have its own constructor explicitly defined.
As with any other class method, a constructor of a subclass can override the constructor of a super-
class. But sometimes you may need to add into the subclass’s construction some functionality that
has to be called after the ancestor’s constructor code. In this case just add the explicit call to the
constructor of a superclass, as shown in Listing 4-2. Invocation of the constructor of the superclass
must be the first line in the constructor.

‘) LISTING 4-2: Calling the constructor of the ancestor

Available for class SmallerTax extends Tax{
dmgtgg,ﬁ" // Constructor
SmallerTax (double gi, String st, int depen) {
super (gi, st,depen) ;
System.out.println("Applying special tax rates for my friends.");

THE KEYWORD THIS

The keyword this is useful when you need to refer to the instance of the class from its method.
Review the code of the constructor from Listing 4-1. The names of the constructor’s arguments were
different from the names of the class variables. But the code in Listing 4-3 shows how you can use
the same variable names, both in the arguments and in the class variables. The keyword this helps
to resolve name conflicts. To instruct JVM to use the instance variable grossIncome, use the follow-
ing syntax:

this.grossIncome = 50000;

If there were only one grossIncome variable in the class Tax, you could simply omit the this prefix.
But in Listing 4-3 the absence of the this keyword would lead to ambiguity and the instance variable
would never be initialized.

‘) LISTING 4-3: Resolving name conflicts with the this keyword

Available for class Tax {

d\lm:!ggglgn double grossIncome; // class member variables



The Keyword this | 35

String state;
int dependents;

// Constructor
Tax (double grossIncome, String state, int dependents) {

this.grossIncome = grossIncome; // instance variable initialization
this.state = state;

this.dependents=dependents;

Consider a class called someotherclass with a method defined as verifyTax( Tax t).As you can
see, it expects an instance of Tax as an argument. Listing 4-4 shows how you can call it from the
class Tax using the keyword this to pass a reference to the current instance of the class Tax.

‘) LISTING 4-4: Calling an overloaded constructor with the keyword this

Availablefor  class Tax {
“Wiﬂ'x“i.';'n?" void verifyTax() {

SomeOtherClass s = new SomeOtherClass() ;
s.verifyTax(this);

Here’s another use case — a class has several overloaded constructors with different numbers
of arguments. You can use the this () notation to call a specific version of the constructor. In
Listing 4-5 the second constructor invokes the first one.

‘) LISTING 4-5: Calling an overloaded constructor with the keyword this

Availablefor  class Tax {
dwmrgg:" double grossIncome; // class member variables

String state;
int dependents;

// First Constructor
Tax (double grossIncome, String state, int dependents) {

this.grossIncome = grossIncome; // instance variable initialization
this.state = state;

this.dependents=dependents;

// Second Constructor
Tax (double grossIncome, int dependents) {
this(grossIncome, "NY", dependents);



36 | LESSON4 CLASS METHODS

PASSING BY VALUE OR BY REFERENCE

Calling a method with arguments enables you to pass some required data to the method. The ques-
tion is how JVM passes these values to the method. Does it create a copy of a variable in a calling
program and give it to the method?

The primitive values are passed by value (meaning that an extra copy will be created in memory
for each variable). If you create an instance of Tax as in Listing 4-6, there will be two copies of
grossIncome and two copies of the variable dependents — one in TestTax and the other one in Tax.

‘) LISTING 4-6: The TestTax class

Available for class TestTax{

daﬂ:gg&g" public static void main(String[] args) {
double grossIncome; // local variables
String state;
int dependents;

grossIncome= 50000;
dependents= 2;
state= "NJ";

Tax t = new Tax(grossIncome, state, dependents);
double yourTax = t.calcTax(); //calculating tax

// Printing the result
System.out.println("Your tax is " + yourTax);

In the preceding example, if you’ll be changing the value of grossIncome or dependents in the con-
structor of the class Tax, it won’t affect the values in the corresponding variables of the class TestTax
because there will be two copies of these primitives.

Now consider another example. I’ll declare another variable of type Tax and will assign the value of
t to it:

Tax t2 = t;

The variable t is pointing to an instance of the object Tax in memory. In other words, the variable t
holds the reference (the address in memory) to an object. The code line above will not create another
copy of the Tax object in memory, but will copy its address to the variable t2. Now we still have a
single instance of the Tax object, but now two reference variables — t and t2 — are pointing at it.
Until both of these variables will go out of scope (explained in the next section), the object Tax will
not be removed from memory.

The process of removal of unused objects from memory is called garbage collection (GC). JVM runs
GC automatically.



The Keyword static | 37

The code in Listing 4-4 passes the argument’s value differently. It seems that it passes the entire
instance of the object Tax to the method verifyTax (). In reality, though, another copy of just the
reference variable pointing at the Tax instance will be created in Someotherclass, but the instance
of the class Tax will remain the same.

This means that if the code in Someotherclass will be changing some properties of the Tax instance,
the changes will be applied to the only copy of the Tax instance and will be visible from both Tax and
SomeOtherClass.

VARIABLE SCOPES

Variable scope defines how long the variable will live and remain usable. If you declared the variable
inside a method, it’s a local variable that will go out of scope (become unavailable) as soon as the
method finishes its execution. For example, variables t, grossIncome, dependents, and state from
Listing 4-6 are local.

If variables have been declared outside the method (such as grossIncome, dependents, and state
in Listing 4-1) they are class variables and can be used by any method of this class. On the other
hand, the variables grossIncome, dependents, and state in Listing 4-1 are also instance variables
and store instance-specific data.

You can create more than one instance of the class Tax, and each instance can have different values
in its instance variables. For example, the following lines of code will create two instances of Tax,
with different values for grossIncome, dependents, and state (these instance variables are ini-
tialized in the constructor):

Tax tl = new Tax (50000, "NY", 3 );
Tax t2 = new Tax (65000, "TX", 4 );

THE KEYWORD STATIC

Java has a special keyword, static, that indicates that the class variable will be shared by all
instances of the same class. If the class Tax had the declaration static double grossIncome;
then this variable’s value would be shared by all instances of the class Tax, which doesn’t make
sense. Besides, after the creation of two instances (t1 and t2), as in the preceding code, the first
value of the variable (50000) would be overwritten with the second one (65000).

But if you introduce in Tax a class variable to count the number of its instances (think the number
of customers whose taxes have been calculated), such a variable has to be declared as static, so its
only version can be incremented by each instance on creation, as in Listing 4-7.

‘) LISTING 4-7: The Tax class with the keyword static

Available for  class Tax {
dwmg:g:" double grossIncome; // class member variables

String state;

continues



38 | LESSON4 CLASS METHODS

LISTING 4-7 (continued)

int dependents;
static int customerCounter;

// Constructor
Tax (double gi, String st, int depen) {
grossIncome = gi; // member variable initialization
state = st;
dependents=depen;
customerCounter++; // increment the counter by one

You can also declare methods with the static qualifier. Such methods can be called without the
need to instantiate the class first. This is usually done for utility methods that don’t use any instance
variables, but rather get input via the argument and return the result.

The following function converts Fahrenheit to Celsius and returns the result:

class WeatherReport{
static double convertToCelsius (double far) {
return ((far - 32) * 5 / 9);

You can call this function from another class without the need to instantiate WeatherReport first:

double centigrees=WeatherReport.convertToCelsius(98.7);

TRY IT

In this section you create yet another version of the Tax class with a three-argument constructor and
add a utility function to convert the tax value from dollars to euros, assuming the dollar-to-euro
conversion rate is 1.25.

Lesson Requirements

For this lesson you should have Eclipse IDE installed. If you prefer to use a plain text editor to code
your Java programs, that’s fine too.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson4 folder in the
download.



http://www.wrox.com

Trylt | 39

Step-by-Step
1. In Eclipse IDE, create a new project named Lesson 4.
2. Create a new class called Tax (File & New > Class). Enter the code shown in Listing 4-7.

3.  Add the following statement as the last line of the constructor of the class Tax:

System.out.println("Preparing the tax data for customer #" + customerCounter) ;

4. Add the method calcTax() to the class Tax and calculate tax by multiplying the gross
income by 0.33 and deducting the number of dependents multiplied by one hundred:

return (grossIncome*0.33 - dependents*100);

5. Add the static function to Tax to convert the calculated tax to euros, applying the currency-
conversion rate of 1.25. Print the calculated tax in euros using the function System.out
.println().

6. Create a TestTax class and input the code from Listing 4-6. Add to this class yet another
instance of the class Tax:

Tax t2 = new Tax (65000, "TX", 4 );

Calculate the tax using the second instance of the class Tax:

double hisTax = t2.calcTax();
7. Call the method twice to convert the currency, passing the calculated tax from t and t2 as an
argument.

8. Run the class Testcalc (right-click and select Run As ©> Java Application). The Console
view should display the two “Preparing the tax...” messages followed by the two messages
with the calculated tax in euros.

To get the sample database files you can download Lesson 4 from the book’s website at www.wrox . com.

www . wrox . com/go/fainjava fo view the video that accompanies this lesson.

? Please select Lesson 4 on the DVD with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com/go/fainjava




Back to Java Basics

This tutorial didn’t start with detailed coverage of basic constructs of the Java language such
as the syntax of if statements, loops, and the like. You started learning Java programming with
getting used to object-oriented terms and constructs of the language. This lesson is a grab bag of
basic language elements, terms, and data structures.

ARRAYS

An array is a data storage that’s used to store multiple values of the same type. Let’s say your

program has to store names of 20 different girls, such as “Masha”, “Matilda”, “Rosa” and so
on. Instead of declaring 20 different String variables, you can declare one string array with
the capacity to store 20 elements:

String [] friends = new String [20]; // Declare and instantiate array
friends[0] = "Masha"; //Initialize the first element
friends[1l] = "Matilda"; //Initialize the second element
friends([2] = "Rosa";

// Keep initializing the elements of the array here

friends[19] = "Natasha"; //Initialize the last element

The first element of an array in Java always has an index of 0. While declaring an array you
can place brackets either after the data type or after the variable name. Both of the following
declarations are correct:

String friends[];
String[] friends;

You must know the size of the array before assigning values to its elements. If you want to be
able to dynamically change the size of an array during the run time, consider other Java collec-
tion classes from the package java.util, such as Vector and ArrayList. Besides arrays Java
has lots of collection classes that can store multiple related values, for example HashMap, List,
and LinkedList. You’ll have a chance to see their use in the code samples accompanying this
book. Listing 5-1 contains sample code that partially populates an array.



42 | LESSON5 BACKTO JAVABASICS

‘) LISTING 5-1: Populating a simple array

Availablefor ~ public class Girlfriendsl {

download on
Wrox.com
public static void main(String[] args) {
String [] friends = new String [20]; // Declare and instantiate array
friends[0] = "Masha"; //Initialize the first element
friends[1l] = "Matilda"; //Initialize the second element
friends[2] = "Rosa";
//
friends[18] = "Hillary";
friends[19] = "Natasha";

System.out.println("The third girl's name is " + friends[2]);
System.out.println("The twentieth girl's name is " + friends[19]);

An array has a property length that “knows” the number of elements in the array. The next line
shows how you can get this number:

int totalElements = friends.length;

If you know all the values that will be stored in the array at the time of its declaration, you can
declare and initialize an array at the same time. The following line declares, instantiates, and popu-
lates an array of four elements.

String [] friends = {"Masha", "Matilda", "Rosa", "Sharon"};

Our array friends is not as practical as a Rolodex, though — it does not store girls’ phone numbers.
Luckily, Java supports multidimensional arrays. For example, to create a two-dimensional array
(names and phone numbers), declare it with two sets of square brackets:

String friends [][] = new String [20][2];
friends[0][0] = "Masha";

friends[0][1] = "732 111-2222";
friends[1][0] = "Matilda";

friends[1][1] = "718 111-2222";
friends[19][0] = "Sharon";

friends[19][1] = "212 111-2222"

LOOPS

Loops are used to repeat the same action multiple times. When you know in advance how many times
you want to repeat an action, use the for loop. Let’s print the names from the one-dimensional array
friends.

int totalElements = friends.length;

for (int 1=0; 1 < totalElements;i++) {
System.out.println("I love " + friends[il]);



Loops | 43

The preceding code reads “Print the value of the element i from the array friends starting from
1=0 and incrementing i by one (i++) until i reaches the value equal to the value of totalElements.”

Listing 5-2 adds a for loop to the program shown in Listing 5-1.

\) LISTING 5-2: Looping through the array

Availablefor  public class Girlfriends2 {

download on
Wrox.com
public static void main(String[] args) {
String [] friends = new String [20];
friends[0] = "Masha";
friends[1l] = "Matilda";
friends[2] = "Rosa";
friends[18] = "Hillary";
friends[19] = "Natasha";

int totalElements = friends.length;

int 1i;

for (i=0; i<totalElements;i++) {
System.out.println("I love " + friends[i]);

Since the friends array has been declared with a size of 20, Java run time has allocated memory
for 20 elements. But the code in Listing 5-2 has populated only five of the 20 elements of the array,

which explains why the output of this program looks as follows:

love Masha
love Matilda
love Rosa
love null
love null
love null
love null
love null
love null
love null
love null
love null
love null
love null
love null
love null
love null
love null
love Hillary
love Natasha

HHHHHHHHHHMHHHHHHHH H H

The keyword null represents an absence of any value in an object. Even though the size of this

array is 20, only five elements were initialized.



44

LESSON 5 BACK TO JAVA BASICS

There’s another syntax of the for loop, known as the for-each loop. You simply declare a variable
of the same type as the objects stored in an array and specify the array to iterate. The following code
snippet declares the variable gir1, and the colon means “in.” Read this loop’s condition expression
as “for each element in friends.” This syntax allows you to not worry about checking the size of
the array, and there is no need to increment any loop variable either. This is an elegant and short
loop notation:

for (String girl: friends) {
System.out.println("I love " + girl);

You can rewrite the program in Listing 5-2 using the while loop, which is used when you do not
know the exact size of the array, but just the condition of exit from the loop. Use the keyword while:

int totalElements = friends.length;
int 1=0;
while (i<totalElements) {
System.out.println("I love " + friends[i]);
1++; // the same as i=i+1;

Just think of a program that reads and processes the records from a database (see Lesson 22). When
you write a Java program you don’t know how many elements the database has, and even if you do
know, this number can change in the future, so it’s better to use loops with the exit condition than
to use a hard-coded number of repetitions.

Use the keyword break to prematurely jump out of the loop on the line below the ending curly brace.
For example, if you want to find the first nul1 element in the friends array, write the following:

while (i<totalElements) {
if (friends[i]==null){
System.out.println("The element " + (i+1) + " is null");
break;

}

System.out.println("I love " + friends[i]);
i++;
} // closing curly brace for the loop

The if statement in the preceding code checks the value of each element of the array, and as soon
as it finds nu11, the loop prints the message about it, stops the iteration process, and goes to the line
below the closing curly brace of the loop, if any.

The keyword continue allows you to force the loop to jump up to its first line and retest the loop exit
condition. The following code snippet will print only those values from the array that are not nu11.

while (i<totalElements) {
if (friends[i]l==null) {
i++;
continue;



Loops | 45

System.out.println("I love " + friends[i]);
i++;
}

System.out.println("The iteration is over");

The preceding code uses an if statement you have not seen before, which allows you to check a certain
condition and redirect the program to execute one or another portion of the code accordingly. In this case,
if the loop runs into a nul1 value (the double equals sign means “compare the values for equality”),
it increments by one the value of the variable i and goes to the beginning of the while loop, skipping
the rest of the code within the loop body. (Later in this lesson there’s a section explaining the syntax
of the various if statements in greater detail.) The complete code of the program, illustrating a while
loop with a continue statement, is shown in Listing 5-3.

\) LISTING 5-3: While loop with continue statement

Available for  public class WhileLoopDemo {

download on
Wrox.com
public static void main(String[] args) {
String [] friends = new String [20];
friends[0] = "Masha";
friends([1l] = "Matilda";
friends[2] = "Rosa";
friends[18] = "Hillary";
friends[19] = "Natasha";

int totalElements = friends.length;
int 1i=0;

while (i<totalElements) {
if (friends[i]l==null){

1++;
continue;
}
System.out.println("I love " + friends[i]);
i++;
}

System.out.println("The iteration is over");

There is a rarely used do-while version of the while loop. It starts with the do keyword followed by
the body of the loop in curly braces, and the while condition comes last. Such loop syntax guarantees
that the code written in the body of the loop will be executed at least once, because the loop condi-
tion will be tested only after the first pass into the loop. In the following loop at the very minimum



46 |

LESSON 5 BACK TO JAVA BASICS

the statements about reading the array friends will be printed for each element of the array even if
every one of them is null:

do {
System.out.println("Reading the element" + i +" of array friends");
if (friends[i]==null){
i++;
continue;

}

System.out.println("I love " + friends[i]);
i++;
}

} while (i<totalElements) ;

The worst thing that can happen in any loop is a programmer’s mistake in the loop exit condition
that will always evaluate the loop condition as true. In programming this is known as infinite loop.
To get a better feeling for what this term means, comment out the line that increments the value of
the variable 1 inside the if statement, and your program will never end unless you forcefully stop

it or your computer runs out of power. The reason is clear: If the program will enter the code block
that just has the statement continue, the value of the variable i will never increase and the loop
execution condition i<totalElements will hold true forever.

DEBUGGING JAVA PROGRAMS

In programmer’s lingo a bug is an error in a program that causes the program to work in an unexpected
way. Don’t confuse a bug with a syntax error in the code. The latter will be caught by the Java compiler
before you even start the program, while bugs are your run-time enemies. To debug a program is to
identify and fix the run-time errors in code.

The simplest way to debug a program is to print the value of the “suspicious variables” with System
.out.println() or the like. You may think that a certain variable will get a particular value during
the execution, but you might be wrong, and printing its value from the running program may reveal
why your code produces unexpected results.

Java also comes with a logging API (application program interface) that allows you to log the run-time
values in a file or other destination. Logging is out of the scope of this book, but you can find Logger
and other supporting classes in the Java package java.util.logging.

You’ll be using a debugger that comes with an IDE daily. Even though Lesson 2 was dedicated to
Eclipse IDE, explaining debugging back then would have been a bit premature, as you didn’t have
much Java code to debug. Now you’re ready to learn how the Eclipse debugger can help you.

Let’s see how the while loop from Listing 5-3 works by running the whileLoopDemo program
with the Eclipse debugger. You can do it either by right-clicking the name of the program and select-
ing the menu option Debug As Java Application or by clicking the little icon with an image of a bug in
the Eclipse toolbar. But before doing this, set a breakpoint on the line of code where you want the
program to pause execution and allow you to start watching the program internals in the Eclipse
Debugger’s Perspective.



Debugging Java Programs | 47

I’d like to pause this program right before it enters the while loop, so let’s set the breakpoint on the
following line:

while (i<totalElements){...}

Double-click the gray vertical bar located between the Package and Editor views — you should see an
image of a little bullet there. This is a breakpoint, and if the program runs into the code with the set
breakpoint, Eclipse IDE will switch to Debugger perspective and pause the program, highlighting the
line that’s about to execute. Figure 5-1 shows how the Debugger perspective may look at this point.

Qnehug - L essanfisrc/Whilel napllema. java - Folipse

Fiz Edt Source Rcfackor Mavigate Scarch Project Run Window Help

B-HE % 0-Q i@+, P Em: &-G-0&- | % vebug | &' dava ?
i Debup I3 b servers = 3= vanables 11 . %a Breakpoints o = =20
O 3B T | @ 7| _Name Value
= 1] WhileLoopDemo [Java pplcation] ey Stringf0] (id=:
= &2 whilel nopDemn ak lncalbost: 1434 H O friciws Slring{20] {id=
= o Thread [main] (Suspended (hreakpoint at fne 15 in Whisl nonDema)) O totalClemerits 20
= WhileLoopDemo,main(Stringl 1) ine: 15 W3 9

v CiProgram Hiesl Javalidkl el 19ibnhiavaw.exe (Jun's, 2010 /59:48

< >
11| whilsLoopDemo,java (] = B[ B= outine 22 VLB e YO
= int rtntalElementa = friend=. length: A = @, Whilel nnpDemn

int i=0: © © mainiStrinl ) : void

while (1<totalklements)i{
iT (friends[i]==null) {
1++2
vonlinue;

]

Syotem. out.println("I love "™ 1 frienda

FEE T
< ¥

FIGURE 5-1

Note the little arrow in the Editor view next to the bullet — it shows you the line of code that will
be executed next. The Variables view shows you the values of the program variables at this moment.
The variable i is equal to 0; the value of totalElements is 20. If you click the little plus sign by the
variable friends, it’ll show the content of this array.

Now try to execute this program step-by-step, watch- 5 Debug 23 . 4Hb Servers =g
ing how the value of the variable i changes. You’ll con- el =
trol program execution by clicking the buttons in the FIGURE 5-2

toolbar for the Debug view (see Figure 5-2).

The green play button means “Continue executing the program until it ends or hits another break-
point.” The red square button stops the debugging process. The first curvy yellow arrow (Step Into)
is used if the code has been paused on a line that calls a method, and you’d like to debug the code of
the method being called. The second curvy arrow (Step Over) allows you to execute the current line
without stepping into any methods that may be called in this line of code.



48

LESSON 5 BACK TO JAVA BASICS

There are other and less frequently used buttons on this toolbar, which you can study on your own,
but let’s enter the loop by clicking the Step Over button. Keep clicking this button and observe that
the program doesn’t enter the if statement, which is correct — the first element of the friends array
is not null. Then if prints “I love Masha” in the console view, increments the value of the variable
i to 1 (see the Variables view in Figure 5-3), and returns to the loop condition to check if the value
of i is still less than the value of totalElements.

c}llahug - Lessanh/sre/Whilel onpllemn_java - tclipse

M= Cdt Souwrce Refackor Navigate Search FProject Runm  Window Help

r4- SRy R N =t A 0 G- 175 [ Debua »
4 Debug 1 4tk Servers = [0 ||p9= yarisbles 1% ¥ Breskpoints GE O = =0
B . e || Nane Yalue
7] WhileLoopDemo [Java Application] b ﬁf.El‘F qr:ngLﬂ] [irl.=1ﬁj
2 @2 whileLoopDemo at localhast: 1577 + 0 hiends Stringl?0] (id=13)
= o Theead [main] (Suspended (breakpoint at line 15 in WhilcLoopDema)) i pDLaElemerts 20
= hicLoopDeme. main{Stringl]) linc: 15 | 1

¥ Ci\Program FilesyJavaljdi .6.0_19%bintjavaw, cxe (Jun 5, 2010 8:44:48

< >
|4} whileLoopDemo.java 52 = 1| 8% outhine 52 A LS8 " | e wv—n
99 while [(1<totalElements){ -~ = G., wiilsLoopLemo
2 1r (friends|1|==null){ ® ° man(strnalT) : vod
1+4;
. continue;
| :
5 System.out.princln(”I love " + Iriends
1447

i H
o= System.out.princin(“The iteracion 1S over”);
| )

H -

4 >
B console 1 . & Tasks ® &8 et L)

‘whileLoopDemo [Java Application] C:\Program Files! Javaljdkl.6.0_L9ibinljavaw.exe (Jun 5, 2010 §:44:45 AM)
I luve Hasha

FIGURE 5-3

Keep clicking the Step Over button, and expand the variable friends in the Variables view to see
its elements in order to better understand why the program skips or enters the if statement in the
loop. Note the moment when the program exits the loop and prints the message “The iteration is over.”
After spending some time debugging the program you should appreciate the value of the Eclipse
Debugger. In my opinion, the best way to learn a new programming language is to run someone
else’s code through a good debugger. The program may be bug-free, but this will help you to better
understand its flow.

MORE ABOUT IF AND SWITCH STATEMENTS

If you need to change the execution of the program based on a certain condition you can use either
if or switch statements, which were introduced in Lesson 3. In this section you’ll see more flavors
of the conditional statements.



More about if and switch Statements | 49

The Flavors of if Statements

In Listing 5-3 you saw one version of the if statement:
if (friends[i]l==null){
i++;
continue;

The curly braces must be used in the if statement to specify a block of code that has to be executed
if the condition is true. Even though the curly braces are not required if there’s only one statement
in the code block, using them is considered a good practice — this makes the program more under-
standable for other people who may need to read your code (or for yourself six months from now).
if (friends[i]==null){
System.out.println("I found an array element with null value");

}

// Some other code goes here

The code below the closing curly brace will always be executed, which may not be desirable. In this
case use the if-else syntax:
if (friends[i]==null) {
System.out.println("I found an array element with null value");
} else{
// Some other code goes here

}

In the preceding code snippet, the “some other code” will be executed only if the current element of
the array is not null (or, as we put it in Java, friends[i] !=null). You can write an if statement
with multiple else clauses. For example, the following code will print only one love confession:

if (friends[i]==null){

System.out.println("I found an array element with null value");

} else if (friends[i] == "Natasha") {
"I love my wife so much!");
} else if (friends[i] == "Masha") {

(
System.out.println(
(

System.out.println("I fell in love with Masha when I was in the 8th grade.");
} else{

System.out.println("I used to love " + friends[i] + " at some point.");
}

Using conditional statements can be a lot more complex than comparing two values. You can build
expressions using boolean AND, OR, and NOT operators. The AND operation is represented as &&,
like this:

if (age<20 && gender=="male") {
// do something only for males under 20 years old

For the OR condition use | |, for example:

if (age < 30 || yearsInArmy > 0) {
// do something with people yonger than 30 or those who served
// in the army regardless of their age



50

LESSON 5 BACK TO JAVA BASICS

For the NOT condition (aka negation) use the ! sign:

boolean hasBachelorDegree;
// Read the person record and assign the value true or false
// to the variable hasBachelorDegree
if (!hasBachelorDegree) {
// do something with people without bachelor degree

The negation symbol can be placed either in front of a boolean variable, as in the preceding code
snippet, or in front of the expression that returns boolean. The next code example shows how to
use negation Note that the comparison expression was placed inside the parentheses; otherwise the
Java compiler would assume that you’re trying to negate a String value called friends[i], which
is not allowed.

if (! (friends[i]=="Hillary")){
System.out.println("Still looking for Hillary.");

Imagine a situation in which you need to assign a value to a variable, but the value depends on the
result of a certain condition. To assign the variable in a verbose way you can use a regular if state-
ment and test some condition, writing one assignment operator for a result of true, and another in
the else section for a result of false. But if you use a special construct called a conditional operator
(), the same task can be done more simply.

The conditional operator consists of the following parts: an expression that returns boolean, a question
mark, an expression that returns some value if the first expression evaluates to true, a colon, and an
expression that returns a value to be used if the first expression returns false. It sounds complicated,
but it’s not. The following code sample shows how to assign a $3,000 bonus if a person’s salary is
greater than $90,000, and only $2,000 otherwise:

float salary;
// Retrieve the salary of the person from some data source here
int bonus = salary>90000?3000:2000;

The switch Statement

The switch statement is used when the program execution is defined based on multiple selections.
Even though execution can be defined with a long i f-else if construct, the switch statement
can be more readable. In the following code fragment the bonus amount is selected based on the
salary band of the worker. Imagine that this code is written in a loop that reads data from a data-
base of employees of some firm, and that the salaryBand value is assigned right before the switch
statement.

int salaryBand;
int bonus;
// Retrieve the salary band of the person from some data source here

switch(salaryBand) {

case 1:
bonus=1000;
break;



Command-Line Arguments | 51

case 2:
bonus=2000;
break;
case 3:
bonus=6000;
break;
case 4:
bonus=10000;
break;
default:
// wrong salary band
System.out.println("Invalid salary band");

At the time of this writing Java doesn’t allow the use of string as a switch variable — only integer
or enumerated constants are allowed. There is a proposal to support strings in Java 7, but it’s not
clear if this support will make it into production release.

COMMAND-LINE ARGUMENTS

In Lesson 1 you learned how to start a Java program from a command line. After development

in Eclipse or another IDE is done, Java programs are deployed in production and will be started
from a command line — usually you get an icon to click that runs a command to start a program,
but under the hood the operating system executes a command that starts your program. You can’t
expect an accountant to have Eclipse installed to run a tax calculation program, right? For example,
to run the TestTax program from the command window you need to open a command window,
change the directory to Lesson 4 and enter the following:

java TestTax

You can run only those Java classes that have the method main, which takes a string array as an
argument. This array is the means of passing some data from the command line to your program
during start-up. For example, you can pass gross income, state, and number of dependents to
TestTax by starting it from the command line as follows:

java TestTax 50000 NJ 2

The method main (String[] args) of the class TestTax receives this data as a String array that
I decided to call args. This array will be automatically created by JVM, and will be large enough
to accommodate all the arguments entered from the command line. This array will be populated as
follows:

args[0] = "50000";
args([l] = "NJ";
args[2] = "2";

Command-line arguments are always being passed to a program as String arrays. It’s the responsi-
bility of the programmer to convert the data to the appropriate data type. The wrapper Java classes



52 | LESSON5 BACK TO JAVA BASICS

that were introduced in Lesson 3 can come in handy. For example, the wrapper class Double has the
function parseDouble to convert String to double:

double grossIncome = Double.parseDouble(args[0]);

Review the code of the TestTax program from Listing 4-6, which has hard-coded values of gross
income, state, and number of dependents. By using command-line arguments you can make the
program more generic and useful not only for people from New Jersey having two dependents and
an annual income of $50,000. You’ll work on this assignment in the Try It section.

TRY IT

Your assignment is to introduce command-line arguments into the program from Listing 4-6.

Lesson Requirements

For this lesson you should have Java installed.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson$ folder in the
download.

Step-by-Step

1.  In Eclipse IDE, copy the TestTax class from the Lesson4 project to LessonS. Also copy the
Tax class from the project Lesson3 that has an if statement in the calcTax () method.

2. Remove the three lines that initialize grossIncome, state and dependents with hard-coded
values.

3.  Add the following code fragment to ensure that the program has been started with three
arguments. If it has not, print the error message and exit the program.
if (args.length != 3){
System.out.println("Sample usage of the program:" +

" Jjava TestTax 50000 NJ 2");
System.exit (0) ;

4. Add the following statements to the method main () to get the values passed from the com-
mand line, convert them to appropriate data types, and initialize the variables grossTncome,
state, and dependents:

double grossIncome = Double.parseDouble(args[0]);
String state = args([1l];
int dependents = Integer.parselnt(args[2]);


http://www.wrox.com

Trylt | 53

5. Right-click the Lesson$ project in Eclipse IDE and select the Properties menu item (note the
location of the compiled classes of your project — in my case it was c: \practicalJava\
workspase\Lesson5\bin).

6. Open the command window and change the directory to the one that contains the file
TestTax.class.

7. Run your program several times, specifying different values for the command line arguments.

The program should print different values for the calculated tax.

To get the sample database files you can download the content of the Lesson 5 folder from the
book’s website at www.wrox. com.

Please select Lesson 5 on the DV D with the print book, or watch online at
www . wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava




Packages, Interfaces, and
Encapsulation

If you want to find out if a particular programming language is object-oriented, ask if it sup-
ports inheritance, encapsulation, and polymorphism. You know by now that Java supports
inheritance, which lets you design a class by deriving it from an existing one. This feature
allows you to reuse existing code without copy-pasting reusable code fragments from other
classes — the class NgTax from Listing 3-5 was designed this way.

In Lessons 6 and 7 you learn what encapsulation means and continue studying coding techniques
and best practices. While this lesson will show you several short code examples illustrating cer-
tain programming topics, the next one will bring all the pieces you’ve learned so far together in
one larger practical application.

JAVA PACKAGES

A decently size project can have hundreds of Java classes and you need to organize them in
packages (think file directories). This will allow you to categorize files, control access to your
classes (see the section “Access Levels” later in this chapter), and avoid potential naming con-
flicts: If both you and your colleague coincidentally decide to call a class util, this won’t be a
problem as long as these classes are located in different packages.

Sometimes you’ll be using third-party libraries of Java classes written in a different department
or even outside your firm. To minimize the chances that package names will be the same, it’s
common to use so-called reverse domain name conventions. For example, if you work for a
company called Acme, which has the website acme . com, you can prefix all package names with
com.acme. To place a Java class in a certain package, add the package statement at the begin-
ning of the class (it must be the first non-comment statement in the class). For example, if the
class Tax has been developed for the Accounting department, you can declare it as follows:

package com.acme.accounting;

class Tax {

// the class body goes here
}



56

LESSON 6 PACKAGES, INTERFACES, AND ENCAPSULATION

If you declare the class Tax as shown in the preceding code, the file Tax.java must be stored in the
corresponding directory tree:
Com

Acme
Accounting

Java classes are also organized into packages and the fully qualified name of a class consists of the
package name followed by the class name. For example, the full name of the Java class Double is
java.lang.Double, where java.lang is the package name. As a matter of fact, java.lang is the
only package name that you don’t have to explicitly mention in your code in order for its classes to
be found, unless all classes are located in the same package.

The program documentation on all Java 6 packages is available at the following URL: http://
download.oracle.com/javase/6/docs/api/.

Let’s say your Tax class needs to connect to some URL on the Net with the help of the class URL
located in the java.net package. You can write code containing the fully qualified name of this
second class:

java.net.URL myURL = new java.net.URL ("http://www.acme.com");

But instead of using this rather long notation, include the import statement right above the class
declaration, and then use just the name of the class:

import java.net.URL;
class Tax({
URL myURL = new URL("http://www.acme.com") ;

If you need to import several classes from the same package, use the wild card in the import state-
ment rather then listing each of the classes on a separate line:

import java.net.*;

ENCAPSULATION

Encapsulation is the ability to hide and protect data stored in Java objects. You may ask, “Who are
the bad guys who want to illegally access my data?” It’s not about bad guys. When a developer cre-
ates a Java class, he or she plans for a certain use pattern of this code by other classes. For example,
the variable grossIncome should not be modified directly, but via a method that performs some
validation procedures to ensure that the value to be assigned meets application-specific rules.

A Java developer may decide to “hide” 15 out of 20 variables, say, so other classes can’t access them.
Imagine how many parts exist in a car and how many functions those parts can perform. Does the
driver need to know about all of them? Of course not. The driver needs to know how to start and
stop the car, how to indicate turns, open the windows, turn on the wipers, and do a few dozen other
simple operations, which in programming jargon can be called the car’s public interface.


http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/

The Keyword final | 57

Access Levels

Java classes, methods, and member variables can have public, private, protected, and package
access levels, for example:

public class Tax {
private double grossIncome;
private String state;
private int dependents;
protected double calcTax(...) {...}

The keyword public means that this element (a class, a method, or a variable) can be accessed from
any other Java class. The keyword protected makes the element “visible” not only from the current
class, but from its subclasses too.

The keyword private is the most restrictive one, as it makes a member variable or a method acces-
sible only inside this class. For example, our class Tax may need some additional internal methods
that could be called from the method calcTax (). The users of the class Tax do not need to know
about these methods and they should be declared as private.

If you do not specify any access level, the default is package, which means that only classes located
in the same package will have access to this method or variable. Java classes should expose only the
methods that outsiders have to know, such as calcTax ().

If you are not sure which access level to give to methods or variables, just make them all private;
if later on during development some other class needs to access them, you can always change the
access level to be less restrictive. This will protect all the internals of your application from misuse.
Think of it this way: “I want to sell my class Tax to various accounting firms across the country. If
their software developers integrate my class with their existing systems, what are the methods that
they must know about to be able to calculate tax?” If car designers did not ask themselves similar
questions, drivers would need to press dozens of buttons just to start the engine.

THE KEYWORD FINAL

The keyword final can have different meanings depending on the context. It’s explained in the
next sections.

final Variables

You can use the keyword final while declaring variables, methods, and classes. A final variable
becomes a constant (see Lesson 3) that can be initialized only once and can’t change its value dur-
ing the run time. Some people may argue that a constant and a variable that can get initialized only
once are not the same thing, but the fact that you can’t change their values makes them very similar.

Even though you can declare constants inside a method, it’s more common to declare them on the
class level so they can be reused by several methods of the same class. You can also declare a variable
with the keyword static and with a proper access method so they can be used:

static final int BOILING_TEMP = 212; //in Fahrenheit



58

LESSON 6 PACKAGES, INTERFACES, AND ENCAPSULATION

final Methods

If you declare a class method with a final keyword, this method can’t be overridden if someone
decides to extend the class. Today it may seem obvious to you that a particular method will never
ever need to be overridden. What are the chances that the formula to convert Fahrenheit to Celsius
will be changed any time soon?

static final double convertToCelsius (double far) {
return ((far - 32) * 5/ 9);

But in many cases developers create reusable libraries of Java classes, finalizing functionality that’s
not written in stone. While it may seem to you that a particular method will never need to be over-
ridden, you might have predicted all use patterns of this class. If this happens, some other developer
will have to jump through hoops to create another version of your method in a subclass.

Many years ago the Java compiler optimized (inlined) final methods. It doesn’t do that anymore —
all methods are optimized by the Hotspot JVM. Just think twice before making a method final.

final Classes

If you declare a class as £inal, no one will be able to subclass it. For example, Java’s class string
has been created as immutable and therefore declared as final (see http://java.sun.com/
javase/6/docs/api/java/lang/String.html). If a class is declared as final, all its methods
become implicitly final.

INTERFACES

There are different approaches to how to start designing a class. Some people think of the behav-
ior it should support. The behavior is implemented in a class in the form of methods, which can
be declared in a separate entity called an interface. Then have your class implement this interface.
Listing 6-1 shows an interface with one method declaration.

In general, you should have a reason for declaring the methods separately from the class that will

implement it, and you’ll see these reasons in the next lesson when you learn about polymorphism,
For now, let’s just get familiar with the syntax of defining and using interfaces. The interface will
not have any implementations — just declarations. (There is an exception: Marker interfaces don’t
even have declarations. The next section is devoted to this type of interface.)

When a class declares that it implements a certain interface, it guarantees that it contains implemen-
tation for all methods from this interface. And a class can implement more than one interface: just
separate their names with commas.

Let’s say you have two types of workers in your organization, employees and contractors, and that
you create the classes Employee and Contractor to implement functionalities that reflect specifics
of these different groups. Each person is entitled to a pay raise, though for employees this means a
salary increase and for contractors it’s an increase of an hourly or daily rate.


http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Interfaces | 59

Instead of creating two different methods in these classes, it’s better to define an interface called,
say, Payable that contains the declaration of the method increasepay (), and to have both classes
implement it, as in Listings 6-1, 6-2, and 6-3. Every method declared in the interface automatically
becomes public.

‘) LISTING 6-1: Payable interface

Availablefor  public interface Payable {

download on . . A
Wrox.com boolean increasePay(int percent) ;

‘) LISTING 6-2: Class Employee

Available for  public class Employee implements Payable {
download on
Wrox.com

public boolean increasePay (int percent) {

// implement salary raise here

\) LISTING 6-3: Class Contractor

Availablefor  public class Contractor implements Payable {
dowwrglggg"t:n public boolean increasePay (int percent) {
// implement hourly rate increase here

Since both Employee and Contractor contain the clause implements Payable, you must implement
the increasePay () method in each of the classes, or your code won’t compile. Creating classes with
common interfaces leads to cleaner design of your application and makes the code more readable. But
what’s more important is that with the help of interfaces you can introduce polymorphic behavior to
your program, and this will be illustrated in Lesson 7.

Besides method signatures, Java interfaces can contain declarations of final variables. For example,
you can create a final variable in the Payable interface for the maximum percentage of pay increase
(all variables declared in the interface automatically become public static final).

int INCREASE_CAP = 20;

Since both the Employee and contractor classes implement Payable, they can both include if
statements in the implementation of increasePay () to ensure that the provided percentage increase
is less than TNCREASE_caP. If in the future the cap changes, you need to change it in only one

place — the payable interface.



60

LESSON 6 PACKAGES, INTERFACES, AND ENCAPSULATION

Some software developers create Java interfaces that contain only final variables storing important
application constants. Implementing such interfaces will make these constants available in the class
that implements the interface(s). Not everyone approves such usage of interfaces, as it can create a
messy situation when a class that implements interfaces with static constants exposes a new set of
public APIs (those final variables) rather than just using these values internally. You can read more
about this anti-pattern at the following URL: http://java.sun.com/j2se/1.5.0/docs/guide/
language/static-import.html.

Marker Interfaces

Marker interfaces are those that don’t have any methods declared. One example of such an interface
is Serializable, covered in Lesson 17. You don’t need to write any implementation of these inter-
faces; the Java compiler will take care of this for you. Objects of a class that implements a marker
interface will support a certain functionality. For example, if a class implements Serializable,
JVM will be able to serialize it — turn into a string of bytes (in the server’s JVM) in such a way that
the string can be sent to another JVM (on the client’s machine), which will be able to recreate the
instance of the object, or de-serialize it.

Also, Java has an operator instanceof (see next section) that can check during the run time if an
object is of a certain type. You can use the operator instanceof as shown below to check if the
object implements a marker interface, or any other type of interface for that matter:

if (receivedFromServerObj instancef Serializable) {
// do something

CASTING

All Java classes form an inheritance tree with the class object on top of the hierarchy — all Java
classes are direct or indirect descendants of object. When you declare a non-primitive variable, you
are allowed to use either the exact data type of this variable or one of its ancestor data types. For
example, if the class NJTax extends Tax, each of the following lines is correct.

NJTax myTaxl = new NJTax();
Tax myTax?2 = new NJTax(); // upcasting
Object myTax3 = new NJTax(); // upcasting

Java is smart enough to automatically cast an instance of the class to its ancestor. When the variable has
more generic type than an instance of the object this is called upcasting. Let’s say the class object
has 10 methods and class variables defined, the class Tax (an implicit subclass of object) adds five
more methods and variables (making 15), and NgTax adds another two (total 17). The variable myTasx1
will have access to all 17 methods and variables, myTax2 will see only 15, and myTax3 just 10. Why
not always use exact types in variable declarations?

Let’s say you need to write a program that will process data about workers of a certain company.
Some of them are full-time employees and some are contractors, but youd like to read their data from
some data source and into the same array. Arrays can store only objects of the same type, remember?


http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html

Casting | 61

Since Java can automatically upcast the objects, you can create a class called Person with two sub-
classes, Employee and Contractor, and then read the records from a database. Based on the employ-
ment type you can then create an appropriate object instance and put it into an array of type Person:

Person workers[] = new Person [100];
workers[0] = new Employee("Yakov", "Fain");
workers[1l] = new Employee("Mary", "Lou");
workers[2] = new Contractor("Bill", "Shaw");

Of course, you could’ve created two separate arrays, one for employees and one for contractors,
but I’'m laying the foundation here for explaining polymorphism — a powerful concept in object-
oriented languages. You’ll see a concrete example of polymorphism in Lesson 7.

At some point you’ll need to process the data from the array workers. In a loop you can test the
data type of the current element of the array with the operator instanceof, and then downcast the
object (it can’t be done automatically) to Employee or Contractor and process it accordingly.
for (int 1; 1<20; i++){
Employee currentEmployee;
Contractor currentContractor;

if (workers[i] instanceof Employee) {
currentEmployee = (Employee) workers[i];
// do some employee processing here
} else if (workers[i] instanceof Contractor) {
currentContractor = (Contractor) workers[i];
// do some contractor processing here

Placing a data type in parentheses in front of another object means that you want to downcast this
object to the specified type. You can downcast an object only to one of its descendant data types.
Even though the preceding code has correct syntax, it doesn’t represent the best practice for process-
ing similar objects. In the next lesson you’ll see how to use polymorphism to do it in a more generic
way.

If a class implements an interface, you can cast its instance to this interface. Say that a class called
EmployeeinqﬂenwntsPayable,Insurable,and Pensionable interfaces:
class Employee implements Payable, Insurable, Pensionable {

// implementation of all interfaces goes here

}

If you are interested in the Insurable behavior of your code, there’s no need to cast the object to
type Employee — just cast it to the Insurable type as shown in the following code fragment. Keep
in mind though that if you do so, the variable currentEmployee will expose access only to those
methods that were declared in the Insurable interface.

Insurable currentEmployee;

if (workers[i] instanceof Insurable) {



62 | LESSON6 PACKAGES, INTERFACES, AND ENCAPSULATION

currentEmployee = (Insurable) workers[i];
// do some insurance-specific processing here

}

TRY IT

The goal of this assignment is to start using packages, protect data using private variables and define
first interfaces. You create a simple program that will increase pay, which will be implemented dif-
ferently for employees and contractors. After completing this assignment you’ll have working but
not perfect code. What can be improved will be explained in Lesson 7.

Lesson Requirements

For this lesson you should have Java installed.

ﬂ You can download the code and resources for this Try It from the book’s
web page at www.wrox .com. You can find them in the Lesson6 folder in the
download.

Step-by-Step
1.  In the Eclipse IDE, create a new project called Lessoné.

2. Create the payable interface as per Listing 6-1 in the package com.practicaljava

.lesson6 — you can enter the name of the package in the Eclipse New Java Class window.
Declare a final variable there:

int INCREASE_CAP = 20;

3. Create a class called person:

package com.practicaljava.lessoné6;

public class Person {
private String name;

public Person(String name) {
this.name=name;

}

public String getName () {
return "Person's name is " + name;

}


http://www.wrox.com

Trylt | 63

4. Create the classes Employee and Contractor in the package com.practicaljava.lessoné6.
Each class should extend Person and implement Payable. Use the Eclipse button Add to
automatically include the Payable interface in declarations of the classes Employee and

Contractor.

5.  Check your file system to ensure that the files were created in your workspace in the directory

com/practicaljava/lessoné6.

6. Create a class called TestPayIncrease with a method called main (). Don’t specify any
package — this class will be created in a different directory.

7. Try to create an instance of the class Employee in the method main () of TestPayIncrease:

Employee myEmployee = new Employee() ;

You’ll get an error: Employee can’t be resolved to a type. No wonder — it’s located in a differ-
ent package. Move the mouse over Employee and Eclipse will offer you a fix — add an import
statement:

import com.practicaljava.lessoné6.Employee;

Select this fix and later add the import statement for all required classes.

8. Inthemain() method of the class TestPayIncrease create an array of employees and con-
tractors and call the function increasePay () for each element of the array:

public static void main(String[] args) {

Person workers[] = new Person[3];
workers[0] = new Employee("John");
workers[l] = new Contractor ("Mary");
workers[2] = new Employee("Steve");

Employee currentEmployee;
Contractor currentContractor;

for (Person p: workers) {
if (p instanceof Employee) {
currentEmployee = (Employee) p;
currentEmployee. increasePay (30) ;

telse if (p instanceof Contractor) {
currentContractor = (Contractor) p;
currentContractor.increasePay (30) ;

9. Implement the increasepay () method in Employee — don’t put any restrictions on pay
increases. Here’s the body of increasepay():

System.out.println("Increasing salary by " + percent + "%. "+ getName());
return true;



64 | LESSON6 PACKAGES, INTERFACES, AND ENCAPSULATION

10. Implement the increasePay () method in the class contractor. If the percentage of the
increase is below INCREASE_CAP, print a message similar to the one in the preceding code.
Otherwise, print a message explaining that you can’t increase a contractor’s rate by more
than 20 percent.

11.  Run the TestpPayIncrease program. It should produce output similar to the following:

Increasing salary by 30%. Person's name is John
Sorry, can't increase hourly rate by more than 20%. Person's name is Mary
Increasing salary by 30%. Person's name is Steve

To get the sample database files you can download Lesson 6 from the book’s website at www . wrox . com.

Please select Lesson 6 on the DVD with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava

Programming with Abstract
Classes and Interfaces

In this lesson you learn about so-called abstract classes, and then you build a complete appli-
cation that will illustrate how to design and implement programs with abstract classes and
interfaces. You also learn about the notion of polymorphism.

ABSTRACT CLASSES

If a class is declared abstract it can’t be instantiated. The keyword abstract has to be placed
in the declaration of a class. The abstract class may have abstract method(s). The question is
“Who needs a class that can’t be instantiated?”

It’s easiest to answer this question by showing you how to use abstract classes while designing
an application. While previous lessons ended with assignments, this lesson will start with one.

Assignment

A company has employees and contractors. Design the classes without using interfaces to rep-
resent the people who work for this company. The classes should have the following methods:

changeAddress ()
promote ()
giveDayOff ()
increasePay ()

A one-time promotion means giving one day off and raising the salary by a specified percentage.
The method increasePay () should raise the yearly salary for employees and increase the hourly
rate for contractors.



66 | LESSON7 PROGRAMMING WITH ABSTRACT CLASSES AND INTERFACES

Solution with an Abstract Class

Since increasePay () has to be implemented differently for Employee and Contractor, let’s declare
it as abstract. The class Person will also have three concrete methods. The fact that the abstract
class Person cannot be instantiated forces us, the developers, to implement abstract methods in
subclasses.

Let’s start by redesigning the class Person from the Try It section of Lesson 6. That version of the
class didn’t have the method increasepay (), which was a part of the Payable interface. As per the
previous lesson’s assignment, add the following concrete methods: changeaddress (), giveDayOff (),
and promote () (see Listing 7-1).

This is a different approach from the one in Lesson 6, which used interfaces — here some methods
are implemented in the superclass and some are not. This solution won’t be using any interfaces.

‘) LISTING 7-1: Abstract class Person

Available for package com.practicaljava.lesson7;
download on
Wrox.com

public abstract public class Person {

private String name;
int INCREASE_CAP = 20; // cap on pay increase

public Person(String name) {
this.name=name;

}

public String getName () {
return "Person's name is " + name;

public void changeAddress (String address) {
System.out.println("New address is" + address);

private void giveDayOff () {
System.out.println("Giving a day off to " + name);

}

public void promote(int percent) {
System.out.println(" Promoting a worker...");
giveDayOff () ;

//calling an abstract method
increasePay (percent) ;

}

// an abstract method to be implemented in subclasses
public abstract boolean increasePay(int percent) ;



Abstract Classes | 67

Please note that even though the method increasepPay () is abstract, the designer of the class Person
doesn’t have to know the specifics of raising pay, and subclasses may even be programmed by other
developers. But he or she can write code that calls increasePay (), as in the method promote (). This
is allowed because by the time the concrete class is instantiated, this method will definitely have been
implemented. For simplicity, I didn’t write any code that looks like actual increasing pay — this is
irrelevant for understanding the concept of abstract classes.

The next step is to create the subclasses Employee and contractor, implementing the method
increasePay () in two different ways, as shown in in Listings 7-2 and 7-3.

\) LISTING 7-2: Class Employee

Available for  package com.practicaljava.lesson7;
download on
Wrox.com .

public class Employee extends Person{

public Employee (String name) {
super (name) ;
}
public boolean increasePay (int percent) {
System.out.println("Increasing salary by " +
percent + "%. "+ getName());
return true;

‘) LISTING 7-3: Class Contractor

Available for  package com.practicaljava.lesson7;
download on
Wrox.com )

public class Contractor extends Person {

public Contractor (String name) {
super (name) ;
}
public boolean increasePay (int percent) {
if (percent < INCREASE_CAP) {
System.out.println("Increasing hourly rate by " +
percent + "%. "+ getName());
return true;
} else {
System.out.println("Sorry, can't increase hourly rate by more
than " + INCREASE_CAP + "%. "+ getName());
return false;

Programmers writing subclasses are forced to write an implementation of increasePay () accord-
ing to its signature, declared in the abstract class. If they declare a method increasing pay that has



68 | LESSON7 PROGRAMMING WITH ABSTRACT CLASSES AND INTERFACES

a different name or argument list, their classes will remain abstract. So they don’t have a choice —
they have to play by the rules dictated in the abstract class.

The class TestPayIncrease2 in Listing 7-4 shows how to use the classes Employee and Contractor
for promoting workers.

‘) LISTING 7-4: Class TestPaylncrease2

Availablefor ~ import com.practicaljava.lesson7.*;
download on
Wrox.com .

public class TestPayIncrease?2 {

public static void main(String[] args) {

Person workers = new Person[3];

[]
workers[0] = new Employee("John");
workers([1l] = new Contractor ("Mary");
workers[2] = new Employee("Steve");

for (Person p: workers) {
p.promote (30) ;

Compare the code of TestPayIncrease2 to TestPayIncrease from the Try It section of Lesson
6. Which one do you like better? I like TestPayIncrease2, which exhibits polymorphic behavior,
explained next.

POLYMORPHISM

Polymorphism is easier to understand through an example. Let’s look at the classes Person, Employee,
and Contractor from a different angle. The code in Listing 7-4 populates an array, mixing up the
instances of the classes Employee and Contractor with hard-coded names. In real life the data
about workers usually comes from an external data source. For example, a program could get a
person’s work status from the database and instantiate an appropriate concrete class. The class
TestPayIncrease2 gives an additional vacation day and attempts to increase the salary or hourly
rate of every worker by 30 percent.

Note that even though the loop variable p is of its ancestor’s type Person in Listing 7-4, at every
iteration it actually points at either an Employee or a Contractor instance. The actual object type
will be evaluated only during the run time. This feature of object-oriented languages is called run-time
binding or late binding.

The output of the class TestPayIncrease2 will look as follows:

Promoting a worker...
Giving a day off to John
Increasing salary by 30%. Person's name is John



Polymorphism | 69

Promoting a worker...

Giving a day off to Mary

Sorry, can't increase hourly rate by more than 20%. Person's name is Mary
Promoting a worker...

Giving a day off to Steve

Increasing salary by 30%. Person's name is Steve

Both classes, Employee and Contractor, were inherited from the same base class, Person. Instead
of having different methods for increasing the worker’s compensation based on the worker’s type,
we give a polymorphic behavior to the method increasepay (), which applies different business
logic depending on the type of the object.

Although it looks as if we’re calling the same method, promote (), on every object from the array
workers, this is not the case. Since the actual object type is evaluated during run time, the pay is
raised properly according to this particular object’s implementation of the method increasePay ().
This is polymorphism in action.

The for loop in the class TestPayIncrease2 will remain the same even if we add some other types
of workers inherited from the class Person. For example, to add a new category of worker — a
foreign contractor — we’ll have to create a class called Foreigncontractor derived from the class
person and implement the method increasepay () there. The class TestPayIncrease2 will keep
evaluating the actual type of Person’s descendants during run time and call the proper implementa-
tion of the method increasepray ().

Polymorphism allows you to avoid using switch or if statements with the expensive operator
instanceof, which you used in Lesson 6. Would you agree that even though TestPayIncrease is
producing the same results, its code looks pretty ugly compared to TestPayIncrease2? The code in
TestPayIncrease works more slowly than the polymorphic version, and its i f statement has to be
modified every time a new type of worker is added.

Making the Interface Solution Polymorphic

Could you create the polymorphic solution in the example with interfaces from Lesson 6? Yes, you
could. Even though the array workers has been declared of type person, it is populated by the
objects that implement the Payable interface.

Instead of casting the objects from this array to either Employee or Contractor, you would cast
these objects to Payable and call the increasepray () method without worrying too much about
whether the current worker is an employee or a contractor (see Listing 7-5).

‘) LISTING 7-5: Class TestPaylncreasePoly

Available for import com.practicaljava.lesson6.*;
download on
Wrox.com )

public class TestPayInceasePoly {

public static void main(String[] args) {

Person workers[] = new Person[3];
continues



70 | LESSON7 PROGRAMMING WITH ABSTRACT CLASSES AND INTERFACES

LISTING 7-5 (continued)

workers[0] = new Employee("John");
workers[1l] = new Contractor ("Mary");
workers[2] = new Employee("Steve");

for (Person p: workers) {
((Payable)p) .increasePay (30) ;

Note that the variable p is cast to Payable first, and only after the method increasepay () can be
called. To enforce the sequence of these operations this code has been surrounded with parentheses.
The Eclipse IDE comes in handy with its context-sensitive help — when you type the period after the
parentheses it readily shows you increasePay () in the list of available methods. I always use this
little help: If a method name I’m about to type is not shown there, I must be doing something wrong
with the types; otherwise Eclipse would have helped me out.

The other solution that would eliminate the need of casting to Payable is having the class Person
implement Payable. In this case the loop from Listing 7-5 would look as follows:

for (Payable p: workers) {
increasePay (30) ;

What can go wrong during the execution of the code from Listing 7-5? What if a developer cre-
ates a class called ForeignContractor without implementing the Payable interface, and this error
makes it into the array workers? You’ll get a run-time casting error — JVM can’t cast an object
to Payable if it doesn’t implement the Payable interface. You’ll have a chance to see this error for
yourself in the Try It section.

INTERFACES VERSUS ABSTRACT CLASSES

The next question is when should you use interfaces and when should you use abstract classes. If
two or more classes have lots of common functionality, but some methods should be implemented
differently, you can create a common abstract ancestor and as many subclasses inheriting this com-
mon behavior as needed. Declare in the superclass as abstract those methods that subclasses should
implement differently, and implement these methods in subclasses.

If several classes don’t have common functionality but need to exhibit some common behavior, do
not create a common ancestor, but have them implement an interface that declares the required
behavior. This scenario was not presented in the “Interfaces” section of Lesson 6, but it’s going to
be a part of the hands-on exercise in the Try It section of this lesson.

Interfaces and abstract classes are similar in that they ensure that required methods will be imple-
mented according to required method signatures. But they differ in how the program is designed.
While abstract classes require you to provide a common ancestor for the classes, interfaces don’t.

Interfaces could be your only option if a class already has an ancestor that cannot be changed. Java
doesn’t support multiple inheritance — a class can have only one ancestor. For example, to write



Trylt | 71

Java applets you must inherit your class from the class applet, or in the case of Swing applets, from
Japplet. Here using your own abstract ancestor is not an option.

While using abstract classes, interfaces, and polymorphism is not a must, it certainly improves the

design of Java code by making it more readable and understandable to others who may need to work
on programs written by you.

TRY IT

In the first part of the assignment your goal is to break the code from Listing 7-5 to produce the
run-time error ClassCastException. In the second part of the assignment you’ll need to rewrite the
assignment from Lesson 6 to keep the Payable interface but remove the common ancestor Person.

Lesson Requirements

For this lesson you should have Java installed.

You can download the code and resources for this Try It from the book’s

web page at www.wrox.com. You can find them in the Lesson7 folder in the
download.

Step-by-Step

Part 1
1. In Eclipse open the project Lesson6 — yes, the one from the previous lesson.

2. Create a new class called ForeignContractor, as shown in the following code. Note that
this class doesn’t implement the Payable interface:

package com.practicaljava.lessoné6;
public class ForeignContractor extends Person {

public ForeignContractor (String name) {
super (name) ;
}

public boolean increasePay (int percent) {

System.out.println("I'm just a foreign worker");
return true;


http://www.wrox.com

72 | LESSON7 PROGRAMMING WITH ABSTRACT CLASSES AND INTERFACES

3.

5.

Create the class TestPayIncreasePolyError, adding an instance of the

ForeignContractor class:

import com.practicaljava.lesson6.*;
public class TestPayIncreasePolyError ({

public static void main(String[] args) {

Person workers[] = new Person[3];

workers[0] = new Employee("John");
workers[l] = new Contractor ("Mary");
workers[2] = new ForeignContractor ("Boris");

for (Person p: workers) {
((Payable)p) .increasePay (30) ;

Run the program TestPayIncreasePolyError. Observe the output in the console view —
youw’ll get the run-time error java.lang.ClassCastException on the third element of the
array. Note the number 14 — this is the line number of TestPayIncreasePolyError pro-
gram, which casts each object to the Payable interface.
Increasing salary by 30%. Person's name is John
Sorry, can't increase hourly rate by more than 20%. Person's name is Mary
Exception in thread "main" java.lang.ClassCastException:
com.practicaljava.lesson6.ForeignContractor cannot be cast to

com.practicaljava.lessoné6.Payable
at TestPayInceasePolyError.main(TestPayInceasePolyError.java:14)

hﬁodﬁythecodeOfTestPayIncreasePolyError,Changhu;thetypeofthearnﬂzﬁonl
Person to Payable and changing the type of the loop variable accordingly:

Payable workers|[] = new Payable [3];
workers[0] = new Employee("John");
workers[1l] = new Contractor ("Mary");
workers[2] = new ForeignContractor ("Boris");

for (Payable p: workers) {
((Payable)p) .increasePay (30) ;

Observe that now you are getting a Java compiler error preventing you from even adding
to the array the instance of ForeignContractor because it doesn’t implement Payable.
Predicting and preventing run-time errors is a very important task for every software devel-
oper, and this subject will be covered in detail in Lesson 13.



Trylt | 73

Part 2

1. In the project Lesson7 select File & New create the new package com.practicaljava

.lesson7.tryit.

2. In Eclipse copy the payable interface from Lesson6 to the package com.practicaljava
.lesson7.tryit.

3. In the same package create the class Employee as follows:

package com.practicaljava.lesson7.tryit;

public class Employee implements Payable({
private String name;

public Employee (String name) {
this.name=name;

public boolean increasePay(int percent) {
System.out.println("Increasing salary by " + percent
+ "%: " + name);
return true;

4. In the same package create the class contractor as follows:

package com.practicaljava.lesson7.tryit;
public class Contractor implements Payable {
private String name;

public Contractor (String name) {
this.name=name;
}
public boolean increasePay (int percent) {
if (percent < Payable.INCREASE_CAP) {
System.out.println("Increasing hourly rate by " +
percent + "%. ");
return true;
} else {
System.out.println("Sorry, can't increase hourly rate by
more than " + Payable.INCREASE_CAP + "%: " + name);

return false;

Note that neither Employee nor Contractor extends Person any longer. Both classes are
free to extend any other classes now, but on the other hand each of them has to declare the
variable name and the method getName (), which was done once in the class Person before.



74 | LESSON7 PROGRAMMING WITH ABSTRACT CLASSES AND INTERFACES

5. Create a class called TestPayIncreaseInterface:

import com.practicaljava.lesson7.tryit.*;
public class TestPayIncreaselnterface ({

public static void main(String[] args) {

Payable workers|[] = new Payable [3];
workers[0] = new Employee("John");
workers[1l] = new Contractor ("Mary");
workers[2] = new Employee("Steve");

for (Payable p: workers) {
((Payable)p) .increasePay (30) ;

6. Run this program — it should produce the following output:

Increasing salary by 30%: John
Sorry, can't increase hourly rate by more than 20%: Mary
Increasing salary by 30%: Steve

To get the sample database files you can download Lesson 7 from the book’s website at www . wrox . com.

www . wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 7 on the DV D with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com/go/fainjava

Introducing the Graphic
User Interface

These days people are accustomed to working with applications that have rich user interfaces.
If you develop rich Internet applications, JavaFX is the newest platform for development
offered by Oracle. But Java itself offers a library of components called Swing, which is used
for building graphic user interfaces (GUIs) for desktop applications, as well as a web program
called applets (see Lesson 10). In this and the following lesson you’ll learn the principles of
building GUIs while developing a simple desktop calculator using the Java Swing library.

Eclipse Foundation offers another library of UI components called SWT, which
is out of the scope of this book.

SWING BASICS

Originally Java offered a pretty basic library of Ul-related classes called the Abstract
Windowing Toolkit (AWT). A couple of years later a new widget toolkit called Swing was
introduced. It offers a lighter set of Ul components while keeping the main idea intact — to
keep UI development independent of the specifics of the end user’s operating system. Today
developers are trying to create Uls that appear to be native to the OS, whether that is
Windows, Mac OS, iOS, or Android. Eventually the market share of Swing-based Uls will
diminish, but at the time of this writing it’s still widely used by enterprises, and skilled Swing
developers remain in big demand.

Swing offers you everything you need to build Uls in Java: There are controls to represent but-
tons, drop-downs, grids, scrollbars, trees, tab folders, and so on. Typically you’ll be creating
Uls by combining controls into containers (such as Jpanel) that support various layouts that
enable controls to be arranged as you or a graphic designer envision. In this lesson you use
some of the Swing components while creating a Ul for a simple calculator.



76 | LESSON 8 INTRODUCING THE GRAPHIC USER INTERFACE

A complete discussion of the Swing library is out of the scope of this book, but there are plenty of
books and technical articles covering this subject. The official online Swing tutorial is located at

http://java.sun.com/docs/books/tutorial /uiswing.

Swing classes are located in the javax.swing package, and the process of creating a UI comes down
to extending some of these classes to display the Ul and respond to various user- and system-generated
events. You create a top-level window with a title and border by instantiating the class JFrame, as in
Listing 8-1.

‘) LISTING 8-1: An empty descendant of JFrame

Available for  import javax.swing.JFrame;
download on
Wrox.com .
public class HelloWorld extends JFrame {

public HelloWorld() {
setSize(200,300);
setTitle("Hello World");
setVisible(true);

public static void main(String[] args) {
HelloWorld myHello = new HelloWorld() ;
}

The constructor of this version of Hello World sets the size and title of the window and makes it vis-
ible. Run this program and it’ll show a small empty window, as in Figure 8-1.

JFrame is an example of a container that can hold Ul controls, which must be instantiated first and
then added to the container. For example, to add a button you can include the following two lines to
the constructor in Listing 8-1:

JButton myButton = new JButton ("Click me");
add (myButton) ;

This code will work, but it doesn’t specify the size of the button, where to B Hello
put it, or whether there should be space between the components and the '
borders. Without layout instructions, the entire empty space in Figure 8-1
will be occupied by one huge button.

Usually grrame includes some other containers, where you’ll place controls
such as JButton, JTable, and JList. Java Swing comes with layout managers
that help you arrange all these controls appropriately. A sample coding process
for creating a JFrame containing JPanel goes like this:

1. Create a Jpanel.

2.  Assign a layout manager to it. FIGURE 8+1

3. Instantiate some Swing controls and add them to the panel.


http://java.sun.com/docs/books/tutorial/uiswing

Layout Managers | 77

4. Add the panel to the top-level container — JFrame — by calling the setcontentPpane ()
method.

5.  Set the frame’s size and make it visible.

You can assign different layout managers to your containers to create pretty sophisticated windows.
But displaying a window with properly laid-out components is only half of the job, because these con-
trols should know how to respond to various events, such as a click on a button. This lesson covers the
basics of displaying UI components; the next one is about writing code for responding to events.

LAYOUT MANAGERS

The simplest layout manager is FlowLayout, which allocates all components being added to the con-
tainer horizontally. When there’s no room for the next component, FlowLayout uses the next row,
and the process repeats.

A Simple Calculator with FlowLayout

The best way to learn layout management is by trying to use it in practice. Let’s create a Ul for a
simple calculator that can accept two numbers and display the result. Create a new Eclipse project
called Lesson8 and a new class called simplecalculator with the following code:

‘) LISTING 8-2: Calculator with FlowLayout

Available for
download on

Wrox.com import javax.swing.*;

import java.awt.FlowLayout;

public class SimpleCalculator {
public static void main(String[] args) {
// Create a panel
JPanel windowContent= new JPanel () ;

// Set a layout manager for this panel
FlowLayout fl = new FlowLayout () ;
windowContent.setLayout (f1) ;

// Create controls in memory

JLabel labell = new JLabel ("Number 1:");
JTextField fieldl = new JTextField(10);
JLabel label2 = new JLabel ("Number 2:");
JTextField field2 = new JTextField(10);
JLabel label3 = new JLabel ("Sum:");
JTextField result = new JTextField(10);
JButton go = new JButton ("Add");

// Add controls to the panel
windowContent.add (labell) ;

continues



78 | LESSON 8 INTRODUCING THE GRAPHIC USER INTERFACE

LISTING 8-2 (continued)

fieldl
label2) ;

windowContent.add )
)
field2);
)
)

windowContent .add
windowContent .add
windowContent.add
windowContent .add
windowContent.add

7

label3
result
go) ;

7

’

// Create the frame and add the panel to it
JFrame frame = new JFrame("My First Calculator");

// Add the panel to the top-level container
frame.setContentPane (windowContent) ;

// set the size and make the window visible
frame.setSize (400,100);
frame.setVisible(true) ;

Compile and run this program and it’ll display the window shown in Figure 8-2. This may not be
the best-looking calculator, but it demonstrates the use of FlowLayout. In the next section you’ll
make it look better with the help of more suitable layout managers.

< My First Calculator

Number 1: | Number 2: |
Sum: || Add

FIGURE 8-2

Grab the corner of the window and make it wider. You’ll see how FlowLayout starts reallocating
controls, trying to fill the new area. If you make the window wide enough, all the components will
fit in one row, as in Figure 8-3.

= My First Calculator EWEWZ]
Number 1: | | number 2: | Sum: || Add |
FIGURE 8-3

Even though you can enforce exact coordinates and sizes for each window component, Swing has
layout managers that can maintain relative positions for all controls without assigning strict posi-
tions to them. Layout managers will ensure that the content of a container looks nice regardless of
the current window size.



Layout Managers | 79

A Brief Introduction to Layout Managers
Swing offers the following layout managers:
>  FlowLayout
GridLayout
BoxLayout
BorderLayout

CardLayout

Y Y ¥V VY Y

GridBagLayout

To use any layout manager, instantiate it first and then assign this instance to a container via
setLayout () as you did with the class simplecalculator in Listing 8-2.

FlowLayout

This layout arranges components in a window row by row. For example, labels, text fields, and but-
tons will be added to the first imaginary row until there is room left in this row. When the current
row is filled, the rest of the components will go to the next row, and so on. If a user changes the size
of the window, it may mess up the picture, as illustrated in Figure 8-2. Indeed, FlowLayout is not
the best choice for our calculator. Let’s try something different.

GridLayout

The class java.awt.GridrLayout allows you to arrange components as rows and columns in a grid.
You’ll be adding components to imaginary cells of this grid. If the container gets resized, grid cells
may become larger or smaller, but the relative positions of the components inside the container will
remain the same.

So far our calculator has seven components: three labels, three text fields, and a button. You may
arrange them as a grid of four rows and two columns (one cell stays empty) by creating an instance
of Gridrayout like this:

GridLayout gr = new GridLayout (4,2);

You can also assign some horizontal and vertical spaces of, for example, five pixels, between the cells:

GridLayout gr = new GridLayout(4,2,5,5);

Replace FlowLayout with GridLayout in Listing 8-2 and the calculator will look a little prettier.
Create and compile a new class called simplecalculatorGrid (see Listing 8-3).

‘) LISTING 8-3: Calculator with GridLayout

Available for import javax.swing.*;
download on . . :
Wrox.com import java.awt.GridLayout;
public class SimpleCalculatorGrid {
continues



80 | LESSON8 INTRODUCING THE GRAPHIC USER INTERFACE

LISTING 8-3 (continued)
public static void main(String[] args) {
JPanel windowContent= new JPanel () ;

// Set the layout manager for the panel
GridLayout gl = new GridLayout (4,2);
windowContent.setLayout (gl) ;

JLabel labell = new JLabel ("Number 1:");
JTextField fieldl = new JTextField(10);
JLabel label2 = new JLabel ("Number 2:");
JTextField field2 = new JTextField(10);
JLabel label3 = new JLabel ("Sum:");
JTextField result = new JTextField(10);
JButton go = new JButton ("Add");

// Add controls to the panel
windowContent.add (labell
windowContent.add (fieldl
windowContent.add (label2
windowContent.add (field2
windowContent.add (label3
windowContent.add (result
windowContent.add (go) ;

7

7

’

7

7

’

// Create the frame and add the panel to it
JFrame frame = new JFrame("My First Calculator");

frame.setContentPane (windowContent) ;
// set the size and display the window

frame.setSize (400,100);
frame.setVisible(true) ;

Run the program simplecalculatorGrid and you’ll see a much nicer calculator than before (see
Figure 8-4).

= My First Calculator

| Add ]
FIGURE 8-4

Try to resize this window — controls will grow with the window, as shown in Figure 8-5, but their
relative positions won’t change. Note that with cridrayout all cells of the grid have the same width
and height.



Layout Managers | 81

= My First Calculator Q@@

Number 1:
Mumber 2:
sum:
Add
FIGURE 8-5
BorderLayout

The layout manager java.awt.BorderLayout divides a container into South, West, North, East,
and center areas. The North area stays on top of the window, South at the bottom, west on the
left, and East on the right. For example, in the calculator shown in Figure 8-6, a text field that dis-
plays numbers is located in the North area, and the panel p2 in the west.

You can use the following code to create a BorderLayout and place a text field there:

BorderLayout bl = new BorderLayout () ;
this.setLayoutManager (bl) ;

JTextField txtDisplay = new JTextField(20);
this.add (BorderLayout.NORTH, txtDisplay);

You are not required to have window controls in all five areas. If you need only North, Center,
and South areas, the center area will become wider because you are not going to use the East and
West areas. I'll use a BorderLayout a little later in this lesson, in the next version of our calculator:
Calculator.java.

Combining Layout Managers

Do you think that Gridrayout will enable you to design a calculator that looks like the one that comes
with Microsoft Windows, shown in Figure 8-6? Unfortunately it won’t, because cells have different
sizes there — the text field is wider than the buttons. You can, however, combine layout managers by
using panels that have their own layout managers.

To combine layout managers in the new version of our calculator, do the following:
> Assign the border layout to the content panel of the frame.
>  Add a gTextField to the North area of the frame to display the numbers.

> Create a panel, p1, with the cridrayout, add 20 buttons to it, and add it to the center area
of the content pane.

>  Create a panel, p2, with Gridrayout, add four buttons to the panel, and add p2 to the west
area of the content pane.



82 | LESSON8 INTRODUCING THE GRAPHIC USER INTERFACE

But first start by creating a somewhat simpler version of the calculator, which will look as shown in
Figure 8-7.

[# Calculator
EdE  wlew Help

| 1<+—— TextField

= Calculator

l_ [le:xnare rF ” r ‘

| e [ 1 - ;
eyl B3 (IR . 4 s :

2 - - -

3| . e - ;

FIGURE 8-6 FIGURE 8-7

Create a new class, Calculator, as per Listing 8-4, and run the program. Read the program
comments — you should be able to understand how the code works by reading the comments,
shouldn’t you?

\) LISTING 8-4: Calculator with combined layouts

Available for  import javax.swing.*;

download on . .

Wrox.com import java.awt.GridLayout;
import java.awt.BorderLayout;

public class Calculator {

// Declare all calculator's components.
JPanel windowContent;
JTextField displayField;
JButton buttonO;

JButton buttonl;
JButton button2;
JButton button3;
JButton button4;
JButton button5;
JButton buttoné;
JButton button7;
JButton button8;
JButton button9;
JButton buttonPoint;
JButton buttonEqual;
JPanel pl;

// Constructor creates the components
// and adds the to the frame using combination of
// Borderlayout and Gridlayout

Calculator () {

windowContent= new JPanel () ;

// Set the layout manager for this panel



Layout Managers | 83

BorderLayout bl = new BorderLayout () ;
windowContent.setLayout (bl) ;

// Create the display field and place it in the
// North area of the window

displayField = new JTextField(30);
windowContent.add ("North",displayField) ;

// Create buttons using constructor of the
// class JButton that takes the label of the
// button as a parameter

buttonO=new JButton("0")
buttonl=new JButton("1")
button2=new JButton("2")
button3=new JButton("3");
buttond=new JButton("4");
("5")
("6")
("7m)
("8")

i
nqowy .

’

7

i

button5=new JButton ("
buttonbé=new JButton
button7=new JButton
button8=new JButton
button9=new JButton("9");
buttonPoint = new JButton(".");
buttonEqual=new JButton("=");

’

’

i

// Create the panel with the GridLayout with 12 buttons -
//10 numeric ones, period, and the equal sign

pl = new JPanel () ;
GridLayout gl =new GridLayout(4,3);
pl.setLayout (gl) ;

// Add window controls to the panel pl
pl.add(buttonl) ;
pl.add (button2
pl.add(button3
pl.add(buttond

7

7

7

)
)
)
pl.add(button5) ;
)
)
)
)

7

(
(
(
(
(
pl.add(buttoné6
pl.add(button7) ;
(
(
(
(
(

7

7

pl.add(button8
pl.add(button9
pl.add(button0) ;

pl.add (buttonPoint) ;
pl.add(buttonEqual) ;

7

// Add the panel pl to the center of the window
windowContent.add("Center",pl) ;

//Create the frame and set its content pane
JFrame frame = new JFrame ("Calculator");
frame.setContentPane (windowContent) ;

// Set the size of the window big enough to accomodate all controls
continues



84

LESSON 8 INTRODUCING THE GRAPHIC USER INTERFACE

LISTING 8-4 (continued)

frame.pack() ;

// Display the window
frame.setVisible(true) ;

public static void main(String[] args) {

Calculator calc = new Calculator();

BoxLayout

The class javax.swing.BoxLayout allows multiple window components to be laid out either
horizontally (along the x-axis) or vertically (along the y-axis). Unlike with the FlowLayout man-
ager, when the window with the BoxLayout is resized, its controls do not wrap. And unlike with
GridLayout, with BoxLayout, window controls can have different sizes.

The next two lines of code assign BoxLayout with vertical alignment to Jpanel. To make this code
shorter, I have not declared a variable to store a reference to the object BoxLayout, but rather create
an instance of this object and immediately pass it to the method setLayout () as an argument.

JPanel pl= new JPanel () ;
setLayout (new BoxLayout (pl, BoxLayout.Y_AXIS));

If you just add several buttons to the panel p1, they all display one under another.

You can use combinations of various containers implementing horizontal or vertical BoxLayout to
build a fairly sophisticated UL Think of a front page of a game that has to have several items next
to each other on the top of the window, some controls located vertically on the left sidebar, and the
rest of the window’s real estate allocated for the main battlefield. You can use BorderLayout hav-
ing a panel with a horizontal BoxLayout on the North, and a panel with vertical BoxLayout on the
West. The next section shows you a sophisticated yet more verbose GridBaglayout, but you should
always try to see if the BoxLayout can do the job and use it, if possible.

GridBagLayout

In this section you’ll get familiar with yet another way of designing the calculator, by using
the java.awt.GridBagLayout manager instead of combining panels with different layouts.
GridBagLayout is an advanced grid that allows cells of different sizes. GridBagLayout works
with another class called GridBagConstraints.

Constraints are just attributes of a cell, and you have to set them for each cell separately. All con-

straints for a cell have to be set before you place a component in the cell. For example, one of the

constraint’s attributes is called gridwidth (see Figure 8-8). It allows you to make a cell as wide as
several other cells.



Layout Managers | 85

gridwidth = 6

When working with the grid layout you should
create an instance of the constraint object ¥ ]
first, and then set the values to its properties. %”Od) cell : gridheight = 1
Then you can add a Ul component to the cell © R — iy

In your container.

Grid cell
(1,0)

The code sample in Listing 8-5 is heavily
sprinkled with comments to help you under- ZNRRERE
stand how to use GridBagLayout. While DE
working on this lesson’s assignment you’ll be
using this code.

FIGURE 8-8

\) LISTING 8-5: Creating constraints for GridBagLayout

Available for // Set the GridBagLayout for the window's content pane
download on GridBagLayout gb = new GridBagLayout () ;
Wrox.com this.setLayout (gb) ;

// Create an instance of the GridBagConstraints

// You'll have to repeat these lines for each component
// that you'd like to add to the grid cell
GridBagConstraints constr = new GridBagConstraints();

//setting constraints for the Calculator's displayField:

// x coordinate in the grid
constr.x=0;
// y coordinate in the grid
constr.y=0;

// this cell has the same height as other cells
constr.gridheight =1;

// this cell is as wide as 6 other ones
constr.gridwidth= 6;

// £ill all space in the cell

constr.fill= constr.BOTH;

// proportion of horizontal space taken by this
// component

constr.weightx = 1.0;

// proportion of vertical space taken by this component
constr.weighty = 1.0;

// position of the component within the cell
constr.anchor=constr.CENTER;

displayField = new JTextField();
// set constrains for this field
gb.setConstraints (displayField, constr) ;

// add the text field to the window
windowContent.add (displayField) ;



86

LESSON 8 INTRODUCING THE GRAPHIC USER INTERFACE

CardLayout

Think of a deck of cards lying on top of each other, only the top card visible. You can use the java

.awt.CardLayout manager to create a component that shows one panel at a time, such as the
tabbed folder in Figure 8-9.

O main |(x)= nrqumentsl (118 JREI T Classpathl =5 Sourcel B Con'lrmn]
FIGURE 8-9

When the user clicks a tab, the content of the window changes. In fact, all the panels needed for this
screen are already preloaded and lie on top of each other. When the user clicks a tab, the program
just brings this “card” to the top and makes the other “cards” invisible. The tabbed folder here was
used for illustration; the Swing library includes a ready-to-go component for windows with tabs,
called gTabbedpPane.

Containers with Absolute Layout

If you want a container’s content to remain the same regardless of the window’s size, set the x and
y coordinates, width, and height (aka the bounds) of each component while adding them to the
window. Your class has to explicitly state that it won’t use any layout manager by passing null to
setLayout ():

windowContent.setLayout (null) ;

The next code snippet shows how you can set a button’s width to 40 pixels and its height to 20, and
place it 100 pixels to the right of and 200 pixels down from the top left corner of the window:

JButton myButton = new Button("New Game") ;
myButton.setBounds (100,200,40,20) ;

More about Swing Widgets

It’s not possible to describe all the Swing components in a short lesson — use the Swing online tuto-
rial mentioned earlier in this lesson. Here’s a list of all the Swing widgets:

JButton JScrollBar
JLabel Jslider
JCheckBox JProgressBar
JRadioButton JComboBox
JToggleButton JList
JScrollPane JTabbedPane

JSpinner JTable



Trylt | 87

JTextField JToolTip
JTextArea JTree
JPasswordField JViewPort
JFormattedTextField ImageIlcon
JEditorPane

You can also create menus (JMenu and JPopupMenu), pop-up windows, and frames inside other
franws(JInternalFrame),andlmetheStandardJOOkhggwdndowm(JFileChooser,JColorChooser,
and JoptionPane).

Java comes with an excellent demo application, SwingSet3, that shows all the available Swing
components in action. You can find it in your JDK install directory. (On my computer it’s in
C:\Program Files\Java\jdkl.6.0_19\demo\jfc\SwingSet3.) Just open the file readme.ntml
located in the same directory and it’ll bring you to a web page containing instructions for launching
the demo. The MAC OS users won’t find these samples in their Java installation, but they are also
available at https://swingset3.dev.java.net.

SWING GUI BUILDERS

Java developers use various tools to speed the process of designing Uls. See what’s available for
the IDE that you use. For example, there is a popular plug-in called Matisse that lets you design
a Swing Ul in what-you-see-is-what-you-get mode. You can find its version for Eclipse-based
products, called MyEclipse, at the following URL: www.myeclipseide.com/
module-htmlpages-display-pid-1.html.

Matisse was originally developed for the NetBeans IDE, and you can find it here: http://
netbeans.org/kb/trails/matisse.html.

Finally, consider yet another Eclipse plug-in, called Jigloo GUI Builder: http: //marketplace
.eclipse.org/content/jigloo—swtswing—gui—builder.\ﬁnlcarldeﬁnkeblﬁnd.atoolthat“dﬂ
substantially speed up your design of UIs with the Java Swing library.

TRY IT

Your task for today is to create another version of the calculator in Figure 8-8, using only one lay-
out: GridBagLayout

Lesson Requirements

For this lesson you should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson8 folder in the download.



https://swingset3.dev.java.net
http://www.myeclipseide.com/module-htmlpages-display-pid-1.html
http://netbeans.org/kb/trails/matisse.html
http://netbeans.org/kb/trails/matisse.html
http://marketplace.eclipse.org/content/jigloo-swtswing-gui-builder
http://www.wrox.com
http://www.myeclipseide.com/module-htmlpages-display-pid-1.html
http://marketplace.eclipse.org/content/jigloo-swtswing-gui-builder

88 | LESSON8 INTRODUCING THE GRAPHIC USER INTERFACE

Step-by-Step

This assignment comes down to creating appropriate constraints for each UI component shown in
Figure 8-8. So there is just one long step in this assignment: Follow the example given in Listing 8-5
for each UI component needed for the calculator.

www . wrox . com/go/ fainjava fo view the video that accompanies this lesson.

? Please select Lesson 8 on the DVD with the print book, or watch online at



http://www.wrox.com/go/fainjava

Event Handling in Ul

Java Swing, like any other Ul library, is an event-driven framework. When a user interacts
with a GUI program (such as by clicking a button or pressing a key) a Java Swing program
receives an event that can initiate an appropriate reaction.

If you write the code to react to a particular event, this code will be invoked. If you haven’t
written such code, the event will be fired anyway, but the program won’t respond to it. In this
lesson you’ll learn how to handle events in Java GUI programs.

INTRODUCTION TO EVENT LISTENERS

I’'m sure you’ve tried to click the buttons of our calculator from Lesson 8, but they were not
ready to respond to your actions yet. Swing widgets can process various events, or in the pro-
grammers’ jargon can listen to events. To listen to events, a program has to register window
components with Java classes called listeners.

You should have components listen only to the events they are interested in. For example,
when a person clicks a button, it’s not important where exactly the mouse pointer is as
long as it is on the button’s surface. That’s why you do not need to register the button with
MouseMotionListener. On the other hand, this listener comes in handy for all kinds of
drawing programs.

To process button clicks Swing provides ActionListener. All listeners are declared as Java inter-
faces and their methods have to be implemented in an object that will be listening to events.

This is how Java documentation describes the ActionListener interface:

The listener interface for receiving action events. The class that is
interested in processing an action event implements this interface, and the
object created with that class is registered with a component, using the
component’s addActionListener method. When the action event occurs,
that object’s actionPerformed method is invoked.



90 | LESSON9 EVENT HANDLING IN Ul

This interface is defined in the java.awt.event package, as presented in Listing 9-1.

‘) LISTING 9-1: ActionListener interface

Availablefor ~ public interface ActionListener extends EventListener

dm:;“gg"'i" void actionPerformed(ActionEvent e);

The actionpPerformed () method is invoked by the JVM if the action happened. Let’s use this lis-
tener in the calculator you created in Lesson 8.

TEACHING THE CALCULATOR TO CALCULATE

The calculator’s buttons should register themselves with a class that implements ActionListener,
which means that its method actionPerform() contains the calculation logic. Even though you can
implement ActionListener in the Calculator class itself, for better readability and code maintain-
ability it’s best to separate the code defining the UI from the code containing processing logic. Let’s
start writing a separate class, CalculatorEngine:

import java.awt.event.ActionListener;
public class CalculatorEngine implements ActionListener {

}

This class won’t compile; Java will give an error message stating that the class must implement the
method actionPerformed (ActionEvent e). You know the rules for interfaces, right? The code in
Listing 9-2 will fix this error.

‘) LISTING 9-2: First implementation of ActionListener interface

Available for import java.awt.event.ActionListener;
dm:;"gg"':" import java.awt.event.ActionEvent;
public class CalculatorEngine implements ActionListener {

public void actionPerformed(ActionEvent e) {
// An empty method body
}

Even though the actionPerformed () method doesn’t contain any code yet, it’s considered imple-
mented in Listing 9-2 (the curly braces make the compiler happy). JVM calls this method on the
class that implements the ActionListener interface whenever the user clicks the button.

The next version of CalulatorEngine (see Listing 9-3) will display a message box from the method
actionPerformed (). You can display any messages using the Swing class JoptionPane and its
method showConfirmDialog ().



Teaching the Calculator to Calculate | 91

J LISTING 9-3: This class displays a message box

Availablefor  import java.awt.event.ActionListener;
dowv:g;lfggl:n import java.awt.event.ActionEvent;
import javax.swing.JOptionPane;
public class CalculatorEngine implements ActionListener {

public void actionPerformed (ActionEvent e) {
JOptionPane.showConfirmDialog (null,
"Something happened...",
"Just a test",
JOptionPane.PLAIN_MESSAGE) ;

If you register the class calculatorEngine from
Listing 9-3 as a listener for the class calculator
from Listing 8-4, it’ll display the message box
shown in Figure 9-1 when the user clicks inside the

calculator window.

The class JoptionPane declares several overloaded
methods named showConfirmbialog () — I used the FIGURE 9-1

version with four arguments in Listing 9-3. The first

argument is null, which means that this message box does not have a parent window. The second
argument contains the title of the message box. The third contains the message itself, and the fourth
argument allows you to select a button(s) to be included in the box - PLATN_MESSAGE means that it
needs only the button OK.

El Something happened...

Registering Components with ActionListener

What will call the code in the method actionPerformed () shown in Listing 9-3, and when? Register
the calculator’s buttons with the class calculatorEngine, and JVM will obediently call this class
every time any button is clicked. Add the following two lines at the end of the constructor of the class
Calculator (Listing 8-4), and one button will start responding to clicks with the box from Figure 9-1.

CalculatorEngine calcEngine = new CalculatorEngine() ;
button0.addActionListener (calcEngine) ;

The other calculator buttons remain silent because they have not been registered with our action
listener yet. Keep adding similar lines to bring all the buttons to life:

buttonl.addActionListener
button2.addActionListener
button3.addActionListener
buttond.addActionListener

calcEngine) ;
calcEngine) ;
)
)

calcEngine
calcEngine

7

Finding the Source of an Event

The next step is to make our listener a little smarter: It has to display message boxes with differ-
ent text, depending on which button was pressed. When an action event happens, JVM calls the
method actionPerformed (ActionEvent) on your listener class, and this method provides valuable



92 | LESSON9 EVENTHANDLING IN UI

information about the event in the argument ActionEvent. In particular, the method getsource ()
in the object actionEvent supplied to actionPerformed () in Listing 9-3 will tell you what object
was the reason for the action.

But according to Java documentation for ActionEvent, the method getSource () returns an
instance of type Object, which is a superclass of all Java classes, including window components.
Since in our calculator only buttons can possibly be the reason for an action event, cast the returned
Object to the type of a JButton:

JButton clickedButton = (JButton) evt.getSource();

Only after performing casting from Object to JButton can you call methods that JButton sup-
ports, for example getText (), which returns the button’s label, as shown in Listing 9-4. If you
press the button labeled 5, you’ll see a message box that reads “You pressed 5.”

‘) LISTING 9-4: Getting label of clicked button

Availablefor  import java.awt.event.ActionListener;
daﬂ:?g&gn import java.awt.event.ActionEvent;
import javax.swing.JOptionPane;
import javax.swing.JButton;
public class CalculatorEngine implements ActionListener {
public void actionPerformed(ActionEvent e) {
// Get the source of this action
JButton clickedButton=(JButton) e.getSource();
// Get the button's label
String clickedButtonLabel =
clickedButton.getText () ;

// Concatenate the button's label
// to the text of the message box
JOptionPane.showConfirmDialog (null,
"You pressed " + clickedButtonLabel,
"Just a test",
JOptionPane.PLAIN_MESSAGE) ;

What if the window events are produced not only by buttons, but by some other components as
well? Then don’t cast every object that has arrived with ActionEvent to JButton. Use the opera-
tor called instanceof to perform the proper casting. The next example first determines what
type of object caused the event, and then performs casting to either JButton or JTextField:

public void actionPerformed(ActionEvent evt) {

JTextField myDisplayField=null;
JButton clickedButton=null;

Object eventSource = evt.getSource();
if (eventSource instanceof JButton) {

clickedButton = (JButton) eventSource;
telse if (eventSource instanceof JTextField) {



Teaching the Calculator to Calculate | 93

myDisplayField = (JTextField)eventSource;

Consider the buttons that perform arithmetic operations. Our calculator has to execute different
code for each button:

public void actionPerformed(ActionEvent e) {
Object src = e.getSource();

if (src == buttonPlus) {
// Call the method that adds numbers here

} else if (src == buttonMinus) {

// Call the method that substracts numbers here
lelse if (src == buttonDivide) {

// Call the method that divides numbers here
} else if (src == buttonMultiply) {
// Call the method that multiplies numbers here

}

How to Pass Data between Objects

When you click a numeric button on the real calculator, it does not show a message box, but rather
displays the number in the text field on top. Here’s a new challenge: You need to be able to reach the
aﬁIﬂnHedisplayFieldfﬂnntheObﬁCtCalculatorfﬂnnthenKIhOdactionPerformed()deﬁned
in calculatorEngine. In other words, two objects need to communicate. There are different ways
of arranging this: For instance, in the class calculatorEngine you can declare a variable to store a
reference to the instance of the object calculator.

The next version of the class calculatorEngine will declare a one-argument constructor. It’ll take
an argument of type Calculator.

JVM executes the constructor of the CalculatorEngine instance during instantiation of this class
in memory. The calculator object instantiates CalculatorEngine and passes to the engine’s con-
structor a reference to itself:

CalculatorEngine calcEngine = new CalculatorEngine (this);

This reference contains the location of the calculator’s instance in memory. The engine’s constructor
can store the value from the variable this in its own variable, say parent, and eventually use it in
the method actionpPerformed () to access the calculator’s display field.

Attention, Bad Practice!

The variable parent in the following listing serves as a bridge from the object calculatorEngine to
Calculator. And the easy way to access Calculator’s displayField from CalculatorEngine is this:

parent.displayField.getText () ;

parent.displayField.setText (dispFieldText + clickedButtonLabel) ;



94 | LESSON9 EVENT HANDLING IN Ul

These two lines were taken from the code sample in Listing 9-5. This code works, but it violates

one of the principles of object-oriented programming — encapsulation. The problem is that code
from calculatorEngine has direct knowledge of the internals of another object — calculator.
The engine “knows” that there is a field in calculator called displayField, and it gets and sets its
value directly.

‘) LISTING 9-5: Bad execution of object communication

Availablefor ~ import java.awt.event.ActionListener;
daﬂ:?g&gn import java.awt.event.ActionEvent;
import javax.swing.JButton;

public class CalculatorEngine implements ActionListener {
Calculator parent; // a reference to the Calculator

// Constructor stores the reference to the
// Calculator window in the member variable parent
CalculatorEngine (Calculator parent) {

this.parent = parent;

}

public void actionPerformed(ActionEvent e) {
// Get the source of this action
JButton clickedButton = (JButton) e.getSource();

// Get the existing text from the Calculator's
// display field. Reaching inside another object is bad.
String dispFieldText = parent.displayField.getText();

// Get the button's label
String clickedButtonLabel = clickedButton.getText () ;

parent .displayField.setText (dispFieldText +
clickedButtonLabel);

Imagine that for whatever reason you decide to use in calculator something other than the
JTextField widget to display the results of calculations. That other widget may not even have such
APIs as setText () and getText (). Now you’ll need to modify not only the calculator class but
also the code of the calculatorEngine to replace the part that displays or reads the displayField.
This is not the right way to design interactions between objects.

A Better Solution with a Public API

If calculator needs to communicate with other objects, it should expose a public API to get or set
data, but hide details about its internals. The class calculator from Listing 8-4 declares widgets



Teaching the Calculator to Calculate | 95

without using any access level qualifiers, so default package access level is applied. Hide these Ul
components as shown below by using the keyword private:

private JPanel windowContent;

private JTextField displayField;

private JButton button0;
private JButton buttonl;

Now calculatorEngine won't be able to access displayField directly as it did in Listing 9-5.
Defining public getter and setter methods in calculator will allow outsiders to access displayField
without knowing it exists. Listing 9-6 demonstrates how a small change can protect data and enforce
encapsulation.

‘) LISTING 9-6: Adding public API to Calculator

Availablefor  public class Calculator({

dow\m;lfggl:n private JTextField displayField;

public void setDisplayValue (String val) {
displayField.setText (val);

public String getDisplayValue() {
return displayField.getText () ;

// The rest of the code goes here

Now if you decide to replace the JTextField widget with another one, only the methods
setDisplayValue () andgetDisplayValue()\Nﬂlneed21Change;theCalculatorEngine
won’t need to be touched. Listing 9-7 shows the proper way to access Calculator from the
CalculatorEngine.

\) LISTING 9-7: Using public API of Calculator

Available for import java.awt.event.ActionListener;
dowvm:(uggnt:n import java.awt.event.ActionEvent;
import javax.swing.JButton;

public class CalculatorEngine implements ActionListener {
Calculator parent; // a reference to the Calculator

// Constructor stores the reference to the
// Calculator window in the member variable parent

continues



96

| LESSON9 EVENTHANDLING IN Ul

LISTING 9-7 (continued)

CalculatorEngine (Calculator parent) {

}

this.parent = parent;

public void actionPerformed(ActionEvent e) {

// Get the source of this action
JButton clickedButton = (JButton) e.getSource();

// Get the existing text from the Calculator's
// display field. Reaching inside another object is bad.
String dispFieldText = parent.getDisplayValue();

// Get the button's label
String clickedButtonLabel = clickedButton.getText () ;

parent.setDisplayValue (dispFieldText +
clickedButtonLabel);

MORE SWING LISTENERS

JDK comes with a number of event listeners located in the package java.awt. Here are some
of them:

>

Y VY VY

\/

Focus listener is notified when a widget gains or loses focus (for example, we say that a text
field has focus if it has a blinking cursor).

Item listener reacts to the selection of items from a list or a drop-down box.
Key listener responds to user keypresses.
Mouse listener responds to mouse clicks or the cursor’s hovering over a widget.

Mouse movement listener tells you if the mouse is being moved or dragged. To drag means to
move the mouse while holding its left button down.

Window listener gives you a chance to catch the moments when the user opens, closes, mini-
mizes, or activates the window.

Table 9-1 shows the names of selected listener interfaces and the methods declared in these inter-
faces. For example, FocusListener declares two methods: focusGained () and focusLost (). This
means that even if your class is interested only in knowing when a particular field gains focus, you



How to Use Adapters | 97

also must include the empty method focusLost (). Java provides special adapter classes for each
listener to spare you from having to manually code empty methods enforced by listener interfaces.

For more details on the listeners supported by Swing, refer to Oracle’s Java tutorial at http://
java.sun.com/docs/books/tutorial /uiswing/events/eventsandcomponents.html.

TABLE 9-1: Selected Swing Listeners
INTERFACE METHODS TO IMPLEMENT

FocusListener focusGained (FocusEvent)
focusLost (FocusEvent)

ItemListener itemStateChanged (ItemEvent)

KeyListener keyPressed (KeyEvent) keyReleased (KeyEvent)
keyTyped (KeyEvent)

MouseListener mouseClicked (MouseEvent)
mouseEntered (MouseEvent)
mouseExited (MouseEvent)
mousePressed (MouseEvent)
mouseReleased (MouseEvent)

MouseMotionListener mouseDragged (MouseEvent)
mouseMoved (MouseEvent)

WindowListener windowActivated (WindowEvent)
windowClosed (WindowEvent)
windowClosing (WindowEvent)
windowDeactivated (WindowEvent)
windowDeiconified (WindowEvent)
windowIconified (WindowEvent)
windowOpened (WindowEvent)

HOW TO USE ADAPTERS

Swing adapters are classes with implemented empty functions required by listener interfaces.

Let’s say you need to save some data on the disk when the user closes the window. According to
Table 9-1, a class that implements the windowListener interface has to include seven methods. This
means that you’ll have to write the code that saves the data in the method windowClosing () and
also include six empty methods.

The package java.awt includes a number of adapter classes that implement corresponding listener
interfaces, such as Keyadapter and windowAdapter. Instead of implementing windowListener in a


http://java.sun.com/docs/books/tutorial/uiswing/events/eventsandcomponents.html
http://java.sun.com/docs/books/tutorial/uiswing/events/eventsandcomponents.html

98 | LESSON9 EVENT HANDLING IN Ul

class that handles the window’s events, just extend a class from windowAdapter and override only
the methods you are interested in, for example the method windowClosing ():

class MyWindowEventProcessor extends java.awt.WindowsAdapter {

public void windowClosing (WindowEvent e) {
// your code that saves the data goes here.

The rest is easy: Register this class as an event listener in your GUI class (e.g. calculator), as shown
in Listing 9-8. Java offers adapters only for those listeners that declare more than one method.

You can register multiple listeners by using adapters in calculator. For example, to allow the user
to enter a number by pressing numeric keys, create a class based on KeyaAdapter, instantiate it, and
register it with calculator too.

‘) LISTING 9-8: Registering adapter-based listener

Available for  MyWindowEventProcessor myWindowListener = new MyWindowEventProcessor () ;
dm:?gg"‘:" addWindowListener (myWindowListener) ;

You can achieve the same result using so-called anonymous inner classes, as explained in the next
section.

INNER CLASSES

A class defined inside another is called an inner class. Listing 9-9 shows an example of the class
TaxOptimizer declared inside the class Tax. The class TaxOptimizer is a member inner class and
has access to all variables of the class Tax. Placing one class inside another is just a way of saying
that the classes belong together. After compilation, the class Tax file will produce two output files:
Tax.class and Tax$TaxOptimizer.class.

‘) LISTING 9-9: Tax class including an inner TaxOptimizer class
Available for class Tax({
dmgtgg"‘:" double grossIncome;
int dependents;
double calcStateTax() {
TaxOptimizer tOpt = new TaxOptimizer();
return tOpt.optimize(grossIncome, dependents) ;

TaxOptimizer getTaxOptimizer () {

return new TaxOptimizer();



Inner Classes | 99

class TaxOptimizer{
int taxCode;

void setTaxCode (int tCode) {
taxCode=tCode;

int optimize (double grossIncome, int dep) {
// Some optimization code goes here
return 0;

An inner class defined as static can access only static variables of the outer class. The inner class
can even be defined inside a method of an outer class. In this case this local inner class is available
only when the outer method is called, and it can access only static variables of the top-level class.

The method getTaxOptimizer () in Listing 9-9 returns an instance of the inner class if external
classes need it. For example, if the class TestTax needs to access the method setTaxCode () from
the inner class, it could do so as follows:

Tax t = new Tax(2, "NY", 50000);

Tax.TaxOptimizer tOptimizer = t.getTaxOptimizer();
tOptimizer.setTaxCode (12345) ;

Here’s another syntax producing the same result:

Tax t = new Tax(2, "NY", 50000);
Tax.TaxOptimizer tOptimizer = t.new TaxOptimizer () ;
tOptimizer.setTaxCode (12345) ;

Anonymous Inner Classes

If an inner class does not have a name, it’s called anonymous. The use of anonymous inner classes
is pretty easy to understand in examples of implementing Java adapters. You’ve learned by now that
using adapters is a three-step process: Extend the adapter class, instantiate it, and register it as an
event listener (see Listing 9-8). With anonymous inner classes you can perform all three steps in one
shot, as in Listing 9-10.

‘) LISTING 9-10: Using anonymous class as adapter
Available for this.addWindowListener (new WindowAdapter() {

dowv:g;'fgg on public void windowClosing(WindowEvent e) {
System.exit (0);



100 | LESSON9 EVENT HANDLING IN Ul

Imagine that this code is placed in the calculator class. The method addwindowListener ()
requires a subclass of windowAdapter and the section in bold in Listing 9-10 demonstrates the
syntax of declaring an anonymous class that extends windowAdapter and overrides the method
windowClosing ().

The new operator instantiates the adapter, and because this is done inside the parentheses of the
method addwindowListener () the newly created object is used as its argument. This adapter’s
implementation doesn’t have a name, and we don’t need to know its name in this context, do we?
The instance of the adapter was created and registered as an event listener, and this is all that
matters.

Closures

I’ve included the section on inner classes in the lesson about handling Ul events just because it
was easy to explain their practical use here, but inner classes were not created just for the han-
dling of Uls. In some programming languages (such as JavaScript and ActionScript) there’s a con-
struct called closure — you can instantiate a method from a class, and the instantiation is done
in such a way that the method can “remember” the data values from the class variables at the
moment of instantiation.

At the time of this writing Java 7 has not been released yet, but there’s a pretty good chance that
closure will be one of the new features. Closures have simpler syntax than inner classes, and they’re
a long-anticipated addition to the language.

TRY IT

The goal of this lesson is to complete the code of the calculator. It has to look as in Figure 9-2 and
implement the functionality of all the buttons.

= Calculator
1 2 3 | 4
4 5 i | -
7 8 9 |-| &
0 ™ | /

FIGURE 9-2

Lesson Requirements

For this lesson you should have Java installed.



Try It | 101

You can download the code and resources for this Try It from the book’s web
page at www .wrox .com. You can find them in the Lesson9 folder in the download.

Step-by-Step

1. Create a new Eclipse project called Lesson9 and copy the calculator from Lesson 8§ into it
(see Listing 8-4).

2. Create all missing Ul components — use Figure 9-2 as a prototype.

3.  Create the event listener calculatorEngine — all event processing and calculations should
be performed there.

4. From calculator, pass to the CalculatorEngine engine a reference to itself.
5. Register with calculatorEngine all GUI components that can generate events.
6. Implement the code for the following scenario:

Q. The user enters all the digits of the first number.

b. If the user hits one of the action buttons (+, -, /, or *), this indicates that the first num-
ber has been entered. Store this number and selected action in class variables (declare
them first) and erase the number from the display text field. You’ll need to convert the
String value to double with the help of class Double.

C. The user enters the second number and hits the button =.

d. Convert the string value from the text field into a numeric type double so it is able
to store numbers with a decimal point. Perform the selected action using this value and
the number stored in the numeric variable from Step b.

€. Display the result in the display field and store this value in the variable that was used
in Step b, for future calculations.

f.  Run the calculator. If it works, give it to your friends.

To get the sample database files you can download Lesson 9 from the book’s website at www.wrox . com.

www . wrox . com/go/fainjava fo view the video that accompanies this lesson.

? Please select Lesson 9 on the DVD with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/go/fainjava




10

Introduction to Java Applets

Java was born in 1993, shortly after the Internet became available to the public. The Netscape
web browser enabled regular people to go online and download content from remote servers.
This content was mainly some formatted text mixed with static images. But the Java program-
ming language provided a way to incorporate downloadable applications into the web pages!

A programmer needed to write a Java application called an applet in a special way using GUI
classes from the java.awt package (Swing was not invented yet). Applets were deployed on the
web servers along with the HTML files that included references to the applets. Web browsers
understand HTML, the markup that consists of special tags placed in text files so web brows-
ers can properly format and lay out web pages. HTML has a special tag, <applet>, that tells
the browser where to find and how to size and align a Java applet.

You can download a Java applet to your computer from the Internet as part of a web page,
and web browsers use the JVM plug-in to run applets. The version of JVM included with
a web browser is very important, because if you’re using, say, Java Swing classes, but the
user’s web browser has a really old JVM, the browser won’t even know how to run the
code that your applet uses.

In this lesson you’ll learn the basics of applet creation and the applet’s life cycle. In Lesson 11
you’ll build a tic-tac-toe game and will deploy it on the web server so other people can enjoy it.

AN UNOFFICIAL HISTORY OF JAVA APPLETS

Fifteen years ago Netscape’s market share was over 90 percent, but the situation changed
when Microsoft introduced Internet Explorer. Back in 1998 there was an infamous lawsuit
between Microsoft and Sun Microsystems — the former started quietly introducing its own
class library to Java, breaking the write-once-run-anywhere principle of Sun. Sun won that
lawsuit. But as the saying goes, it won the battle but lost the war.

Microsoft stopped including the current version of JVM with Internet Explorer. ’'m not blam-
ing them for this, but it hurt applets’ popularity — the end user couldn’t just open a web page



104 | LESSON10 INTRODUCTION TO JAVA APPLETS

to see an applet that required, say, JVM version 1.3. The user would need to first download the
proper version of JVM, and then only the applets that were written for JVM 1.3 would work. The
process of downloading the right JVM plug-in was a multi-step process.

Sun Microsystems showed a lack of competence on the client side, specifically in the area of integra-
tion of JVM into web browsers, and Adobe Flash Player, which is also a virtual machine) dominates
in this area now.

High penetration of the required run-time environment and the ability to upgrade it easily are cru-
cial for any web-based technology. Adobe Flash Player shines in this area. Flash Player is a virtual
machine with a small memory footprint (1.5 Mb), and its installation takes less than 20 seconds
after one button click. For years the JVM plug-in was about 16 Mb, and installation was compli-
cated for a non-programmer — it’s a lot smaller now.

This situation changed after the release of Java 6 update 10, which includes the so-called next-
generation Java plug-in. Now applets don’t run in the JVM packages with the web browser, but in a
separate JVM launched by the Java plug-in. The applet still appears in the web browser’s window,
but now it doesn’t depend on the willingness of the browser vendor to include the latest plug-in. You
can read more about this next-generation Java plug-in at https://jdk6.dev.java.net/plugin2.

To control the settings of this plug-in in Microsoft Windows, use the Java Control Panel — select
Start = Control Panel = Java. Under the Advanced tab find the item Java Plug-in where Enable the
Next-generation Java Plug-in should be selected by default.

If you run Intel-based MAC OS X 10.6 or above, find out what Java plug-ins are installed by typ-
ing about :plugins into the address bar of your browser. To use the next-generation plug-in on
Apple computers follow the instructions at http://blogs.sun.com/thejavatutorials/entry/
enabling_the_next_generation_java.

The other major change introduced in the next-generation Java plug-in is the ability to launch Java
applets directly from JNLP (Java Network Launch Protocol) files, which in the previous releases
were used only in Java Web Start technology, which allowed local deployment of the applications
over the network. As of Java 10.6.10 you can use the JNLP meta-descriptors to launch applets
too. JNLP support is described in detail at www.oracle.com/technetwork/java/javase/
index-142562.html.

What’s the next step in applets’ evolution? You’ll be creating a Ul for web-based applications with a
relatively new language called JavaFX, which will be demonstrated in Lesson 37.

RESTRICTIONS OF JAVA APPLETS

People browse the Internet without knowing if web pages contain Java applets or not, but they want
to be sure that the files located in their computers will not be harmed by some bad guys who have
added a nasty applet to a page. Unsigned applets are the ones that haven’t gone through a special
signing process to obtain a security certificate indicating that they come from a trusted source.


https://jdk6.dev.java.net/plugin2
http://blogs.sun.com/thejavatutorials/entry/enabling_the_next_generation_java
http://www.oracle.com/technetwork/java/javase/index-142562.html
http://blogs.sun.com/thejavatutorials/entry/enabling_the_next_generation_java
http://www.oracle.com/technetwork/java/javase/index-142562.html

Learning HTML on the Run | 105

Unsigned (aka untrusted) Java applets operate inside a so-called security sandbox and have the fol-
lowing main restrictions:

> They can’t access local files on your disk.
> They can connect only to the computer they were downloaded from.

>  They can’t start any other programs located in your computer.

Applets can be signed by VeriSign or Thawte and operate outside the security sandbox and be unre-
stricted in their ability to access the user’s computer if the user accepts the applet’s security. A signed
applet will run outside the security sandbox. If the user refuses to accept the certificate, the applet
will run within the security sandbox as unsigned.

To run an applet you’ll need a Java class written in a special way, an HTML text file that contains
the tag <applet> pointing to this class, and a web browser that supports Java. You can also test
applets in Eclipse or using a special program called appletviewer. But before learning how to create
applets, spend 15 minutes to get familiar with some HTML tags.

LEARNING HTML ON THE RUN

Imagine that you’ve already written and compiled the game applet class called TicTacToe. It has to
be deployed on the web servers along with the HTML wrapper — the file that includes the proper
references to TicTacToe.class. HTML stands for Hypertext Markup Language. It defines a set

of tags placed in angle brackets that can be inserted in a text file with any plain text editor, such as
Notepad, TextEdit, or the editor that comes with Eclipse (select File ©> New = File). In this section
I’ll show you a bare minimum of HTML tags to get you going with applets, but you can find a com-
plete HTML tutorial at www.w3schools.com/html/html_primary.asp.

Let’s start with creating the text file called TicTacToe.html. HTML files have names that end with
.html or .htm. Inside they usually have two sections: header and body. HTML tags are placed
inside angle brackets and most of them have the matching closing tags that start with a forward
slash, for example <head> and </head>. The content of the very basic HTML file TicTacToe.html
is shown in Listing 10-1.

‘) LISTING 10-1: The basic HTML file

Available for <html>
sonisadon pead>
<title>My First Web Page</title>
</head>
<body>
My Tic-Tac-Toe game is coming soon...
</body>
</html>


http://www.w3schools.com/html/html_primary.asp

106 | LESSON10 INTRODUCTION TO JAVA APPLETS

You can place tags either in the same line, as we did with

the tags <title> and </title>, or in separate lines. Fle Edt vew Favorkes Toos Help
Open this file in your web browser using File > Open. Y- X B @ D seweh e Favorios
As shown in Figure 10-1, the title bar of the window Will | ...... (&) copractcassmatmorkepacsitssontaiTetacton bird

read “My First Web Page,” and inside the page you’ll see

. . . My Tic-Tac-Toe game is coming soon. .
the words “My Tic-Tac-Toe game is coming soon...”

Earlier versions of the HTML standard included the tag
<applet> to incorporate Java applets into an HTML
page. But as of HTML 4.01 this tag has been depre-
cated and you should use the tag <object> for Internet FIGURE 10-1

Explorer or <embed> for other web browsers. But Oracle,

the company behind Java, recommends using <applet> for web pages accessed through the Internet
and <object> or <embed> for intranet-based websites. The main reason is that web browser ven-
dors are infamous for being inconsistent in implementing HTML standards, and it’s safer to use

the tried-and-true <applet> tag to give a predictable look and feel to the web pages that host Java
applets. But an intranet is a more controlled environment. You can read about embedding applets
with all of these tags at http://download.oracle.com/javase/6/docs/technotes/guides/
plugin/developer_guide/using_tags.html, but in this tutorial I’ll stick to the <applet> tag.

The deployment options for applets have been extended as of the release of Java 6 update 10.

To learn all the options for applet deployment in depth, refer to the Oracle document Java Rich
Internet Applications Deployment Advice, available at http: //download.oracle.com/javase/6/
docs/technotes/guides/jweb/deployment_advice.html.

Let’s add the <applet> tag to the file TicTacToe.html, as shown in Listing 10-2. With some
HTML tags you can specify additional attributes. The following are the main attributes of the
<applet> tag:

>  code: Contains the name of the applet Java class.

> width: Contains the width in pixels of the rectangular area on the screen that will be used by
the applet.

>  height: Contains the height of the area to be used by the applet.

> codebase: Specifies the root directory of your applet class relative to the location of the
HTML file. For example, if the applet class is located in the sub-directory bin, specify
"./bin" in the codebase attribute to avoid getting FileNotFoundException.

> archive: Use this attribute to specify the location of the jar file if your multi-class applet
has been deployed as one archive file, which can be created with the help of the jar program
located in the bin directory of your Java install.

The <applet> tag from Listing 10-2 means that a compiled version of the Java class TicTacToe is
located in the same directory as TicTacToe.html, and it’ll occupy a screen area of 300 pixels by
250 pixels. Note that if an HTML tag doesn’t have nested tags, placing a forward slash in front of
the closing angle bracket is a replacement for a closing </applet> tag.

But in general, the <applet> tag may have nested elements. In particular, if you need to pass param-
eters to an applet you can do it via the nested element <param>.


http://download.oracle.com/javase/6/docs/technotes/guides/plugin/developer_guide/using_tags.html
http://download.oracle.com/javase/6/docs/technotes/guides/jweb/deployment_advice.html
http://download.oracle.com/javase/6/docs/technotes/guides/plugin/developer_guide/using_tags.html
http://download.oracle.com/javase/6/docs/technotes/guides/jweb/deployment_advice.html

Writing Applets Using Swing | 107

LISTING 10-2: The basic HTML file

J

dAvaiI'ellhItleifor <html>
ownload on
Wrox.com <body>

Here is my Tic-Tac-Toe game:

<applet code="TicTacToe.class" width=300 height=250 />

</body>
</html>

Now the screen looks different — instead
of seeing the tic-tac-toe game you’ll get
an error message, as in Figure 10-2. No
wonder: The web browser could not find
TicTacToe.class, SO it just shows a rect-

2 My First Web Page - Microsoft Internet Explorer

File  Edil  VWiew Favworiles  Touks  Help
A G\ B A . ) ”
=K J )q |me] Fw) | A~ Search 7. Faverites { -

Ardderss @) C\PracticallavalworkspacelLesson1 i TicT acToe Himl

@) Emor. Click for detalls

angle of 300 pixels by 250 pixels. You’ll
fix this error by creating the TicTacToe
class a little later in this lesson.

WRITING APPLETS
USING SWING

Until the Swing library came into the pic-
ture, you could create Java applets only
using UI components from the java.awt
package. Even after Swing components were introduced, using them was somewhat problematic

in applets downloadable over the Internet — what if the applet had to be run in an older browser
that supported only Java 1.1 and didn’t know about Swing classes? But modern applets use the new
plug-in and don’t depend on what JDK came with the web browser. In this book I’ll be writing my
applets with Java Swing.

ere is my Tic-Tac-Toe game:

FIGURE 10-2

Swing applets have to be inherited from the class javax.swing.Japplet. For example

class TicTacToe extends javax.swing.JApplet {
}

Unlike Java applications, applets do not need a main () method because the web browser will down-
load and run them as soon as it sees the <applet> tag in the web page. The Java plug-in will also
notify the applet when some important life-cycle events happen — for example, when the applet is
starting, repainting, and so on.

If your applet needs to react to these events, you should program one of the callback methods:
init (), start (), paint (), stop(), and destroy (). The Java plug-in will call these methods in the
following cases:

> init() is called when the applet is loaded by the Java plug-in. It’s called only once, playing a
role similar to that of constructors in regular Java classes.

>  start() is called right after init (). It is also called each time a user returns to the web page
with the applet after visiting another page.



108 | LESSON10 INTRODUCTION TO JAVA APPLETS

> paint() is called when the applet’s window needs to be displayed or refreshed after some
activity on the screen, for example, when the applet is overlapping with some other window
and the browser needs to repaint it. This method will get the Graphics object as an argument.

> stop() is called when the user leaves the web page containing the applet.

>  destroy () is called when the browser destroys the applet. Write code in this method only
if the applet uses some other resources — for example, if it holds a connection to the remote
computer it was downloaded from.

Even though you do not have to program all these methods, each applet must have at least init ()
or paint (). For example, init () is the right place to get some external parameters that may be
passed to the applet. Say that the HTML file has an <applet> tag that looks like this:

<applet>
<param>name="backgroundColor" value="0xc0c0c0"</param>
</applet>

To get the value of the parameter backgroundColor just write one line in the init () method:

String backgroundColor = getParameter ("backgroundColor") ;

Listing 10-3 shows the code of the applet that displays the words “Hello World.” This applet
has only one method, paint (), that receives an instance of the Graphics object from the Java
plug-in. The class java.awt.Graphics has several methods for painting. Our applet uses the
method drawString () to draw the text “Hello World.”

‘) LISTING 10-3: Hello World applet

Available for import javax.swing.JApplet;
download on . . ; .
Wrox.com import java.awt.Graphics;

public class HelloWorld extends JApplet ({

public void paint (Graphics g) {
g.drawString ("Hello World", 50, 100);
}

Create this class in Eclipse. Then run it as a Java Applet (Eclipse will use

appletviewer to display it). The window appears as shown in Figure 10-3. v":;n;e'l" iewer: o |- (D)%)

To test this applet in a web browser create the file He11o.html as you
created the file in Listing 10-2. Start your web browser and open the file
Hello.html using the browser’s File and Open menus. You’ll see the same

output as in Figure 10-3. Hello World

Do you think that after this simple example you are ready to write a game
program? You bet! You’ll do it in Lesson 11. For a more detailed tutorial
on Java applets, please visit the following web page: http://download Applet started
.oracle.com/javase/tutorial/deployment/applet/index.html. FIGURE 10-3



http://download.oracle.com/javase/tutorial/deployment/applet/index.html
http://download.oracle.com/javase/tutorial/deployment/applet/index.html

Trylt | 109

TRY IT

Turn the calculator from Lessons 8 and 9 into an applet.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson10 folder in the download.

Step-by-Step
1. Create a new Eclipse project called Lesson10.

2. Take the calculator class that you created in the Try It section of Lesson 8 and copy it into
the project Lesson10. Give it an ancestor, JApplet.

3.  Getrid of the main () method. Now the calculator class will be instantiated for you by the
Java plug-in inside the web browser.

4. Rename the Calculator’s constructor method into the applet’s init () method.

5. Do not control the size of the calculator by calling pack (). Now the size of your calculator
is defined by the width and height attributes of the tag <applet>.

6. Do not instantiate JFrame.
7. Add the code to perform calculations that you completed at the end of Lesson 9.

8. Don’t try to control the life cycle of the calculator by processing events of the
WindowListener, as was explained in Lesson 9. Now your window lives inside the web

browser.

9. Create the file calculator.html and open it in the web browser. You should see your
calculator.

www . wrox . com/go/ fainjava to view the video that accompanies this lesson.

? Please select Lesson 10 on the DV D with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com/go/fainjava




11

Developing a Tic-Tac-Toe Applet

Now that you’re familiar with the basics of Java applets, it’ll be nice to write a program a bit
more useful than Hello World. In this lesson you’ll program the game of tic-tac-toe as a Java
Swing applet.

Every game implements some algorithm — a set of rules or a strategy that has to be applied
depending on the player’s actions. The algorithms for the same game can be simple or very
complicated. When you hear that the world chess champion plays against a computer, he actu-
ally plays against a program. Teams of experts are trying to invent sophisticated algorithms to
beat him. Let’s come up with the algorithm for tic-tac-toe.

THE STRATEGY

In the unlikely event that you aren’t familiar with tic-tac-toe, or if it has a different name in
your part of the world, read the following Wikipedia article: http://en.wikipedia.org/
wiki/Tic-tac-toe. Our version of the popular game will implement the following strategy:

>

>

Y VYV VY Y Y

The game will be played on a two-dimensional board of three cells by three cells.

Two players can play this game. One will play with the symbol X, and the other
will use O.

The winner must have a full row, column, or diagonal of his or her designated symbol.
After each move, the program has to check if there is a winner.

The game should end if there are no empty squares left.

The player has to press the New Game button to play again.

When the program makes a decision about where to put the next letter O, it has to try
to find a row, column, or diagonal that already contains two Os, and add the third
accordingly.


http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe

112 | LESSON 11 DEVELOPING A TIC-TAC-TOE APPLET

> If there is no such row, column, or diagonal, the program has to try to find two Xs in such a
configuration and place an O in the free cell to block the player’s winning move.

N o .
If no winning or blocking move was found, the

program has to try to occupy the central square, Fin UEGE Ve Favoribes Took, Help
or pick the next empty square at random. ¢ ©- XA O Dswer Soronae

Address | @) CriPracticallavalworkspacsiLessont 1\TicTacToe. html

CODING TIC-TAC-TOE

Let’s implement the strategy for tic-tac-toe as an applet.
First, program the Ul portion, and then add event
processing. I decided to use Jpanel, containing nine
Jbuttons, to render the three-by-three grid. Review

the code in Listing 11-1. Note that the panel uses
GridLayout, but with an extra row (four by three). The
last row will display the player’s identifier: “Player X or
“Player 0.” Figure 11-1 shows how it may look.

By setting the button label to X or O, on the click event,

it’s easy to keep track of each player’s move. At the bottom
of the window you’ll see the name of the player who is to Player X, your trm.
make the next move (see the method setPlayerName ()
in Listing 11-1). The method reset () will clear all the
squares after the winner has been announced. FIGURE 11-1

J LISTING 11-1: Coding Ul for tic-tac-toe

Availablefor ~ package com.practicaljava.lessonll;
download on
Wrox.com . .
import java.awt.BorderLayout;

import java.awt.Component;

import java.awt.Font;

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.GridLayout;

import javax.swing.JApplet;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JOptionPane;
import javax.swing.SwingConstants;

public class TicTacToeAppletl extends JApplet(

private static String PLAYERX "Player X";
private static String PLAYERO = "Player 0O";

private String playerName = PLAYERX;

private JButton buttonl;



Coding Tic-Tac-Toe | 113

private JButton button2;

private JButton button3;

private JButton button4;

private JButton button5;

private JButton buttoné6;

private JButton button7;

private JButton button§;

private JButton button9;

private JLabel playerNumber;

private java.awt.Panel buttonsPanel;

public void init(){

initComponents () ;

private void initComponents () {

buttonsPanel = new java.awt.Panel();

buttonl = new JButton();

button2 = new JButton()

button3 = new JButton()

button4 = new JButton();

button5 = new JButton() ;
()
()
()

7

7

7

button6é = new JButton
button7 = new JButton
button8 = new JButton
button9 = new JButton();

playerNumber = new JLabel (playerName, SwingConstants.CENTER) ;

7

7

Font buttonFont = new Font ("Times New Roman", Font.PLAIN, 60);

buttonl.setFont (buttonFont)
button2.setFont (buttonFont)
button3.setFont (buttonFont)
buttond.setFont (buttonFont) ;
button5.setFont (buttonFont) ;
( )
( )
( )
( )

i

7

7

7

buttoné.setFont (buttonFont
button7.setFont (buttonFont
button8.setFont (buttonFont
button9.setFont (buttonFont

7

7

7

buttonsPanel.setLayout (new GridLayout (4, 3));

buttonsPanel.add (buttonl)

buttonsPanel .add (button2) ;

buttonsPanel.add (button3) ;
( )
( )
( )

’

7

buttonsPanel.add (button4
buttonsPanel.add (button5
buttonsPanel.add (buttoné

i

’

continues



114 | LESSON 11 DEVELOPING A TIC-TAC-TOE APPLET

LISTING 111 (continued)

buttonsPanel.add (button7) ;
buttonsPanel.add (button8) ;
buttonsPanel.add (button9) ;

buttonsPanel .add (new Component () {});
setPlayeName (PLAYERX) ;
buttonsPanel.add (playerNumber) ;

add (buttonsPanel) ;
}

private void setPlayerName (String playerName) {

this.playerName = playerName;
playerNumber.setText (playerName +", your turn.");

}

public void reset () {
buttonl.setText ("")
button2.setText ("")
button3.setText ("");
buttond.setText ("");
("")
(")
(")
(")

’
"o

7
"o

i

button5.setText (""
button6.setText
button7.setText
button8.setText
button9.setText ("");

setPlayerName (PLAYERX) ;

7
"o

’
"o

i

As you learned in Lesson 10, the callback method init () will be automatically called by the Java
plug-in when the applet is downloaded by the web browser. While in development mode, you can
also test your applets right in Eclipse with appletviewer. Note that the code in Listing 11-1 does
not set the size of the game board — that has to be done externally, either in an HTML file, as in
Listing 11-2, or in Eclipse in the Run Configuration window. The width of my game board is set to
350 pixels and the height is 400.

‘) LISTING 11-2: HTML wrapper for the tic-tac-toe applet

Available for <HTML>

download on

Wrox.com <HE5D> ) ) )
<Title>My First Game in Java</Title>
</HEAD>
<BODY>

<STRONG>Play Tic-Tac-Toe with me! </STRONG>



Coding Tic-Tac-Toe | 115

<BR>
<APPLET code="com.practicaljava.lessonll.TicTacToeApplet"
codebase="./bin" width="350" height="400" />
</BODY>

</HTML>

SWING AND GROUPLAYOUT

The code in Listing 11-1 was written manually. But most likely, if you’re developing
a complex GUI, you’ll use some Swing GUI builder such as Matisse that will allow
you to design windows in what-you-see-is-what-you-get mode by dragging and
dropping visual components onto the design area. If you look at the auto-generated
code you may find GrouplLayout, created by the GUI builder (but you can program
this layout manually, too).

GroupLayout groups components inside a container. Imagine a shipping or billing
form that contains several text labels, one under another, each having an input field
next to it. Each label contains a different number of characters, which means that
you’ll need to align the input fields so the form looks pretty. If you can think of this
UI as of two vertical groups (labels belong to one and input fields to another), you
can simply set the gap between the left and right groups to 20 pixels or so.

Similarly, you can distinguish some horizontal groups in your UL If you want to
karnlnoreaboutGroupLayout,fOHOWIdﬁShnk:http://download—llnw.oracle
.com/javase/6/docs/api/javax/swing/GroupLayout.html.

After the Ul part is ready, let’s take care of the processing logic. Our applet will be processing
mouse clicks to set the label of the selected button to X or O and checking for the winner. That’s
why you’ll need to perform these steps:

1. Add implements MouseListener to the class TicTacToeApplet.

2. AddwMouseListener to each of the buttons so they properly report which player (X or O)
clicked them, for example

buttonl.addMouselListener (this) ;
3. Implement methods required by the MouseListener interface — only the mouseClicked ()
callback will have code in this applet.

4. Call the method checkForwinner () on each click to determine whether there are three iden-
tical symbols in a row, column, or diagonal, as shown in Listing 11-3.


http://download-llnw.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html
http://download-llnw.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html

116 | LESSON11 DEVELOPING A TIC-TAC-TOE APPLET

\) LISTING 11-3: Processing button click events

Available for  public void mouseClicked(MouseEvent e) {
download on
Wrox.com
JButton currentButton = (JButton)e.getComponent () ;

if (currentButton.getText() == ""){
if (playerName == PLAYERX) {
currentButton.setText ("X") ;
setPlayerName (PLAYERO) ;

} else if (playerName == PLAYERO) {

currentButton.setText ("0O") ;
setPlayerName (PLAYERX) ;

checkForWinner () ;

When the user clicks a button, the method mouseClicked () checks the name of the current player
and displays X or O accordingly by calling currentButton.SetText (). Figure 11-2 depicts how
this looks in the web browser.

2 My First Game in Java - Microsaft Internet bxplorer

Fle Edt View Favorites Tools Help

e ©- [0 B G Powr Frrowes

address (@ CiiPracticallavalworkspaceiLessond 1\TicTacTos himl

[Flay Tic-Tac-Toe with me! |

O

X
O | X |

Player X, your tuin.

FIGURE 11-2



Coding Tic-Tac-Toe | 117

The method checkForwinner () will call another private method, findThreeInaARow (). If
three identical symbols are found diagonally or in any vertical or horizontal line, the method
checkForWinner () will congratulate the winner and call reset () so the new game can be
started. The methods checkForWinner () and findThreeInARow () are shown in Listings 11-4
and 11-5 respectively.

\) LISTING 11-4: The method checkForWinner()

Availablefor  private void checkForWinner () {
download on
Wrox.com .

String [] str = {"OK"};

if (findThreeInARow () ) {

String winnerName= (playerName == PLAYERX) ?PLAYERO:PLAYERX;
JOptionPane.showOptionDialog (this, winnerName.concat (
" won!!! Congratulations!!!"), "Congratulations!",

JOptionPane.YES_OPTION, JOptionPane.PLAIN_MESSAGE, null, str, "OK");

reset () ;

}

‘) LISTING 11-5: The method findThreelnARow()

Availablefor  private boolean findThreeInARow () {
download on
Wrox.com .
if ((buttonl.getText () == button2.getText() && button2.getText () ==
1=

button3.getText () && buttonl.getText () )
(buttond.getText () == buttonb.getText () && button5.getText () ==
button6.getText () && buttond.getText() != "") ||
(button7.getText () == button8.getText() && button8.getText () ==
button9.getText () && button7.getText() != "") ||
(buttonl.getText () == buttond.getText () && buttond.getText () ==
button7.getText () && buttonl.getText() != "") ||
(button2.getText () == button5.getText () && button5.getText () ==
button8.getText () && button2.getText() != "") ||
(button3.getText () == button6.getText () && button6.getText() ==
button9.getText () && button3.getText() != "") ||
(buttonl.getText () == button5.getText () && button5.getText () ==
button9.getText () && buttonl.getText() != "") ||
(button3.getText () == button5.getText () && button5.getText () ==
button7.getText () && button3.getText() != "")

//There is a winner!
return true;

else
//No three-in-a-row was found
return false;



118 | LESSON11 DEVELOPING A TIC-TAC-TOE APPLET

The complete code for this version of tic-tac-toe is included on the website and is given in
Listing 11-6 for your reference.

‘) LISTING 11-6: Complete code for the tic-tac-toe game

Available for  package com.practicaljava.lessonll;
dmgtgg"ﬁ" import java.awt.BorderLayout;
import java.awt.Component;
import java.awt.Font;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JApplet;
import javax.swing.JButton;
import javax.swing.JOptionPane;
import javax.swing.SwingConstants;
public class TicTacToeApplet extends JApplet
implements MouseListener ({

private static String PLAYERX = "Player X";
private static String PLAYERO = "Player 0O";
private String playerName = PLAYERX;
private JButton buttonl;

private JButton button2;

private JButton button3;

private JButton button4;

private JButton button5;

private JButton buttoné6;

private JButton button7;

private JButton button$§;

private JButton button9;

private JLabel playerNumber;

private Panel buttonsPanel;

public void init () {
initComponents() ;
}
private void initComponents () {
buttonsPanel = new Panel ()
buttonl = new JButton() ;
button2 = new JButton()
button3 = new JButton()
buttond = new JButton()
button5 = new JButton();
button6 = new JButton() ;
()
()
()

7

’

i

7

’

button7 = new JButton
button8 = new JButton
button9 = new JButton

’

i

playerNumber = new JLabel (playerName,
SwingConstants.CENTER) ;
buttonl.addMouselListener (this) ;
button2.addMouselListener (this) ;
button3.addMouseListener (this) ;



Coding Tic-Tac-Toe | 119

’

buttond.addMouseListener (this)

button5.addMouseListener (this) ;

button6.addMouselListener (this) ;
( )
( )
( )

’

button7.addMouseListener (this
button8.addMouseListener (this
button9.addMouseListener (this

i

7

Font buttonFont = new Font ("Times New Roman",
Font.PLAIN, 60);

7

buttonl.setFont (buttonFont)
button2.setFont (buttonFont)
button3.setFont (buttonFont)
buttond.setFont (buttonFont) ;
button5.setFont (buttonFont) ;
( )
( )
( )
( )

7

7

7

buttoné.setFont (buttonFont
button7.setFont (buttonFont
button8.setFont (buttonFont
button9.setFont (buttonFont

7

7

7

buttonsPanel.setLayout (new java.awt.GridLayout (4, 3));
buttonsPanel.add (buttonl) ;

buttonsPanel.add (button2
buttonsPanel .add (button3
buttonsPanel.add (button4

i
7

’

( )
( )
( )
buttonsPanel.add (button5) ;
buttonsPanel .add (buttoné)
( )
( )
(
(

’

’

buttonsPanel.add (button7
buttonsPanel.add (button8
buttonsPanel.add (button9) ;

buttonsPanel .add (new Component(){});

i

setPlayerName (PLAYERX) ;
buttonsPanel.add (playerNumber) ;
add (buttonsPanel) ;

private void setPlayerName (String playerName) {
this.playerName = playerName;
playerNumber.setText (playerName + ", your turn. ");

{

private void reset()
buttonl.setText ("")
button2.setText ("")
button3.setText ("")
buttond.setText ("");
buttonb.setText ("");
(")
(")
(")
(")

i
"

i
"

7
nan

7

button6b.setText (""
button7.setText
button8.setText
button9.setText

7
nn

7
"o

7

setPlayerName (PLAYERX) ;

continues



120 | LESSON 11 DEVELOPING A TIC-TAC-TOE APPLET

LISTING 11-6 (continued)

private void checkForWinner () {

public void mouseClicked (MouseEvent e)
(JButton)e.getComponent () ;

public
public
public
public

public

button3

buttoné

button9

button7

button8

button9

button9

button7

String []

str =

1f (findThreeInARow () ) {
String winnerName=
(playerName == PLAYERX) ?PLAYERO:PLAYERX;

{"OK"};

JOptionPane.showOptionDialog (this,
winnerName.concat (" won!!! Congratulations!!!"),

"Congratulations!", JOptionPane.YES_OPTION,

JOptionPane.PLAIN_MESSAGE, null,

reset () ;

JButton currentButton

if
if

(currentButton.getText () ==
(playerName == PLAYERX)
currentButton.setText

{

")

{
("X")

setPlayerName (PLAYERO) ;

} else if

(playerName

str,

{

7

PLAYERO) {

currentButton.setText ("0") ;
setPlayerName (PLAYERX) ;

}

checkForWinner () ;

if
.getText ()

.getText ()

.getText () &&

(buttonl.

.getText () &&
(button2
.getText () &&
(button3
.getText () &&
(buttonl
.getText () &&
(button3
.getText () &&
) {

getText ()

buttonl.getText ()
.getText ()
button2.getText ()
.getText ()
button3.getText ()
.getText ()
buttonl.getText ()
.getText ()
button3.getText ()

void mousePressed (MouseEvent e)
void mouseReleased (MouseEvent e)
void mouseEntered (MouseEvent e)
void mouseExited (MouseEvent e)

boolean findThreeInARow () {
((buttonl.getText ()
&& buttonl.getText ()
(buttond.getText ()
&& buttond.getText ()
(button7.getText ()
button7.getText ()

== button4.

== button5.

== buttoné6.

== button5.

== buttonb.

{3
{}

{3

{}

un) ||

) ]|

geiTlLt()
geiTiLt()
etrexe
geiTlLt()
geiTiLt()
")

"OK") ;

== button2.getText ()
== buttonb.getText ()

== button8.getText ()

&&

&&

&&

&&

&&

&& button2.getText ()

&& button8.getText ()

button4

buttonb

buttoné

buttonb

buttonb

.getText ()
.getText ()
.getText ()
.getText ()

.getText ()

&& buttonb.getText ()



Trylt | 121

return true;
telse {
return false;
}
}

Congratulations! You’ve completed your first game in Java. This program uses a simple strategy
because our goal is just to learn how to program Java applets. There is one more important class
for working with Swing UI using the Swing Worker Thread, but it’s a bit too early to explain it here
because I haven’t covered Java threads yet. You can read about the swingWorker class in Lesson 20.

TRY IT

Today’s homework is to modify the code from Listing 11-6 to make it shorter and change the

game — the current version of tic-tac-toe requires two human players, but I want you to replace one
of them with the computer (which also has some brainpower). I also want you to highlight the win-
ning combination rather than displaying a pop-up window with congratulations.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lessonl1 folder in the download.

Step-by-Step

1.

2.

Create a new Eclipse project called Lesson11, copy TicTacToeapplet from the DVD accom-
panying the book into this project, and run it to ensure that you can play this two-player game.

The code in Listing 11-6 performs lots of repetitive actions on buttons, such as setFont (),
setText (), and addMouseListener (). Create an array and store all instances of JButton
there. Introduce loops to perform all repetitive actions on the buttons.

Get rid of the pop-up window congratulating the winner with JoptionPane
.showOptionDialog (). Display this text instead at the bottom of the window
(use the existing JLabel playerNumber for this).

Highlight the winning combination by giving the winning squares (Swing JButtons) a
different color.

Add a new button, Play Again, at the bottom of the window for starting a new game.


http://www.wrox.com

122

LESSON 11 DEVELOPING A TIC-TAC-TOE APPLET

Replace the moves of Player O with randomly generated moves made by the computer right
after the Player X moves. Use the method nextInt () from the class java.util.Random. If
the randomly generated square is occupied, call this method again.

Test this program and enjoy the game!

This step is optional. If you want to make the computer’s moves smarter, learn minimax

strategy (see http://en.wikipedia.org/wiki/Minimax) to enable the computer to select
the best move.

Please select Lesson 11 on the DVD with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://en.wikipedia.org/wiki/Minimax
http://www.wrox.com/go/fainjava

Developing a Ping-Pong Game

The tic-tac-toe game developed in Lesson 11 was a simple one. My goal was to show you the
basic layout of UI components and event processing. Now you’ll learn how to draw and move
such objects as ovals, rectangles, and lines in a window. You’ll also learn how to process key-
board events. To add a little fun to these subjects, you’ll be learning all these things while
creating a ping-pong game. This game will have two players: the user and the computer.

THE STRATEGY

Let’s come up with the rules for our version of the ping-pong game:

1.

2.

w

The game lasts until one of the players (the user or the computer) reaches a score of 21.
The computer’s racket is on the left.

The user’s racket movements will be controlled by the mouse.
The game score will be displayed at the bottom of the window.

A new game starts when a player presses the N key on the keyboard; the Q key ends
the game; S serves the ball.

Only the user can serve the ball; the computer can’t.

For one of the players to win a point the ball must go beyond the opponent’s racket’s
vertical line when the racket is not blocking the ball.

When the computer bounces the ball, the ball can move only horizontally to the right.

If the ball contacts the user’s racket in the upper half of the table, the ball should be
moving up and left. If the ball was located in the bottom part of the table, it should
move down and left.



124 | LESSON12 DEVELOPING A PING-PONG GAME

It sounds like a very complicated task, but let’s split it into a set of simple tasks and solve them one
by one. The first version of the game will have only some of these rules implemented: It’ll just paint
the table, move the racket, and display the coordinates of the mouse pointer when you click the
mouse button.

THE CODE

From the code organization perspective, you need to decide how many classes you need to write to
separate Ul and functionality. This game will consist of two classes and one interface:

»  The class PingPongGreenTable will take care of the visual @ # @  ping Pong Green Table

part. During the game it’ll display the table, rackets, and

ball. The final version of the table is shown in Figure 12-1.

This book doesn’t show colors, but the table surface is

green, the rackets are blue and yellow, and the ball is red. I

> The class PingPongGameEngine will be responsible for
calculating the ball’s and rackets’ coordinates, starting
and ending the game, and serving the ball. The engine
will pass the current coordinates of the Ul components Press N for a new game. S 10 serve or Q 1o quit
to PingPongGreenTable, which will repaint itself FIGURE 12-1
accordingly.

> The interface GameConstants will contain declarations of all constants that the game needs,
for example the width and height of the table, the starting positions of the rackets, and so on.

The User Interface
The first version of the game will do only three things:
> Display the green ping-pong table.
> Display the coordinates of the mouse pointer when you click the mouse.

> Move the user’s racket up and down according to the mouse pointer’s movements.

Listing 12-1 shows the first version of the UL The class PingPongGreenTablel is a subclass of the
Swing Jpanel.

‘) LISTING 12-1: Coding Ul of the ping-pong game (version 1)

lIj\Vﬂil?bllzlilJr public class PingPongGreenTablel extends JPanel implements GameConstantsl{
ownload on

Wrox.com
JLabel label;

public Point point = new Point(0,0);

private int ComputerRacketX =15;



The Code | 125

private int kidRacketY =KID_RACKET_Y_START;

Dimension preferredSize = new Dimension (TABLE_WIDTH, TABLE_HEIGHT) ;

// This method sets the size of the frame. It's called by JVM
public Dimension getPreferredSize() {

return preferredSize;

// Constructor instantiates the engine
PingPongGreenTablel () {

PingPongGameEnginel gameEngine = new PingPongGameEnginel (this);

/

/

/7

/ Listen to mouse clicks to show its coordinates
addMouseListener (gameEngine) ;

/ Listen to mouse movements to move the rackets
addMouseMotionListener (gameEngine) ;

Add a panel with a JLabel to the frame

void addPaneltoFrame (Container container) {

/7
//
//

container.setLayout (new BoxLayout (container, BoxLayout.Y_AXIS))
container.add(this) ;

label = new JLabel ("Click to see coordinates");
container.add(label) ;

Repaint the window. This method is called by the JVM
when it needs to refresh the screen or when a
method repaint() is called from PingPointGameEnginel

public void paintComponent (Graphics g) {

super .paintComponent (g) ;
g.setColor (Color.GREEN) ;

// paint the table green
g.fillRect (0,0, TABLE_WIDTH, TABLE_HEIGHT) ;

// paint the right racket
g.setColor(Color.yellow) ;
g.fillRect (KID_RACKET X_START, kidRacketY,5,30);

// paint the left racket
g.setColor (Color.blue);
g.fillRect (ComputerRacketX,100,5,30);

//paint the ball
g.setColor (Color.red) ;

i

continues



126 | LESSON12 DEVELOPING A PING-PONG GAME

LISTING 12-1 (continued)
g.filloval(25,110,10,10);

// Draw the white lines on the table
g.setColor (Color.white) ;

g.drawRect (10,10,300,200) ;
g.drawLine(160,10,160,210) ;

// Display the dot as a small 2x2 pixels rectangle
if (point != null) {
label.setText ("Coordinates (x,y): " +
point.x + ", " + point.y);
g.fillRect (point.x, point.y, 2, 2);

}

// Set the current position of the kid's racket
public void setKidRacketY (int xCoordinate) {

this.kidRacketY = xCoordinate;

// Return the current position of the kid's racket
public int getKidRacketY (int xCoordinate) {
return kidRacketY;

public static void main(String[] args) {
JFrame f = new JFrame ("Ping Pong Green Table");

// Ensure that the window can be closed
// by pressing a little cross in the corner
f.setDefaultCloseOperation (WindowConstants.EXIT_ON_CLOSE) ;

PingPongGreenTablel table = new PingPongGreenTablel () ;
table.addPaneltoFrame (f.getContentPane()) ;

// Set the size and make the frame visible
f.pack();
f.setVisible(true);

At any given time the game needs to know the exact coordinates of the mouse pointer. The construc-
tor of PingPongGreenTablel will create an instance of the event listener class PingPongGameEngine,
which will perform some actions when the user clicks the mouse button or just moves the mouse.

The method addPaneltoFrame () creates a JLabel component that will display the coordinates of
the mouse.



The Code | 127

This class is not an applet, which is why instead of the method paint () it uses the method
paintComponent (). This method is called by JVM when it needs to refresh the window, or when
our program calls the method repaint (). In other words, the method repaint () internally calls
paintComponent () and provides our class with the object Graphics so it can paint on the window.
Always call this method after recalculating the coordinates of the rackets or the ball to display
them in the proper position.

To paint a racket, set the color first, and then fill a thin vertical rectangle with this paint using the
method fillRect (). This method needs to know the x- and y-coordinates of the top left corner of
the rectangle and its width and height in pixels.

The ball is painted with the method fi110val (), which X
needs to know the coordinates of the center of the oval, (0,0) > (100,0)
its height and its width. When the height and width of the

oval are the same, it is a circle.

The x-coordinate in a window increases from left to
right, and the y-coordinate increases from top to bottom
(see Figure 12-2). For example, the width of the rectangle ~ (070) FIGURE 12-2 (116.70)
shown in Figure 12-1 is 100 pixels, and the height is 70.

The x- and y-coordinates of the corners of this rectangle are
shown in parentheses.

Another interesting method is getPreferredsize (). The pro- T 0 () Ping Pong Green Table
gram creates an instance of the Swing class Dimension to set
the size of the ping-pong table. The JVM needs to know the
dimensions of the window, which is why it calls the method
getPreferredSize () of the PingPongGreenTablel Object.

This method returns to the JVM an object, Dimension, that is I.
created in the code according to the size of our table.

The first version of the Ul is shown in Figure 12-3. You can
move the mouse, and the correct racket moves along. When you Coordinates (xy): 0, 0
click the mouse anywhere on the table, the current coordinates FIGURE 12-3

are displayed at the bottom.

The Constants

Both table and engine classes use some constant values that do not change. For example, the class
PingPongGreenTablel uses the width and height of the table, and PingPongGameEnginel needs to
know the ball movement increments — the smaller the increment, the smoother the movement. It’s
convenient to keep all the constants (final variables) in an interface. In our game the name of the
interface is GameConstants1. If a class needs these values, there are two ways of making them avail-
able in the game classes.

The first one is just adding the clause implements GameConstants1 to the class declaration and
using any of the final variables from this interface as if they had been declared in the class itself.
This method of adding constants has a code readability drawback — it won’t be easily understood



128 |

LESSON 12 DEVELOPING A PING-PONG GAME

where these final variables were declared. Both the table and engine classes (see Listing 12-3) imple-
ment the GameConstants1 interface shown in Listing 12-2.

The second (and better) way of using these constants is to import the interface in the classes that
need them, and use the fully qualified names of the constants, e.g. GameConstants1.TABLE_WIDTH.
Changing the code of Listing 12-3 to apply this technique is one of the assignments in the Try It
section.

If you decide to change the size of the table, ball, or rackets you’ll need to do it in only one place —
the GameConstants1 interface.

‘) LISTING 12-2: The game’s constants (version 1)

Available for
download on

Wrox.com

public interface GameConstantsl {

int TABLE_WIDTH = 320;

int TABLE_HEIGHT = 220;

int KID_RACKET_Y_ START = 100;
int KID_RACKET X START = 300;
int TABLE_TOP = 12;

int TABLE_BOTTOM = 180;

int RACKET_INCREMENT = 4;

A program cannot change the values of these variables, because they were declared as final. But if,
for example, you decide to increase the size of the table, you’ll need to change the values of TABLE_
wIDTH and TABLE_HETIGHT and then recompile the GameConstants1 interface.

The Engine

The decision maker in this game is the class PingPongGameEnginel, which implements two mouse-
related interfaces. The first version of the engine is shown in Listing 12-3.

\) LISTING 12-3: The game’s engine (version 1)

Available for
download on
Wrox.com

public class PingPongGameEnginel implements
MouseListener, MouseMotionListener, GameConstantsl{

PingPongGreenTablel table;
public int kidRacketY = KID_RACKET_Y_START;

// Constructor. Stores a reference to the UI object

public PingPongGameEnginel (PingPongGreenTablel greenTable) {
table = greenTable;

}

// Methods required by the MouselListener interface
public void mouseClicked (MouseEvent e) {

// Get X and Y coordinates of the mouse pointer



The Code | 129

// and set it to the "white point" on the table
// Bad practice! Fix it in the Try It section
table.point.x = e.getX();
table.point.y = e.getY();

//The method repaint internally calls the table's

// method paintComponent () that refreshes the window
table.repaint () ;

}

public void mouseReleased (MouseEvent e) {};
public void mouseEntered (MouseEvent e) {};
public void mouseExited(MouseEvent e) {};

public void mousePressed(MouseEvent e) {};

// Methods required by the MouseMotionListener interface
public void mouseDragged (MouseEvent e) {}

public void mouseMoved (MouseEvent e) {
int mouseY = e.getY();

// If a mouse is above the kid's racket
// and the racket did not go over the table top
// move it up, otherwise move it down

if (mouseY < kidRacketY && kidRacketY > TABLE_TOP) {
kidRacketY -= RACKET_INCREMENT;
}else if (kidRacketY < TABLE_BOTTOM) {
kidRacketY += RACKET INCREMENT;

// Set the new position of the racket table class
table.setKidRacketY (kidRacketY) ;
table.repaint () ;

The MouseListener will have code only in the method mouseclicked (). On every mouse click this
method will draw a small white dot on the table and display its coordinates. This code is not very use-
ful for our game, but I wanted to show you a simple way to get the coordinates of the mouse from the
MouseEvent object that is given to the program by JVM.

The method mouseclicked () sets the coordinates of the variable point depending on where the
mouse pointer was when the player pressed the mouse button. After coordinates are set, this method
asks the JVM to repaint the table.

MouseMotionListener reacts to movements of the mouse over the table, and we’ll use its method
mouseMoved () to move the user’s racket up or down.

The method mouseMoved () calculates the next position of the user’s racket. If the mouse pointer
is above the racket (the t-coordinate of the mouse is less than the y-coordinate of the racket) this
method ensures that the racket will not go over the top of the table.

When the constructor of the table class creates the engine object, it passes to the engine a reference
to the table’s instance (the keyword this represents a reference to the memory location of the object



130

LESSON 12 DEVELOPING A PING-PONG GAME

PingPongGreenTablel). Now the engine can “talk” to the table, for example by setting the new
coordinates of the ball or repainting the table if needed.

I’ve included an example of a bad programming practice in Listing 12-3. The engine class is directly
accessing the variable point declared in another class, PingPongGreenTablel. It would be better to
make the variable point private and to provide a public method in the class PingPongGreenTablel
to set the coordinates of the point. This way if you decide to rename the variable point you won’t
need to change the engine’s class; the public interface will remain the same. You’ll need to fix this
bad practice in the “Try It” section.

In our game rackets move vertically from one position to another using the four-pixel increment
defined in the interface GameConstants1 (the engine class implements this interface). For example,
the next line subtracts four from the value of the variable kidrackety:

kidRacketY -= RACKET_INCREMENT;

Suppose the y-coordinate of the racket is 100: after this line it becomes 96, which means that the
racket has to be moved up. You can get the same result using the following syntax:

kidRacketY = kidRacketY - RACKET INCREMENT;

FINISHING THE PING-PONG GAME

Well, to finish the game you need to learn about multi-threading, which will be explained in Lesson 20.
If you feel a craving to finish the game right now, read the first half of Lesson 20 and then examine
the code that comes on the accompanying DVD and read the following explanations. I won’t include
the full listing of the completed game here — just some highlights to help you in reading the code
located on the disk. The class names in the completed version of the code are the same as the ones
used in this lesson, but they do not end with the digit 1.

Let’s start with the class PingPongGreenTable. You don’t need to display a white dot when the user
clicks the mouse; this was just an exercise to show you how to get the coordinates of the mouse pointer.
That’s why I’ll remove the declaration of the variable point and the lines that paint the white dot from
the method paintComponent (). Also, the constructor does not need to add the MouseListener any-
more; it was there only to display the point’s coordinates.

On the other hand, PingPongGreenTable should react to some of the keyboard buttons (N for new
game, S for serving the ball, and Q for quitting the game). Adding KeyListener to the engine will
take care of the communication with the keyboard. The declaration of the engine will look like this:

public class PingPongGameEngine implements Runnable,
MouseMotionListener, KeyListener, GameConstants{...}
Accordingly, you’ll need to add to the constructor of the class PingPongGreenTable the following line:
addKeyListener (gameEngine) ;

To make the code a little more encapsulated, I’'ve also moved the repaint () calls from the engine
class to PingPongGreenTable. Now this class will be responsible for repainting itself when needed.



Trylt | 131

I’ve also added methods to change the positions of the ball and the computer’s racket, and to
display messages. The final cameConstants interface has more variables than the one shown in
Listing 12-2. You should be able to guess what they are for just by looking at their names.

Following is a summary of the changes I’ve made in the class PingPongGameEngine — review the
code from the DVD and identify these changes:

> I have removed the interface MouseListener and all its methods, because we’re not process-
ing mouse clicks anymore. MouseMotionListener will take care of all mouse movements.

> This class now implements the Runnable interface, and you can find the decision-making
code in the method run (). Look at the constructor: I create and start a new thread there.
The method run () implements the game strategy rules in several steps, and all these steps
are programmed inside the if statement if (ballServed), which is a short version of
if (ballServed==true) .

> Note the use of the conditional if statement that assigns a value to the variable canBounce
in the code marked in the comments as Step 1. The variable will get a value of either true or
false depending on the result of the following expression:

canBounce = (ballY >= computerRacketY &&
ballY < (computerRacket_Y + RACKET LENGTH)? true: false);

> The class PingPongGameEngine implements the KeyListener interface, and the method
keyPressed () checks what letter was keyed in — N to start, Q to quit, or S to serve. The
code of this method enables the user to type either capital or lowercase letters, for example
N or n.

> T've added several private methods like displayScore (), kidServe (), and isBallOnTheTable ().
These methods are declared private because they are used within this class only, and other
classes do not even have to know about them.

> Today’s computers are too fast, and this makes the ball movements difficult to control.
That’s why I’ve slowed the game down by calling a method called Thread.sleep (). A static
method, sleep (), will pause this particular thread for a number of milliseconds given as an
argument of this method (see Lesson 20 for details).

> To make the ball movement a little more difficult to predict, when the user’s racket hits the
ball it moves diagonally. That’s why code changes not only the x-coordinate of the ball, but
the y-coordinate as well.

That’s all there is to it. Run the program and enjoy the game!

TRY IT

Your homework is to re-factor the code shown in this lesson. First split the UI, the constants, and
the engine into separate Java packages. Review the code and add the proper access modifiers: Make
the variables and methods that don’t have to be exposed to other classes private. The code in
Listing 12-3 shows an example of a bad programming practice: The engine class directly modifies
the internal variable point of the UI class. Fix this.



132 | LESSON12 DEVELOPING A PING-PONG GAME

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lessonl2 folder in the download.

Hints

After learning how to work with files in Lesson 16, consider adding a new feature to the ping-pong
game — that of saving the score in a file and providing a menu option to show the past scores.

Step-by-Step

1.

Create a new Eclipse project called Lesson12, copy the two classes whose names end with 1
from the DVD accompanying the book into this project, and run it to ensure that the ping-
pong table is shown and the correct racket is moving up and down according to the move-

ments of the mouse.

Create three packages named ui, engine, and common.

Move the class PingPongGreenTablel to ui, PingPongGameEnginel to engine, and
GameConstants1 to common.

Include the import statements where required.
Compile and run the program.

In the class PingPongGreenTablel introduce the public method setPointCoordinates () s
which will set the x- and y-coordinates of the variable point (make this method private).

Browse the source code of all these classes and add the proper data access qualifiers to all
variables and methods.

Refactor the code of PingPongGameEnginel to import the interface GameConstants1 rather
than implementing it.

Please select Lesson 12 on the DVD with the print book, or watch online at
www . wrox.com/go/fainjava fo view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava

13

Error Handling

Fixing the compiler’s errors becomes trivial as you become more comfortable with the Java
syntax. But you also should ensure that your programs process run-time errors that may hap-
pen regardless of your proficiency with the language itself.

Let’s say a Java program that reads customers’ data is deployed in production. What’s going
to happen if this file gets corrupted? Will the program crash with a scary geeky error message,
or will it stay alive, displaying a user-friendly message such as, “There seems to be a problem
with the file customers. Please make sure that the file is not corrupted”? Error processing in
the Java world is called exception handling, which is the subject of this lesson.

STACK TRACE

When a Java application is running, the JVM performs a number of internal and application-
specific method calls. If a run-time error occurs that’s not handled by the program, the pro-
gram prints a stack trace, which reflects in the call stack the sequence of unfortunate events
that caused this error. A stack trace helps software developers follow the workflow of the pro-
gram that led to the error.

To illustrate what a stack trace may look like, consider the program shown in Listing 13-1,
which deliberately divides by zero.

‘) LISTING 13-1: Generating stack trace by dividing by zero

Availablefor 1 class TestStackTrace{
d&‘,":[,';?ggm"" 2 TestStackTrace ()
3 {
4 divideByZero () ;
5 }
6
7 int divideByZero ()

continues



134 | LESSON13 ERROR HANDLING

LISTING 13-1 (continued)

8 {

9 return 25/0;

10 }

11

12 static void main(String[]args)
13 {

14 new TestStackTrace() ;
15

16 }

17 }

Listing 13-2 depicts the output of this program, which has traced what happened in the program
stack before the error occurred. Read the output from the last line upward. It shows that the pro-
gram was executing the methods main (), init () for the constructor, and divideByzero (). The
line numbers 14, 4, and 9, respectively, indicate where in the program these methods were called.
After that the ArithmeticException was thrown — the code in line 9 tried to divide by zero.
Turning the line numbers on in the Eclipse IDE helps you locate problematic code.

‘) LISTING 13-2: Sample stack trace

Available for ¢ :\temp>java TestStackTrace
download on
Wrox.com

Exception in thread "main"

java.lang.ArithmeticException: / by zero
at TestStackTrace.divideByZero (TestStackTrace.java:9)
at TestStackTrace.<init>(TestStackTrace.java:4)
at TestStackTrace.main(TestStackTrace.java:14)

Executing any Java program means running multiple threads, as explained in Lesson 20, and the stack
trace output reflects what was happening in the main thread of our simple TestStackTrace program.

JAVA EXCEPTIONS

In many programming languages, error processing depends on the programmer’s goodwill and
experience. Java forces a programmer to include the error-handling code for the majority of errors;
otherwise the programs won’t even compile.

Say you need to write a piece of code that reads a file containing data about customers. It’s easy to
foresee that unless the code includes error handling there is a chance that one day you’ll see a stack
trace instead of a customer list.

The creators of Java didn’t want to allow this code to fail just because some programmers are too
lazy to include error-handling code. Java forces you to place such code inside a try/catch block, as
in Listing 13-3. Whenever you read or write files you have to process input/output (I/O) errors.



Exception Hierarchy | 135

‘) LISTING 13-3: Catching I/O errors

Available for try{
download on

Wrox.com fileCustomer.read() ;

catch (IOException e) {
System.out.println("There seems to be a problem with the file customers. ");

}

Read the code from Listing 13-3 as follows: “Try to execute fileCustomer.read (), and if an error
occurs, jump into the catch section and execute the code from there.” To0Exception is a class that
contains information about input/output errors.

In the case of an I/O error, the method read () throws an exception (for more details on reading
files refer to Lesson 16). The catch block will catch this error and process it. The program won’t
terminate and this exception is considered handled. If the method read () finishes successfully, the
code in the section catch won’t be executed.

EXCEPTION HIERARCHY

Errors in Java are represented as classes that can be divided into two major types: those that were
caused by bad programming and those that were thrown because of some other external condition.
For example, if a program declares a variable of type Tax, but this object was never instantiated, any
attempts to call the non-static method calcTax () will result in NullPointerException:

Tax t;
t.calcTax();

This situation could have been predicted and properly handled by the programmer.

If a run-time error can be fixed, the exception is called checked. The method reads () from

Listing 13-3 will throw an exception and the JVM will try to find the code that handles this error.
Such an exception can be anticipated and recovered from without the need to change the code.
While the program remains operational, the user can find the missing file containing the list of cus-
tomers and try again to populate the GUI with this list.

All exceptions are subclasses of Throwable, which has two immediate descendants: Exrror and
Exception. Subclasses of Exception are called checked exceptions and have to be handled in
your code. You can declare and throw your own application-specific exception, for example
BadShipmentAddressException.

Subclasses of the class Error are fatal JVM errors and are called unchecked. You are not required
to put them in try/catch blocks as there is not much you can do if, say the JVM runs out of mem-
ory and crashes.

How is a programmer supposed to know in advance if some Java method may throw a particular
exception and that the try/catch block should therefore be used? No need to memorize anything.
If a method throws an exception, the Java compiler will print an error message similar to this one:

"Tax.java": unreported exception: java.io.IOException; must be caught or
declared to be thrown at line 57



136 | LESSON13 ERROR HANDLING

TRY/CATCH BLOCKS

There are five Java keywords that can be used for exception handling: try, catch, finally, throw,

and throws. One try block can have multiple catch blocks, to provide handling for more than one

type of error. For example, when a program tries to read a file, the file may not be there — you must
catch the FileNotFoundException. If the file is there, but the code tries to read past the end of file,

the catch clause for EOFException is necessary. Listing 13-4 illustrates a multi-catch block.

‘) LISTING 13-4: One try with multiple catch statements

Availablefor  public void getCustomers () {

download on try(

Wrox.com ry .
fileCustomers.read() ;

}catch (FileNotFoundException e) {
System.out.println("Can not find file Customers");
}catch (EOFException el) {
System.out.println("Done with file read");
}catch (IOException e2) {
System.out.println("Problem reading file " +
e2.getMessage()) ;

The order of the catch statements may be important if the exceptions being caught belong to the
same inheritance branch. For example, the class EOFException is a subclass of the more generic
TOException, and you have to put the catch block for the subclass first. If you place the catch
block for T0Exception before the one for EOFException, the latter block will never be reached

— the end-of-file errors will be intercepted by the T0Exception catch block. A lazy programmer
would cut corners and handle the exceptions that may happen during the reading of the file in a
coarse-grained way (the compiler won’t complain):

public void getCustomers () {
try{
fileCustomers.read() ;
}catch (Exception e) {
System.out.println("Problem reading file " +
e.getMessage()) ;

A catch block receives an instance of the Exception object that contains a short explanation
of a problem, and the method getMessage () of the Exception object will return this info.

If the description of an error returned by getMessage () is not clear enough, try the method
toString () instead.

If you need more detailed information about the exception, use the method printStackTrace () on
the received Exception object (see Listing 13-6). It will print all internal method calls that led to
this exception, as described in the section “Stack Trace” earlier in this lesson.



The finally Clause | 137

THE THROWS CLAUSE

In some cases it makes more sense to handle an exception not in the method where it happened, but
in the calling one. Let’s use the same example of code that reads a file. Because the method read ()

may throw an TOException, you should either handle it or declare that the calling method may
throw it. The latter is done in Listing 13-5.

‘) LISTING 13-5: Using throw clause

Available for class CustomerList({
download on
Wrox.com

void getAllCustomers () throws IOException{

// Some other code goes here

// Don't use try/catch if you are not handling exceptions here
file.read();

}

public static void main(String[] args) {
System.out.println("Customer List");

// Some other code goes here

try{
// Since getAllCustomers ()declared an exception,
// either handle it over here, or re-throw it
// (see the throw keyword explanation below)

getAllCustomers() ;
}
catch (IOException e) {

System.out.println("Customer List is not available");
}

In Listing 13-5 10Exception has been propagated from the method getalicustomers () to the
main () method, and has been handled there.

THE FINALLY CLAUSE

The code can exit the try/catch block in several ways:

> The code inside the try block successfully ends and the program continues.
»  The code inside the try block runs into a return statement.
>

The code inside the try block throws an exception and control goes to the catch block.



138 | LESSON13 ERROR HANDLING

As you can see, in some cases only the code from the try block will work; in some cases part of the
code from the try block and all the code in catch will be invoked. If there is a piece of code that
must be executed regardless of the success or failure of the code in the try block, put it under the
clause finally.

‘) LISTING 13-6: Using clause finally

Available for try{
download on

Wrox.com file.read();

//file.close(); don't close files inside try block
}
catch (Exception e) {
e.printStackTrace() ;
}
finally{

file.close();

The code in Listing 13-6 will definitely close the file regardless of the success of the read operation,
because the close () function is called in the finally block. But if you place the close () function
inside the try block without writing the finally portion, in case of error during read the program
will jump from the failed read () into catch, skipping the close operation. The finally clause is
typically used for the release of system resources.

If you are not planning to handle exceptions in the current method, they will be propagated to the
calling one. In this case you can use the finally clause without the catch clause:

void myMethod () throws IOException({
try{
file.read();
}
finally{
file.close();

}

THE THROW OPERATOR

If an exception has occurred in a method, you may want to catch the exception, do partial error
processing such as error logging, or throw it to the calling method again for further processing or
just to make the user aware of the problem. In some cases you may want to catch an exception and
handle it but throw another exception (with modified error information) to the calling method.



Creating Your Own Exceptions | 139

The throw statement is used to throw Java exception objects. The object that a program throws
must be Throwable (you can throw a ball, but you can’t throw a grand piano). This means that you
can throw only subclasses of the Throwable class and that all Java exceptions are its subclasses:

class CustomerList({
void getAllCustomers() throws Exception{
// some other code goes here

try{
file.read(); // this line may throw an exception
} catch (IOException e) {

// Log this error here, and rethrow another exception
throw new Exception ("Customer List is not available "+
e.getMessage()) ;

public static void main(String[] args) {
System.out.println("Customer List");

try{

// Since the getAllCustomers() declares an exception,
// you have to either handle or re-throw it
getAllCustomers() ;

}

catch (Exception e) {
System.out.println(e.getMessage()) ;

CREATING YOUR OWN EXCEPTIONS

Programmers can also create exceptions specific to their business applications. Such a class has to be
a subclass of one of the classes from the hierarchy of Throwable objects.

Let’s say you are in business selling bikes and need to validate a customer’s order. Create a new
class, TooManyBikesException, and throw it if someone tries to order more bikes than can fit into
one container, as in the class Bikeorder shown in Listing 13-7.

\) LISTING 13-7: Creating and throwing your own exceptions

Availablefor  class TooManyBikesException extends Exception{

download on

Wrox.com . ) )
TooManyBikesException (String msgText) {

super (msgText) ;

continues



140 | LESSON 13 ERROR HANDLING

LISTING 13-7 (continued)

class BikeOrder{

static wvoid validateOrder (String bikeModel,
int quantity) throws TooManyBikesException{

// perform some data validation, and if the entered
// the quantity or model is invalid, do the following:

throw new TooManyBikesException("Can not ship" +
quantity+" bikes of the model " + bikeModel +);

class OrderWindow extends JFrame({
void actionPerformed (ActionEvent e) {
// the user clicked on the "Validate Order" button

try{
bikeOrder.validateOrder ("Model-123", 50);

// the next line will be skipped in case of exception
txtResult.setText ("Order is valid");

} catch(TooManyBikesException e) {

txtResult.setText (e.getMessage()) ;

TooManyBikesException shown in Listing 13-8 has a unique name and the text includes some
information specific to the shipping business. But another way to provide application-specific infor-
mation is to declare one or more additional variables in the custom exception. These variables carry
multiple pieces of data that describe the erroneous situation and may help in fixing it.

‘) LISTING 13-8: Custom exception with extra property

Available for class TooManyBikesException extends Exception{
download on

Wrox.com . . L
// Declare an application-specific property

ShippingErrorInfo shippingErrorInfo;

TooManyBikesException (String msgText,ShippingErrorInfo shippingErrorInfo) {



Trylt | 141

super (msgText) ;
this.shippingErrorInfo = shippingErrorInfo;

Listing 13-8 illustrates the code that adds an application-specific object, ShippingErrorInfo, to
the custom TooManyBikesException. An application can prepare the object describing a ship-
ping error and pass it as an argument to the constructor of the exception. The latter will store it
in the class variable shippingInfo, and whatever method catches this exception can extract the
ShippingErrorInfo object and act accordingly.

In distributed Java EE applications an exception can travel through several tiers (such as JMS, EJB,
Servlet, Swing client), and not only does having a custom property inside the exception object ensure
that the valuable information won’t be lost, but each tier can add more specifics to this custom prop-
erty, helping in tracing the error.

There is also a class called RemoteException, with a field called detail, that’s used for reporting
communication errors. You can extend this class to make remote exceptions more descriptive. This
subject may be more appropriate for the lessons about the server-side technologies (Lesson 26 and
above), but since this is the lesson dedicated to Exceptions, I mentioned it here.

Keep in mind that a Java program can communicate with non-Java systems, and that throwing
RemoteException or its subclass is a proper way to handle cross-language errors. For example, this
technique is used for communications based on Adobe’s AMF protocol between server-side Java and
a rich Internet client application written with Adobe Flex.

For more details on Java exceptions refer to Oracle’s tutorial at http: //java.sun.com/docs/
books/tutorial/essential/exceptions.

TRY IT

Create a Swing application for placing bike orders. It has to have a drop-down list (JComboBox) con-
taining several bike models, JTextField for entering quantity, and JButton for validating the order.

Make up several combinations of bike models and quantities that will throw an exception. Use the
code snippets from Listing 13-7 as examples. The validation should start when the user clicks the
button to validate the order.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lessonl3 folder in the
download.



http://java.sun.com/docs/books/tutorial/essential/exceptions
http://www.wrox.com
http://java.sun.com/docs/books/tutorial/essential/exceptions

142 | LESSON13 ERROR HANDLING

Step-by-Step
1.  Create a new Eclipse project, Lesson13.

2. Learn how to work with JcomboBox at the following tutorial: http: //java.sun.com/docs/
books/tutorial/uiswing/components/combobox.html.

3.  Process events and revalidate the order whenever the user selects a new bike model or
changes the quantity of the order.

4. Throw and handle TooManyBikesException if the order can’t be shipped.

www.wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 13 on the DVD with the print book, or watch online at



http://java.sun.com/docs/books/tutorial/uiswing/components/combobox.html
http://www.wrox.com/go/fainjava
http://java.sun.com/docs/books/tutorial/uiswing/components/combobox.html

Introduction to Collections

So far you’ve been introduced to only one way of storing a collection of objects — with Java
arrays, which are good for storage, but fall short when you need to dynamically add or remove
data, or to sort or traverse your collection. There are a number of classes and interfaces in the
package java.util that are quite handy when multiple instances of some objects have to be
co-located in memory. This lesson will introduce you to several of them.

You can find more collections in the java.util.concurrent package, but those will be
reviewed in Lesson 21 after you become familiar with the concept of multi-threading.
Together, the collection classes and interfaces located in java.util and java.util
.concurrent are often called the Java Collection Framework.

ARRAYS REVISITED

Java collection classes enable the storing of handles of related data in one place. Here a handle
is a reference to the location of an object in memory. You were introduced to arrays in Lesson 5:
Arrays let you store and access a group of variables of the same type. Let’s go over the steps you
follow to declare and populate an array.

First, declare a variable of the type that matches the types of the objects that will be stored in the
array, and reserve enough memory to accommodate all objects. For example, to reserve memory
enough for storing 10 instances of class Customer you can declare a variable cust, as follows:

Customer cust[] = new Customers[10];
At this point you’ve allocated enough space for the storage of 10 handles, not for the
actual objects.

Next, create instances of the objects and store their handles in the array. Only the memory
addresses of these instances will be stored in the array cust:

Customer[] cust = new Customer[10];

cust[0] new Customer ("David", "Lee");
cust[1l] = new Customer ("Ringo", "Starr");



144 | LESSON 14 INTRODUCTION TO COLLECTIONS

cust[9] = new Customer ("Lucy", "Mann") ;

Now let’s give a 15 percent discount to all customers who spent more than $500 in our online store:

for (Customer c: cust){
if (c.getTotalCharges() > 500){
c.setDiscount (15) ;

Note the use of the for-each loop here. It safely iterates through this array without trying to access ele-
ments beyond its boundaries. You could’ve used another syntax of the for loop to access array elements
by index. If a programmer forgot to check the size of the array and tried to access, say, eleven’s element
like cust[10] . setDiscount (15) , ]ava would throw a run-time ArrayIndexOutOfBoundsException.
Remember, if an array has n elements the last element’s index isn -1.

CLASSES ARRAYLIST AND VECTOR

Arrays offer the fastest access to the collection of data, but you have to know in advance the number
of elements to be stored there. Luckily Java has classes that don’t have this restriction, and you can add
more elements to a collection during the run time if needed. Classes Vector and ArrayList belong to
this group.

Internally both collections use the array for storage, but when you keep adding elements to these
collections they internally increase the size of the array (arrayList increases the size by smaller
increments), and as elements are deleted these collections shrink.

In both vector and ArrayList you can store only objects — only primitives are allowed. Having
said this, keep in mind that Java supports autoboxing (see Lesson 3), and if you’ll try to add a primi-
tive to a collection, it’ll be automatically converted into he corresponding wrapper object.

You have to pay a price for this convenience: ArrayList is a little slower than the array as it needs
to do internal array copying to change the collection’s size, and vector is even slower because it
supports thread synchronization (which will be explained in Lesson 21). But after the introduction
of more efficient concurrent collections, Vector became less popular and you can achieve its syn-
chronized functionality by using the method collections.synchronizedList () on an ArrayList
object. All further code samples in this section use only ArrayList.

To create and populate an ArrayList object you should first instantiate it, and then add instances of
other objects to the arrayList by calling the method add ():, as in Listing 14-1.

‘) LISTING 14-1: Populating ArrayList

Available for ArrayList customers = new ArrayList();

dmg;‘fzglﬁ" Customer custl = new Customer ("David", "Lee");
customers.add(custl) ;
Customer cust2 = new Customer ("Ringo", "Starr");
customers.add(cust2) ;



Classes ArraylList and Vector | 145

The method add () doesn’t copy the instance of the object into the customers collection, it just
stores the memory address of the object being added. The element numbering in ArrayList starts
with 0. If you know that an arrayList will store, say, 10 objects, instantiate it with the constructor
that will allocate the right amount of memory on creation:

ArrayList customers = new ArrayList (10);

You can still add more than 10 elements, but JVM will allocate additional memory as needed.

The method get () is used to extract a particular element from ArrayList. Because ArrayList is
generic storage for any type of object, the method get () returns elements as Object data types. It’s
the responsibility of the programmer to provide proper casting, such as the following:

Customer theBestCustomer=(Customer) customers.get(l);

To illustrate a possible run-time error that will occur if the casting was not properly done, let’s add
an object of another type to our customers collection from Listing 14-1:

Order ord = new Order (123, 500, "IBM");
customers.add (ord) ;

The Java compiler will not complain because arrayList can store any objects. At this point we have
the elements in customers — two customers and one order. As a matter of fact, in Lesson 15 you’ll
see another way of working with a collection capable of storing objects of unspecified type aka
generics. I may be jumping ahead here, but the proper (generic) way of declaring collection for stor-
ing customers is shown below:

ArrayList<Customer> customers = new ArrayList(10);

The following code will throw the T11egalcastException on the third iteration of the loop:

int totalElem = customers.size(); // number of elements
for (int i=0; i< totalElem;i++) {
Customer currentCust = (Customer) customers.get(i);

currentCust.doSomething () ;

}

Listing 14-2 shows how the operator instanceof helps you avoid this exception. But before using
instanceof, see if you can come up with a more elegant solution, as you learned to do in the sec-
tion “Polymorphism” in Lesson 7. You’ll find more samples of working with vectors in Lesson 21.

\) LISTING 14-2: ArrayList and instanceof

Available for ArrayList customers = new ArrayList(3);
download on
Wrox.com . .
// The code to populate customers with instances of Customer and Order

// objects is omited for brevity
int totalElem = customers.size();
// Iterate through the list customers and do something with each

continues



146 | LESSON 14 INTRODUCTION TO COLLECTIONS

LISTING 14-2 (continued)
// element of this collection

for (int 1=0; i<totalElem;i++) {

Object currElement = customers.get(i);

if (currElement instanceof Customer) {
Customer currentCust= (Customer)customers.get(i);
currentCust.doSomething () ;

}

else 1f (currElement instanceof Order) {
Order currentOrder = (Order) customers.get(i);
currentOrder.doSomething () ;

}

COLLECTION INTERFACES FROM JAVA.UTIL

A typical collection class implements several interfaces, which represent a well-designed hierarchy. For
example, ArrayList implements the List interface, which extends collection. Just reading the com-
ments in the source code for java.util habitats can give you a good idea of what they are for.

Collection extends Tterable; there are no classes that directly implement this interface. Only its
descendent interfaces are implemented. You can use a for-each loop (see the “Arrays Revisited”
section earlier in this lesson) with classes that implement Tterable.

The List interface is defined for the ordered collections: ArrayList, Vector, and LinkedList.
It allows duplicate elements. For example, the following code snippet will create two elements in
ArrayList:

myArrayList.add("Mary") ;
myArrayList.add("Mary") ;

The set interface is implemented by collections that don’t allow duplicate elements, e.g., Hashset
and sortedset. For example, the following code snippet will create one element in Hashset. The
second line will find out that Mary already exists, and won’t change it and will return false:

myHashSet.add ("Mary") ;
myHashSet.add ("Mary") ;

The Map interface is for storing key/value pairs. A map can’t contain duplicate keys and each key can
be mapped to only one value (object). You’ll see some relevant code examples in the next section.

The gQueue interface is mainly for collections that require first-in-first-out (FIFO) operation (so-
called priority queues are the exception). Every new element is added to the tail of the queue and the
elements are retrieved from the head of the queue. You can restrict the size of the queue if need be.
LinkedList is one of the classes that implement the Queue interface.

Now let’s look at some of the classes that implement these interfaces.



Classes Hashtable and HashMap | 147

CLASSES HASHTABLE AND HASHMAP

The classes Hashtable and HashMap implement the Map interface storing key/value pairs. These
classes offer a convenient way of storing and accessing the elements of a collection: by key. You
can assign a key to an instance of some Java object and use it as a reference. The collections store
objects as key/value pairs. Let’s say we need to store instances of the classes customer, order, and
portfolio in the same collection. The code snippet from Listing 14-3 creates these instances first,
and then puts them in the collection under some identifiers (keys).

‘) LISTING 14-3: Hashtable for key/value pairs

Available for Customer cust = new Customer ("David", "Lee");
dmgtggl:n Order ord = new Order (123, 500, "IBM");
Portfolio port = new Portfolio(123);

Hashtable data = New Hashtable();
data.put ("Customer", cust);
data.put ("Order", ord) ;

data.put ("Portfolio", port);

The values in double quotes represent keys by which the objects could be retrieved. In this example
the keys are represented by the Java class string, but you can use any objects as keys. The keys are
selected based on the application needs, e.g. the code in Listing 14-3 could be written in some order
management application.

If you have an idea of how many elements you are planning to store in a Hashtable, use another
constructor:

Hashtable data = new Hashtable(10); // l0-element capacity

The method get () provides access to these objects via the key. You need to either perform the
proper casting as shown below or use generics (explained in Lesson 15):

Order myOrder = (Order) data.get("Order");

The method size () returns the number of elements in the Hashtable:

int totalElem = data.size();

Methods containsKey () and containsvalue () help you to find out if the collection contains a
specific key or value. You can find an example of Hashtable usage in Lesson 31.

The class HashMap is similar to Hashtable, but it allows nul1l as a key or value and is not synchro-
nized. If you are writing code that attempts to access the same element concurrently without using
multi-threading, use HashMap, as it performs faster than Hashtable.

To speed up the table lookup, both HashMap and Hashtable index the data by applying a so-called
hash function that (based on the contents of the object) generates a hash code, one number that



148 | LESSON 14 INTRODUCTION TO COLLECTIONS

represents a large object. There’s a slight chance that two different objects will generate the same
hash code, but the same object will always produce the same hash code. You can read more about
hashfuncﬁonsin‘Wﬂdpediaathttp://en.wikipedia.org/wiki/Hash_function.

Class Properties

Pretty often a desktop application offers you a way to specify and store user preferences such as
fonts and colors. This is a use case in which storage of key/value pairs is exactly what’s needed. You
can store such preferences locally or on remote servers. In Lesson 16 you’ll learn how to work with
files and other data streams, but from a data structure perspective you’ll be dealing with a collection
of key/value pairs, such as color=red, font=verdana.

Windows-based applications often store some configurable parameters in the . ini files. In general,
Java applications store their properties in plain text files, XML files, database tables, and others.

In this section you’ll see some code fragments illustrating how the Java class Properties, which
extends Hashtable, can be used to manipulate with properties using key/value pairs. The class
Properties has one restriction that Hashtable does not: Both the key and the value have to be
of type string. In Lesson 19 you’ll see a complete application called MailMan that reads the data
needed for sending emails from the mailman.properties file, which has the following contents:

SmtpServer=mail.xyz.com
to=abc@xyz.com
cc=mary@xyz.com
from=yakov @xyz.com

To load this file into the Properties object, just define an input stream on this file (see Lesson 16) and
call the method 10ad (), as shown in Listing 14-4. After the file has been loaded into the Properties
object, each individual property can be obtained with the method getProperty ().

J LISTING 14-4: Reading file mailman.properties into the Properties object

Available for Properties prop=new Properties();

dmg;‘fzg"ﬁ" FileInputStream in =null;
try{

new FileInputStream ("mailman.properties");
prop.load(in);

}catch (Exception e){...}

finally{... in.close();...}

String from = prop.getPropery("from")
String mailServer=prop.getProperty ("SmtpServer") ;

Java does not have global variables, but as a workaround you can make these properties available
to any object in your application by turning them into system properties available from any class in
your application:

System.setProperties (prop) ;


http://en.wikipedia.org/wiki/Hash_function

Enumeration and Iterator | 149

But keep in mind that the preceding line will also replace the existing system properties, which you
may or may not want to do. Now you can get these values from any other class in your application,
for example:

String mailServer = System.getProperty("SmtpServer");

If you decide to store properties in XML files, the class Properties offers you the method
loadFromxML () to read properties and the method storeToxmr () to store them in a simple
XML format.

ENUMERATION AND ITERATOR

In general, enumerations are sets of items that are related to each other. For example, shipment
options or ice cream flavors — such enumerations are supported by the Java keyword enum (see
Lesson 20). But because we are talking about collections, the meaning of the term enumeration is
somewhat different. If a collection object implements the interface Enumeration, you can traverse
its elements sequentially, without even knowing the total number. You just need to obtain the enu-
meration of all elements and use the methods hasMoreElements () and nextElement (). For exam-
ple, to process all elements of Vector customers do the following;:

Vector customers = new Vector();
Enumeration enum=customers.elements();//returns Enumeration

while (enum.hasMoreElements()) {
Customer currentCust = (Customer)enum.nextElement());
currentCust.doSomething () ;

If you're using ArrayList customers, the utility class collections comes in handy, as it has a
method that returns enumeration:

Enumeration enum = Collections.enumeration(customers) ;

You can also obtain the enumeration of a Hashtable’s keys or elements. For example:

Hashtable data = new Hashtable();

// Get the keys
Enumeration enumKeys = data.keys();
while (enum.hasMoreElements () ) {

}
// Get the elements
Enumeration enumElements = data.elements();

In a way the Enumeration interface is similar to Iterator, which was introduced as a part of the
Java Collections Framework years after. It also offers a standard way to process elements of a col-
lection sequentially. The main difference between the two is that Enumeration is a read-only means
of traversing a collection, while Iterator has a method called remove () that enables you to delete



150 | LESSON14 INTRODUCTION TO COLLECTIONS

unwanted elements of the collection. Enumeration is considered a legacy interface and you should
use Tterator. For example, you can iterate through the arraylList customers as follows:

Iterator iCust = customers.iterator();
while (iCust.hasNext ()) {
System.out.println(iCust.next())

CLASS LINKEDLIST

Java collection classes differ in how you can retrieve and insert objects. If you need to work with

a sequential list of objects and often insert the object into the list, the data structure called linked
list can fit the bill. Java has a class called LinkedList that stores elements so that each contains a
reference to the next (aka node). Each element in a doubly linked list also contains a reference to the
previous element. These features of the doubly-linked class Linkedrist allow you to create queues
(FIFO), and stacks (last-in-first-out or LIFO).

Insertion of a new object inside the list comes down to a simple update of two references: The previous
element of the list has to be pointed to the newly inserted object, which will have to include a reference
to the next element, if any. Compare this to the complexity of lots of memory allocations and object
moving in memory to increase the size of an ArrayList or Vector, and you’ll appreciate the value that
linked lists bring to the table. On the other hand, collections that use arrays for the underlying data
storage offer random access to the data elements, while linked lists can be processed only sequentially.

You can navigate through the list using the class ListTIterator, which supports going through the
list in both directions via its methods next () and previous (). Listing 14-5 shows you an example,
in which a standby passenger list is created at the boarding gate of some airline company.

‘) LISTING 14-5: LinkedList example

Available for  import java.util.LinkedList;

dm:;t?gg"l:n import java.util.ListIterator;

public class TestLinkedList {
public static void main(String[] args) {
LinkedList passengerList = new LinkedList();
passengerList.add("Alex Smith");
passengerList.add("Mary Lou") ;

passengerList.add("Sim Monk") ;

// Get the list iterator and print every element of the list
ListIterator iterator = passengerList.listIterator();

System.out.println(iterator.next());
System.out.println(iterator.next());
System.out.println(iterator.next());



Class BitSet | 151

The code in Listing 14-5 will iterate and print all the objects from the list using ListIterator.

You might be wondering how the printin() method knows how to print an object returned by the
iterator. It tries to find the method tostring () defined on the object and call it. In our example the
object is a string itself, but in a real-world situation you might need to print objects, and defining the
toString () method is the right way to do so.

If you use add () or remove () while iterating through the list, the new element will be either
inserted or removed at the iterator’s current position.

CLASS BITSET

The class Bitset stores a sequence of bits. It’s a pretty efficient class when you need to pass to a
program a number of flags that indicate certain conditions. Think of a financial trading applica-
tion that must be extremely fast. One way to improve the performance is to represent the maximum
amount of information in a minimal number of bytes.

Another use case for BitSet are programs that send signals with information about the state of a
certain device. For example, some vending machines have smart chips that can automatically dial
their owner’s phone number and send a signal containing status information. Sending a set of flags
(bits that are set to 1 or 0) instead of text or numbers is the most economical way to do this.

The Bitset class does not have a size limit and can grow as needed. Depending on which bit is set
(e.g., has the value of 1) the class could indicate the following:

Bit 0: The coin box is empty.
Bit 1: The coin box is half full.
Bit 2: The coin box is full.

Bit 3: The coin box has been removed.

Y Y VY VY Y

Bit 4: The Coca-Cola row is empty.

One instance of a BitSet object carries multiple parameters describing its status. The program that
receives this signal could print a nice report, and the owner of this remote machine could decide if
he or she needs to send a technician to look at the machine.

The Java class BitSet is nothing more than a vector of bits. The following code prepares a signal
indicating that the coin box is full and there are no Coca-Cola bottles left.

import java.util.BitSet;
class VendingMachineSender {
public static void main(String args[]) {
BitSet report = new BitSet();
report.set(2); // box is full
report.set (4); // no Coca Cola



152 | LESSON14 INTRODUCTION TO COLLECTIONS

When the phone call comes in, the callback method phoneRings () is invoked and the signal can be
decoded like this:

import java.util.BitSet;
class VendingMachineListener {
public void phoneRings (BitSet signal)
int size = signal.size();

for (int 1=0;i<size;i++){
if (signal.get(i)){
switch (1){
case 0:

System.out.println("Box is empty");
break;
case 1:

System.out.println("Box is half full");
break;

case 2:

System.out.println("Box is full");
break;

// more cases come here

TRY IT

Modify the LinkedList example from Listing 14-5 to add an arbitrary object, say the VIP customer
after the very first element of the list. You must do this while iterating through the list. When the
program is ready it should print the following:

Alex Smith
VIP Customer
Mary Lou
Sim Monk

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson14 folder in the download.



http://www.wrox.com

Trylt | 153

Step-by-Step

1.
2.

Create a new Eclipse project called Lesson14.

After the first call to iterator.next () add the following line: iterator
.add (“vIP Customer”) ;

Run the program and observe that it doesn’t print “VIP Customer.” This happens because
the iterator is already positioned after the newly inserted object.

Add the line iterator.previous () right after the “VIP Customer” to move the iterator one
element back.

Add one more print statement (otherwise the program won’t reach Sim Monk). Compile and
run the program. It will print all four elements as requested.

Now break the code by changing the line that you added in Step 2 to passengerList
.add (“VIP Customer”) ;

Run the program now. It’ll print the first element of the linked list and then produce a run-
time exception:
Alex Smith

Exception in thread "main" java.util.ConcurrentModificationException
at java.util.LinkedList$ListItr.checkForComodification (LinkedList.

java:761)
at java.util.LinkedListS$ListItr.next (LinkedList.java:696)
at TestLinkedList.main(TestLinkedList.java:20)

The reason for this concurrent modification exception is that one thread of execution was
iterating through a collection, and at the same time another thread was trying to modify the
underlying collection in an unsafe way. The concept of threads will be introduced in Lesson 20.

Please select Lesson 14 on the DVD with the print book, or watch online at
www . wrox . com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava




Introduction to Generics

In the previous lesson you saw an example of a collection that stores objects of different types
(see Listing 14-2). During the run time, that program would test the actual type of each object
and cast it to an appropriate type — Customer or Order. If some code adds an element of
another (unexpected) data type, this will result in a casting error, T11egalCastException.

Starting from Java 5 you can use generics, which enables you to use parameterized data
types — you can declare an object, collection, or method without specifying a concrete data
type, shifting the definition of concrete types to the code that will be using these objects, col-
lections, or methods. And the good part is that by using such generic notation you’ll get help
from Java compiler, which will not allow you to use objects of the “wrong” types that don’t
match the declaration. In other words, you can catch improper data types earlier, during the
compilation phase.

GENERICS WITH CLASSES

Not only Java methods can have parameters, but classes can have them as well. Consider the
ArrayList from Listing 14-2, which is a kitchen sink-like storage that can hold pretty much
any object. But if you add the parameterized type Customer in angle brackets to the declara-
tion of the customers collection (see Listing 15-1), any attempt to place an order object there
will generate the following compiler error:

The method add(Customer) in the type ArrayList<Customer> is not applicable
for the arguments (Order).

Think of it this way: ArrayList can be used to store any objects, and using generics allows
you to put a constraint on the types of objects allowed in a specific instance of ArrayList.
This is an example of a parameterized object, which is just one use for generics.



156 | LESSON15 INTRODUCTION TO GENERICS

‘) LISTING 15-1: Using generics in the collection

Available for import java.util.ArrayList;
downloadon  import java.util.ArrayList;

Wrox.com

public class TestGenericCollection ({
public static void main(String[] args) {

ArrayList<Customer> customers = new ArrayList<Customer>();
Customer custl = new Customer ("David", "Lee");
customers.add(custl) ;

Customer cust2 = new Customer ("Ringo", "Starr");
customers.add(cust2) ;

Order ordl= new Order () ;

customers.add(ordl); // Compiler error

Getting an error during compilation is better than getting run-time cast exceptions. What makes
the ArrayList class capable of rejecting the unwanted data types? Open the source code of the
ArrayList itself (pressing F3 in Eclipse shows the source code of any class or interface, if available).
It starts as follows:

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable

This magic <e> after the class name tells the Java compiler that some types of elements will be
stored in this class, but which ones will remain unknown until a concrete instance of ArrayList is
created. In Listing 15-1 the type parameter <Customer> replaces <E>, and from now on the collec-
tion customers will accept only instances of Customer objects.

I'd like to stress that this <E> notation is used only during the declaration of the type. The code in
Listing 15-1 does not include <E>. The compiler replaces <E> with customer and erases the param-
eterized data type. This process is known as type erasure — it’s done for compatibility with code
written in older versions of Java that didn’t have generics.

Now you can simplify the code from Listing 14-2 by removing casting (see Listing 15-2). Why?
Because with generics, when the compiler sees a specific type, it automatically generates the byte-
code, which performs casting internally! That’s why you don’t even need to cast the data returned
by the method get (1) from object to Customer any longer. Besides, you’re guaranteed that the col-
lection customers will have only customer instances.

‘) LISTING 15-2: lterating through customers without casting

Available for ~ArrayList<Customer> customers = new ArrayList<Customer>();

download on

Wrox.com . .
rox.co // The code to populate customers is omited for brevity

// Iterate through the list customers and do something with each



Defining Generics | 157

// element of this collection. No casting required.

for (Customer c: customers) {
c.doSomething () ;

DEFINING GENERICS

If you’ll be creating your own class for storing other objects, you can use any letter(s) in angle brack-
ets to declare that your class will use parameterized types. Some developers use <E> for element;
some prefer <T> for type. Such a letter will be replaced by a concrete type when used with generics’
notation during concrete variable declaration. Open the source code of the Java class Hashtable
and you’ll see <k, v>, which stands for key and value:

public class Hashtable<K,V> extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable {...}

Again, what types will be used for storing keys and values is decided when the Hashtable is used.
You can use a parameterized type for declaring variables where you’d use regular data types.
Listing 15-3 shows a fragment from the source code of the interface java.util.List. The interface
declaration uses <E> as a data type.

‘) LISTING 15-3: Fragment from java.util.List interface

Available for  package java.util;
download on
Wrox.com o . )
public interface List<E> extends Collection<E> {

Iterator<E> iterator();

<T> T[] toArray (T[] a);

boolean add(E e);

boolean containsAll (Collection<?> c);

boolean addall (Collection<? extends E> c);

boolean addaAll (int index, Collection<? extends E> c);
boolean removeAll (Collection<?> c);

E set(int index, E element);

void add(int index, E element);

ListIterator<E> listIterator();
ListIterator<E> listIterator (int index);

List<E> subList(int fromIndex, int toIndex);



158 | LESSON15 INTRODUCTION TO GENERICS

WILD CARDS

Listing 15-3 contains question marks that represent unknown types. It’ll be easier to explain them
with an example. Let’s turn the for loop from Listing 15-2 into a function. In Eclipse, highlight the
code of the for loop, click the right mouse button, and select Refactor & Extract Method. In the
pop-up window enter the method name processcustomers and click OK.

J LISTING 15-4: Refactored class TestGenericCollection

Available for import java.util.ArrayList;
download on . . . .
Wrox.com import java.util.Hashtable;

import java.util.List;
public class TestGenericCollection ({
public static void main(String[] args) {

ArrayList<Customer> customers = new ArrayList<Customer> () ;
Customer custl = new Customer ("David", "Lee");
customers.add(custl) ;

Customer cust2 = new Customer ("Ringo","Starr");
customers.add(cust2) ;

Order ordl= new Order () ;

//customers.add(ordl); // Compiler error

// Iterate through the list customers and do something with each
// element of this collection. No casting required.

processData (customers) ;
}

private static void processData (ArrayList<Customer> customers) {
for (Customer c: customers) {
c.doSomething () ;

What if you want to make the method processbata () more generic and useful not only for a col-
lection of customer objects but for others too? In the pre-generics era you’d be using instanceof
and writing something similar to Listing 15-5.

‘) LISTING 15-5: Back to casting

Availablefor  private static void processData (ArrayList data) {
download on

Wrox.com
for (Object o: data){



Bounded Wild Cards | 159

((Customer) o) .doSomething() ;

But now, armed with the new knowledge, you can change the signature of the method process Data to

private static void processData (ArrayList<Object> data){...}

Unfortunately, this solution won’t work, because there is no such thing as inheritance of parameter-
ized types. In other words, even though the class customer is a subclass of object, this relationship
does not apply to <Customer> and <Object>. This is when the question mark that represents an
unknown type becomes handy. The next step in making processbata () more generic is to change
the method signature to the following:

private static void processData (ArrayList<?> data){...}

Using such a method signature is different from simply declaring the method argument data of
type ArrayList, which would require casting, as in Listing 15-5. With the wild-card notation
you state, “At this point the type of data is not known, but whenever some code uses the method
processData () it’ll be known and properly compiled so casting won’t be needed.”

The next challenge you face is to compile the code calling the method dosomething () on the objects
of unknown types.

BOUNDED WILD CARDS

Bounded wild cards enable you to specify generic types that are not completely unknown, but rather
“somewhat unknown.” You can say, for example, that the method processpata () from the pre-
vious section can work only with the objects that extend a specific class. Consider an example in
Listing 15-6, which declares two classes — customer and order — that extend Data.

‘) LISTING 15-6: Customer and Order extending Data

Availablefor  public abstract class Data {

dowwrglggg"t:n abstract void doSomething() ;

public class Customer extends Data{
private String fName;
private String lName;

public Customer (String fName, String 1Name) {
this.fName=fName;
this.lName=1Name;

void doSomething () {
System.out.println("Customer " + fName + " " +1Name +

continues



160 | LESSON15 INTRODUCTION TO GENERICS

LISTING 15-6 (continued)

". In doSomething()");
}

public class Order extends Dataf{
void doSomething() {
// Do something specific to Order processing

}

You can rewrite the method processpata () using the bounded wild card <? extends Data>, as in
the following example:

private static void processData (ArrayList<? extends Data> data) {
for (Data d: data){
d.doSomething () ;

If T didn’t show you the code in Listing 15-6 and asked, “What does the bounded type

<? extends Data > mean?”, the right answer would have been, “It represents any subclass
of the class pata or any class that implements the interface Data.” The word extends may
sound a little misleading in the latter case, but the designers of Java generics decided to keep
this keyword for both classes and interfaces.

If you want to use multiple bounds, they should be separated by ampersands:

<? extends Data & Payable >

You can achieve yet another interesting effect by using the keyword super in the generics. For
example, the next declaration means that you are allowed to use any superclass of Data:

<? super Data & Payable >

The super keyword is quite handy when you need to ensure that arguments of a method belong to
the same inheritance hierarchy. For example, the method doSomething () can be used for process-
ing such lists as Person and RetiredEmployee (assuming that RetiredEmployee is a subclass of
Employee).

<T> void doSomething (ArrayList<? super T> all, ArrayList<? extends T> best) {
//do something

GENERIC METHODS

While declaring a method you can either predefine data types for its arguments and return values
or use generics. For example, the method toarray () from Listing 15-3 starts with a declaration of
a new parameterized type (<T> in that case), which has to be placed in angle brackets right before
the return type in the method signature. The very fact that a method declares a new type makes it



Trylt | 161

generic. the following declaration of the toarray () method takes an array of objects of type T and
returns an array of T objects:

<T> T[] toArray (T[] a);

If you have an arrayList of integers, you can declare and convert it to an array as follows:

ArrayList<Integer> myNumericList = new ArrayList<Integer>();

Integer myNumericArray = new Integer [myNumericList.size()];
myNumericArray = myNumericList.toArray();

If you need to use the same method toarray () with a list of customers, the data type <T> magically
transforms (by compiler) into the Customer type:

ArrayList<Customer> myCustomerList = new ArrayList< Customer >();

Customer myCustomerArray = new Customer [myCustomerList.size()];
myCustomerArray = myCustomerList.toArray();

As in examples from the “Bounded Wild Cards” section, you are allowed to put constraints on the
type. For example, you can restrict the toarray () method to work only with types that implement
the comparable interface:

<T extends Comparable> T[] toArray (T[] a);

WHAT TO READ NEXT

This book is a concise tutorial that doesn’t have room to cover Java generics in greater detail. If you'd
like to get a deeper understanding of this topic, refer to the book Java Generics and Collections, 2006,
written by Maurice Naftalin and Philip Wadler and published by O’Reilly, ISBN 0-596-52775-6.

Bruce Eckel devoted almost a hundred pages to generics in the fourth edition of his book Thinking
in Java, 2006, published by Prentice Hall, ISBN 0-131-87248-6.

TRY IT

Create a simple program that uses generics with the class Ret iredEmployee (which extends
the class Employee) from Listing 7-2. Write a generic method that will accept a collection of
RetiredEmployee objects and copy it into a collection of Employee objects.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lessonl$ folder in the download.



http://www.wrox.com

162 | LESSON15 INTRODUCTION TO GENERICS

Step-by-Step

1.
2.
3.

4.

Create a new Eclipse project called Lesson 15.
Create a class called RetiredEmployee that extends Employee.

Create an executable Java class, TestGenericMethod, that will accept a List of
RetiredEmployee objects and copy it into a List of Employee objects. This method should
print on the system console the name of each Employee from the resulting collection.

Run the TestGenericMethod program and observe the printed names.

?

Please select Lesson 15 on the DVD with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava

16

Working with Streams

Most programs work with some kind of data, which could be stored in a local database,

on a remote computer, or in a file located on your disk. Java has a concept of working with
streams of data. You can say that a Java program reads sequences of bytes from an input
stream (or writes into an output stream): byte after byte, character after character, primi-
tive after primitive. Accordingly, Java defines various types of classes supporting streams,
for example InputStream or outputStream. There are classes specifically meant for reading
character streams such as Reader and Writer. DataInputStream and DataOutputStream
can read and write Java primitives, and to work with files you may consider such classes as
FileInputStream and FileReader.

Classes that work with streams are located in two packages: java.io and java.nio. Classes
from the former implement blocking of input/output (I/O): When bytes are being read/written
by a process, they become unavailable for other threads of execution. The latter package offers
non-blocking I/O with improved performance. In this lesson you’ll be dealing with streams
defined in java.io.

Before deciding which Java class to use for I/O in each particular case, you need to understand
what kind of data is coming from the stream in question. But no matter what you select, your
code will need to perform three operations:

1.  Open a stream that points at a specific data source: a file, a socket, a URL, and so on.
2. Read or write data from/to this stream.
3. Close the stream.
If a Java program uses a third-party program, such as database management systems (DBMS),
prog party prog g M
you won’t need to program streams directly — the database drivers or object-relational map-

ping framework is all you need. In this lesson you’ll see examples of performing I/O operations
with different streams.



164 | LESSON16 WORKING WITH STREAMS

BYTE STREAMS

A program can read or write any file one byte at a time with the help of one of the subclasses of
TnputStream or OutputStream respectively. The example in Listing 16-1 shows how to use the class
FileInputStream to read a file named abc . dat. This code snippet reads and prints each byte’s value:

‘) LISTING 16-1: Using FilelnputStream

Availablefor ~ FileInputStream myFile = null;
download on t {
Wrox.com ry . .
myFile = new FileInputStream("abc.dat");

boolean eof = false;

while (!eof) {
int byteValue = myFile.read();
System.out.print (bytevalue + " ");
if (bytevalue == -1){
eof = true;
}
}

// myFile.close(); // do not do it here!!!
} catch (IOException e) {
System.out.println("Could not read file: " + e.toString());
} finally{
if (myFile !=null){
try{

myFile.close();
} catch (Exception el) {
el.printStackTrace() ;
}

Because the code in Listing 16-1 doesn’t specify the directory where abc . dat is located, the program
will try to find this file in the current directory, which is the root directory of the Eclipse project. At

any given time you can easily find out the current directory programmatically by calling the method

System.getProperty ("user.dir").

The output of this program will be a sequence of numbers, which represents the codes of the charac-
ters located in the file. For example, if abc.dat contains the text “This is a test file,” the output on
the system console will look like this:

84 104 105 115 32 105 115 32 97 32 116 101 115 116 32 102 105 108 101 -1

When you are reading with FileInputStream, the end of the file is represented by a negative one,
and this is how you know when to stop. The code in Listing 16-1 checks for -1 and sets the boolean
variable eof to false to finish the loop. Note that the stream is closed in the clause finally. Do not
call the method close () inside the try/catch block right after the file reading is done. In case of an
exception during the file read, the program will jump over the close () statement into the catch sec-
tion, and the stream will never be closed!



Buffered Streams | 165

The code fragment in Listing 16-2 writes into a file called xyz.dat using the class FileoutputStream.

‘) LISTING 16-2: Using FileOutputStream

Availablefor  // byte values are represented by integers from 0 to 255

downloadon 3¢ somedatall= (56,230,123,43,11,37);
FileOutputStream myFile = null;
try {

myFile = new FileOutputStream("xyz.dat");
for (int i = 0; i1 <somedata.length; i++){
file.write(datal[i]);
}
} catch (IOException e) {

System.out.println("Could not write to a file: " + e.toString());
} finally{
if (myFile !=null){
tryf{

myFile.close();
} catch (Exception el) {
el.printStackTrace() ;
}

BUFFERED STREAMS

The code in the previous section was reading and writing one byte at a time. In general, disk access
is much slower than the processing performed in memory; that’s why it’s not a good idea to access
disk a thousand times to read a file of 1000 bytes. To minimize the number of times the disk is
accessed, Java provides so-called buffers, which serve as reservoirs of data.

The class BufferedInputStream works as a middleman between FileInputStream and the file
itself. It reads a big chunk of bytes from a file into memory in one shot, and the FileTInputStream
object then reads single bytes from there, which is memory-to-memory operations.

Buf feredOutputStream works similarly with the class Fileoutputstream. The main idea here is to
minimize disk access.

Buffered streams are not changing the type of reading — they just make reading more efficient.
Think of it this way: A program performs stream chaining (or stream piping) to connect streams,
just as pipes are connected in plumbing. Listing 16-3 shows an example in which a file is read so the
data from FileInputStream will fill Buf feredInputsStream before processing.

‘) LISTING 16-3: Chaining FileInputStream with BufferedinputStream

Available for ~ FileInputStream myFile = null;
dmgtggmon BufferedInputStream buff =null;
try {
myFile = new FileInputStream("abc.dat");
continues



166

| LESSON16 WORKING WITH STREAMS

LISTING 16-3 (continued)

buff = new BufferedInputStream(myFile) ;
boolean eof = false;
while (l!eof) {
int bytevValue = buff.read();
System.out.print (bytevalue + " ");
if (bytevalue == -1)
eof = true;
}
} catch (IOException e) { ... }
finally{
if (myFile !=null){
try{
buff.closel();
myFile.close();
} catch (Exception el) {
el.printStackTrace();

}

While reading a stream with the help of BufferedInputStream you watch for the end-of-file char-
acter. But when you write a stream via BufferedoutputStream with method write (), you need
to do one extra step: Call the method £1ush () before closing the buffered stream. This ensures that
none of the buffered bytes “get stuck” and that all are written out to the underlying output stream.

You might be wondering, how large is the buffer? While the default buffer size varies depending on
the OS, you can control it using a two-argument constructor. For example, to set the buffer size to
5000 bytes instantiate the buffered stream as follows:

BufferedInputStream buff = new BufferedInputStream(myFile, 5000);

CHARACTER STREAMS

The text in Java is represented as a set of char values (two-byte characters), which are based on

the Unicode Standard. The Java classes FileReader and FilewWriter were specifically created to
work with text files, but they work only with default character encoding and don’t handle local-
ization properly.

The recommended way is to pipe the class TnputStreamReader with specified encoding and the
FileInputStream. The class TnputStreamReader reads bytes and decodes them into characters
using a specified charset. Each JVM has a default charset, which can be specified during the JVM
start-up and depends on the locale. Some of the standard charsets are US-ASCII, UTF-8, and UTF-
16.

Listing 16-4 reads bytes from a text file and converts them from UTF-8 encoding into Unicode to
return results as a String. For efficiency, the reading is piped with the Buf ferReader, which reads



Character Streams | 167

text from the stream buffering characters. Note that this code uses stringBuffer that usually
works faster than string when it comes to performing text manipulations.

\) LISTING 16-4: Reading text files

Available for StringBuffer buffer = new StringBuffer();
download on try {
Wrox.com Yot ) )
FileInputStream myFile = new FileInputStream("abc.txt");

InputStreamReader inputStreamReader =
new InputStreamReader (myFile, "UTF8");
Reader reader = new BufferedReader (inputStreamReader) ;

int ch; // the code of one character

while ((ch = reader.read()) > -1) {
buffer.append((char)ch);

buffer.toString();

} catch (IOException e) {

For writing characters to a file, pipe FileOutputStream and OutputStreamwriter. For efficiency,
use Bufferedwriter, for example
try{

String myAddress = "123 Broadway, New York, NY 10011";
FileOutputStream myFile = new FileOutputStream("abc.txt");

Writer out
= new BufferedWriter (new OutputStreamWriter (myFile, "UTF8"));
out.write (myAddress) ;

} catch(IOException e){

Listing 16-5 shows yet another version of the tax calculation program. This time I’ve added a text
file, states. txt, that includes states that will be used to populate a drop-down box, chstates. My
file is located in the root directory of the Eclipse project Lesson16, and it looks like this:

New York
New Jersey
Florida
California

The program in Listing 16-5 requires a class, Tax, that you can borrow from Lesson 4. Make sure
that it has the method calcTax ().



168 | LESSON16 WORKING WITH STREAMS

‘) LISTING 16-5: Bringing together Swing and streams

Availablefor ~ import java.awt.event.*;
dm;"@g,ﬂ" import javax.swing.*;

' import java.awt.GridLayout;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Vector;

public class TaxGuiFile extends JFrame implements ActionListener {
JLabel 1blGrIncome;
JTextField txtGrossIncome = new JTextField(15);
JLabel lblDependents=new JLabel ("Number of Dependents:");
JTextField txtDependents = new JTextField(2);
JLabel 1blState = new JLabel ("State: ");

//Define a data model for the ComboBox chState
Vector states = new Vector(50);

//Create a combobox to get data from the model
JComboBox chState = new JComboBox(states);

JLabel 1blTax = new JLabel ("State Tax: ");
JTextField txtStateTax = new JTextField(10);
JButton bGo = new JButton("Go");

JButton bReset = new JButton("Reset");

TaxGuiFile() {
1blGrIncome = new JLabel ("Gross Income: ");
GridLayout gr = new GridLayout(5,2,1,1);
setLayout (gr) ;

add
add
add
add
add
add
add
add
add
add

1blGrIncome) ;
txtGrossIncome) ;
1blDependents) ;
txtDependents) ;
1blState) ;
chState) ;
1blTax) ;
txtStateTax) ;
bGo) ;

bReset) ;

// Populate states from a file
populateStates() ;

chState.setSelectedIndex(0) ;
txtStateTax.setEditable(false);

bGo.addActionListener (this) ;



Character Streams | 169

bReset.addActionListener (this) ;

// Define, instantiate and register a WindowAdapter
// to process windowClosing Event of this frame

this.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.out.println("Good bye!");
System.exit (0);
1)

public void actionPerformed(ActionEvent evt) {
Object source = evt.getSource();

if (source == bGo ){
// The Button Go processing
try{

int grossInc =Integer.parselnt (txtGrossIncome.getText());
int dependents = Integer.parselnt (txtDependents.getText());
String state = (String)chState.getSelectedItem();

Tax tax=new Tax (dependents, state,grossInc);
String sTax =Double.toString(tax.calcTax());
txtStateTax.setText (sTax) ;
}catch (NumberFormatException e) {
txtStateTax.setText ("Non-Numeric Data") ;
}catch (Exception e){
txtStateTax.setText (e.getMessage()) ;

}
else if (source == bReset ) {
// The Button Reset processing
txtGrossIncome.setText ("");
txtDependents.setText ("") ;
chState.setSelectedIndex(0) ;
txtStateTax.setText ("");
}
}
// The code below will read the file states.txt and
// populate the dropdown chStates
private void populateStates|() {

states.add("Select State");
FileInputStream myFile=null;

InputStreamReader inputStreamReader;
BufferedReader reader = null;

try {
myFile = new FileInputStream("states.txt");
inputStreamReader =

new InputStreamReader (myFile, "UTF8");

continues



170 | LESSON16 WORKING WITH STREAMS

LISTING 16-5 (continued)
reader = new BufferedReader (inputStreamReader) ;

String nextLine;
boolean eof = false;
while ('eof) {
nextLine = reader.readLine();
if (nextLine == null) {
eof = true;
} else {
// Populate the model
states.add (nextLine) ;

}

}catch (IOException e) {
txtStateTax.setText ("Can't read states.txt");
}
finally{
// Closing the streams
try{
if (myFile !=null){
reader.close();
myFile.close();
}
}catch (IOException e) {
e.printStackTrace ()

7

}
}

public static void main(String argsl[]) {
TaxGuiFile taxFrame = new TaxGuiFile();
taxFrame.setSize (400,150);
taxFrame.setVisible (true);

The code in Listing 16-5 reads the content of the file states.txt and populates a collection — a
vector with states. This collection plays the role of a data model for the combo box states. I used
a constructor of JComboBox that takes a data model as an argument. This Swing component knows
how to display the content of its data model.

This is an example of the implementation of the so-called
MVC (model-view-controller) design pattern, which pro-
motes the separation of data and UI. gcomboBox plays the
role of a view, the vector is a model, and the user works

as controller when she selects a particular state and the

view has to be updated. The output of the program from :
Listing 16-5 is shown in Figure 16-1. FIGURE 16-1

ross Incoma:

umber of Dependenms:
ate: [Satact State

Go ] Reset




The Class File | 171

DATA STREAMS

If you are expecting to work with a stream of a known data structure (e.g., two integers, three
floats, and a double) use either DataInputStream for reading or DataoutputStream for writing. A
method, readint (), of DataInputStream will read the whole integer number (four bytes) at once,
and readLong () will get you a long number (eight bytes).

The class DataInputStream is yet another filter that can be connected to another stream.
Listing 16-6 has an example of how you can “build a pipe” from the following pieces:

FileInputStream ™ BufferedInputStream ™ DatalnputStream

‘) LISTING 16-6: Using DatalnputStream

Availablefor  FileInputStream myFile = new FileInputStream("myData.dat");
dwmtgagn BufferedInputStream buff = new BufferedInputStream(myFile) ;
DataInputStream data = new DataInputStream(buff);

try {
int numl = data.readInt();
int num2 = data.readInt();
float num2 = data.readFloat();
float num3 = data.readFloat();
float num4 = data.readFloat();
double num5 = data.readDouble() ;

} catch (EOFException eof) {...}

In this example FileTnputStream opens the file myData.dat for reading, Buf feredInputStream
makes the read more efficient, and DataTnputStream extracts from the buffer two integers, three
floats, and a double. The assumption here is that the file myData.dat contains exactly these data types
and in the specified order. Such a file could have been created with the help of DataoutputStream,
which allows you to write primitive Java data types to a stream in a portable way. It has a variety of
methods to choose from: writeInt (), writeByte(),writeFloat (), and so on.

The class File allows you to rename or delete a file, perform an existence check, create a directory,
and more. If you need this functionality, start by creating an instance of this class:

File myFile = new File("abc.txt");
This line does not create a file; it just creates in memory an instance of the class File that’s ready

to perform its action on the file abc. txt. If you want to create a physical file, use the method
createNewFile () defined in the class File. Here’s the list of some methods of the class File:

>  createNewFile(): Creates a new, empty file named according to the file name used during
the file instantiation. Creates a new file only if a file with this name does not exist.

>  delete(): Deletes file or directory.



172 | LESSON16 WORKING WITH STREAMS

renameTo () : Renames a file.

length (): Returns the length of the file in bytes.

exists (): Tests whether the file with the specified name exists.
list (): Returns an array of strings containing file and directory.

lastModified (): Returns the time that the file was last modified.

Y Y Y VY Y Y

mkDir (): Creates a directory.

The next code fragment checks for the existence of the file customers. txt.bak, deletes it if it is
found, and then renames the file customers. txt to customers. txt.bak:

File file = new File("customers.txt");
File backup = new File("customers.txt.bak");
if (backup.exists()){
backup.delete();
}

file.renameTo (backup) ;

TRY IT

Werite a program that will read a . zip archive file and print on the system console the list of files
included in the zip archive. Do a little research about the class java.util.zip.zipInputStream
and use it together with FileInputStream. Read about the class zipEntry too.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www.wrox .com. You can find them in the Lessonl6 folder in the download.

Step-by-Step
1. Create a new Eclipse project called Lesson16.
2. Copy any .zip file into its root directory.
3. Open FileInputStreamand connect it with ZipInputStream.
4,

Werite a loop that will use the method getNextEntry () from zipInputStream. This method
reads the zipEntry, if any, and positions the stream at the beginning of the entry data.

5. Call the function getName () on each ZipEntry instance found.


http://www.wrox.com

Trylt | 173

(9]

. Print the entry name on the system console.

~N

. Close the entry inside the loop.

. Run the program and observe that it properly prints the file names from the selected . zip file.

o 0

. If you want to learn how to create .zip files from Java, read about zipoutputStream.

Please select Lesson 16 on the DVD with the print book, or watch online at
www . wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava




Java Serialization

Imagine a building that, with a push of a button, can be turned into a pile of construction
materials and the possessions of its residents. Push another button and the building is re-
created in its original form in a different location. This is what Java serialization is about.
By “pushing the serialize button” you turn an instance of an object into a pile of bytes, and
“pushing the deserialize button” magically re-creates the object.

Wikipedia defines the term serialization as

the process of converting a data structure or object into a sequence of bits
so that it can be stored in a file or memory buffer, or transmitted across a
network connection link to be “resurrected” later in the same or another
computer environment. When the resulting series of bits is reread according
to the serialization format, it can be used to create a semantically identical
clone of the original object... This process of serializing an object is also
called deflating or marshalling an object. The opposite operation, extracting
a data structure from a series of bytes, is deserialization (which is also
called inflating or unmarshalling).

In Lesson 16 you became familiar with streams that deal with single bytes, characters, Java
primitives, and text. Now you’ll see why and how to write objects into streams, or how to seri-
alize Java objects.

Consider the following scenario: Classa creates an instance of the object Employee, which has
the fields firstName, lastName, address, hireDate, salary, etc. The values of these fields
(that is, the object’s state) have to be saved in a stream. Later on classB, which needs these
data, somehow has to re-create the object Employee in memory. The instances of Classa and
ClassB may live in two different JVMs running on different computers.

Sure enough, you can remember the order and the data types of firstName, lastName,
address, hireDate, and salary, and loop through the fields performing the output with
DataOutputStream.



176 | LESSON17 JAVA SERIALIZATION

Here’s another use case: Your application has a Preferences menu where the user can select fonts,
colors, and UI controls that should be displayed on the opening view. To support such functionality,
the Preferences panel creates an instance of a class, UserpPreferences, with 50 configurable proper-
ties (some of which are of custom data types) that have to be saved in a local file. On the next start
of the application the previously saved data should be read from this file with the re-creation of the
UserPreferences object.

Weriting a manual procedure that uses, say, DataOutputStream on each primitive property and then
recursively performs the same operation for each non-primitive type is tedious. Besides, this code
would need to be changed each time the properties of class UserPreferences change.

You can achieve the same result in a more elegant way, not one property at a time, but one object at
a time, with the help of such streams as ObjectoutputStream and ObjectInputStream. This pro-
cess is known as Java serialization, which enables you to save objects in a stream in one shot.

Classa will serialize Employee, and classB will deserialize (reconstruct) this object. To support this
mode the class Employee has to implement the Serializable interface, as shown in Listing 17-1.

‘) LISTING 17-1: Serializable class Employee

dI\vailzllhlt(aliur class Employee implements java.io.Serializable{
ownload on i :
Wrox.com Str}ng 1Name;

String fName;

double salary;

The interface Serializable does not define any methods, so the class Employee has nothing to
implement. If an interface doesn’t declare any methods it’s called a marker interface.

Two use cases described in this section represent the main uses for Java serialization — distribution
of the Java objects between different JVMs and object persistence for future reuse. Often serializa-
tion is implemented internally by various Java frameworks to pass objects between tiers of a distrib-
uted application that runs on multiple servers and client computers.

Some Java frameworks use serialization to load or unload objects to free the JVM’s memory (these
are known as passivation and activation of objects, respectively). Later in the book you’ll learn
about RMI and EJB, which use serialization a lot. But even in regular business application devel-
opment you may need to serialize and deserialize application-specific objects. This process comes
down to reading from and writing into streams, namely java.io.ObjectInputStream and java
.io.0ObjectOutputStream, respectively.

THE CLASS OBJECTOUTPUTSTREAM

To serialize an object perform the following actions:
1.  Open an output stream.

2. Chain it with objectOutputStreanm.



The Class ObjectOutputStream | 177

3. Call the method writeobject (), providing the instance of a Serializable object as an
argument.

4. Close the stream.

Listing 17-2 shows a code sample that serializes an instance of the Employee object into the file
c:\practicalJava\BestEmployee.ser.TwﬂsCodefhstopensFileOutputStreaﬂlandthen
chains it with objectoutputstream. The method writeobject () performs the serialization
of the Employee instance in one shot.

‘) LISTING 17-2: Serializing an Employee object into a file

Available for import java.io.*;
download on
Wrox.com

class ClassA {

public static void main(String args[]) {
Employee emp = new Employee();
emp.1lName = "John";
emp.fName = "Smith";
emp.salary = 50000;

FileOutputStream fOut=null;
ObjectOutputStream oOut=null;

try{
fOout = new FileOutputStream("c:\\practicalJava\\BestEmployee.ser");

oOut = new ObjectOutputStream(fout) ;
oOut.writeObject (emp); //serializing employee
} catch (IOException e){

// close the streams
try{
oOut.flush();
oOut.close();
fOut.close();
}catch (IOException ioe) {
ioe.printStackTrace() ;

System.out.println("The Employee object has been serialized into " +
"c:\\practicalJava\\BestEmployee.ser") ;

All Java primitive data types are serializable. All member variables of the serializable class must be
either Java primitives or reference variables pointing to objects that are also serializable. The class



178 | LESSON17 JAVA SERIALIZATION

Employee from Listing 17-1 contains only serializable data types. But if a class has properties of cus-
tom data types, each of them has to be serializable. The Employee class from Listing 17-3 can

be serialized only if the class PromotionHistory (and all data types it uses) was declared with
implements Serializable.

‘) LISTING 17-3: Class Employee with custom data types

dI\vailzllhlt(aliur class Employee implements java.io.Serializable{
ownload on i :
Wrox.com Str:!_ng 1Name;

String fName;

double salary;

PromotionHistory promos; // A custom data type

If you do not want to serialize some sensitive information, such as salary, declare this variable using
the keyword transient. If you declare the property salary of the class Employee with the transient
qualifier, its value won’t be serialized.

transient double salary;

Typically, you declare a variable as transient either if it contains some sensitive information or if
its value is useless in the destination stream. Suppose a Java class that runs on the server has data-
base connectivity variables. If such a class gets serialized to the client’s machine, sending database
credentials may be not only useless, but unsafe. So such variables have to be declared as transient.
One more reason to use the transient keyword is to serialize an object that includes properties of
non-serializable types.

THE CLASS OBJECTINPUTSTREAM

To deserialize an object perform the following steps:
1. Open an input stream.
2. Chain it with the objectInputStrean.

3. Call the method readobject () and cast the returned object to the class that is being
deserialized.

4. Close the stream.

Listing 17-4 shows a code sample that reads the previously serialized file BestEmployee.ser.
This code opens a FileInputStream that points at BestEmployee.ser and then chains the
FileInputStream with ObjectInputStream. The method readobject () resurrects the
instance of the Employee object in memory.



The Interface Externalizable | 179

‘) LISTING 17-4: Deserializing Employee from file

Available for import java.io.*;

dowv:g;l?gglgn class ClassB {

public static void main(String args[]) {

FileInputStream fIn=null;
ObjectInputStream oIn=null;

try{
fIn = new FileInputStream("c:\\practicalJava\\BestEmployee.ser");

oIn = new ObjectInputStream(fIn);
Employee bestEemp= (Employee)oIn.readObject () ;

} catch (ClassNotFoundException cnf) {
cnf.printStackTrace() ;
} catch (IOException e){

try{
oIn.close();
fIn.close();
}catch (IOException ioe) {
ioe.printStackTrace() ;
}
}

System.out.println("The Employee object has been deserialized from " +
" c:\\practicalJava\\BestEmployee.ser");

Note that the class that deserializes an object has to have access to its declaration or the
ClassNotFoundException will be thrown. During the process of deserialization all
transient variables will be initialized with the default values for their type. For example,
int variables will have a value of 0.

Keep in mind that class variables with longer names produce larger footprints when the object is
serialized. In time-critical applications this may be important. Imagine a Wall Street trading system
in which each order is presented as an object, Tradeorder, with 50 properties, and you need to send
a thousand of these objects over the network using serialization. Simply shortening each variable
name by one character can reduce the network traffic by almost 50 KB! You’ll learn how to open
the network streams in Lesson 18.

THE INTERFACE EXTERNALIZABLE

Continuing with the example of the trade order, the knowledge of the values of all 50 fields from the
class Tradeorder may be required to support certain functionality of the application, but when the
program has to send a buy or sell request to the stock exchange, only ten properties may be needed.



180 | LESSON17 JAVA SERIALIZATION

This raises a question — can the process of serialization be customized so only some of the object

properties will be serialized?

The method writeobject () of ObjectoutputStream sends all the object’s properties into a stream.
But if you want to have more control over what is being serialized and decrease the footprint of your
object, implement the Externalizable interface, which is a subclass of serializable.

This interface defines two methods: readExternal () and writeExternal (). These methods have
to be written by you to implement serialization of only the selected properties. Listing 17-5 shows a
fragment of a class, Employee2, that implements Externalizable. It has several properties, but in a

certain scenario only 1d and salary have to be serialized.

\) LISTING 17-5: Externalizable version of Employee

Available for class Employee2 implements java.io.Externalizable {
"W#E?ign'i" String 1Name;

String fName;

String address;

Date hireDate;

int id;

double salary;

public void writeExternal (ObjectOutputStream stream)
throws java.io.IOException {
// Serializing only the salary and id
stream.writeDouble (salary) ;
stream.writelInt (id);

}

public void readExternal (ObjectInputStream stream)
throws java.io.IOException {
salary = readDouble(); // Order or reads must be the
// same as the order of writes
id = readInt();

Note that each property of the class is individually serialized and the methods writeExternal ()
and readExternal () must write and read properties, respectively, in the same order. The class
EmpProcessor from Listing 17-6 shows how to externalize the object Employee2.

\) LISTING 17-6: Turning an object into an array of bytes

Available for import java.io.*;
download on import java.util.Date;

Wrox.com
public class EmpProcessor {

public static void main(String[] args) {

Employee2 emp = new Employee2();



The Interface Externalizable | 181

emp . fName = "John";
emp.lName = "Smith";
emp.salary = 50000;

emp.address = "12 main street";
emp.hireDate = new Date();
emp.i1d=123;

FileOutputStream fOut=null;
ObjectOutputStream oOut=null;

try{
fOout= new FileOutputStream(
"c:\\practicalJava\\NewEmployee2.ser") ;

oOut = new ObjectOutputStream(fout) ;
emp.writeExternal (oOut); //serializing employee

System.out.println("An employee is serialized into " +
" c:\\practicalJava\\NewEmployee2.ser") ;

}catch (IOException e) {
e.printStackTrace() ;

}finally{
try {
oOut.flush();
oOut.close();
fOout.close();

} catch (IOException el) {
el.printStackTrace() ;

You had to write a little more code to implement the Externalizable interface than to imple-
ment the Serializable interface, but the size of the file NewEmployee2.ser will be substantially
smaller. First of all, you serialized the values of only two properties, and files created with the
Externalizable interface contain only data, while files created with serializable also contain
class metadata that includes properties’ names. The code snippet in Listing 17-7 shows you how to
re-create the externalized object Employee2.

J LISTING 17-7: Re-creating externalized object

Available for fIn= new FileInputStream("c:\\practicalJava\\NewEmployee2.ser");

dowv\:glgggl:n oIn = new ObjectInputStream(fIn);
Employee2 emp = new Employee2();
emp.readExternal (oIn) ;



182 | LESSON 17 JAVA SERIALIZATION

CLASS VERSIONING

Imagine that a program, ClassA, serializes the Employee object from Listing 17-1 into a file on
Mary’s computer. Two days later Mary starts another program, ClassB, that offers a download of
its new version with long-awaited features. After upgrade, ClassB starts generating errors, which are
caused by the fact that the new upgrade includes a modified version of the class Employee that now
has one property with a different data type than what exists in memory. The upgrade also includes
one new property that wasn’t in the previous version of the Employee object.

Now the deserialization process will try to ignore the new property but will fail because of the mis-
matched property types between the serialized and in-memory versions of Employee. Serialization
may also fail because of a change in the inheritance tree of Employee.

During serialization, JVM automatically calculates a special value: the serial version unique 1D,
which is based on the properties of the serializable object, the class name, the implemented inter-
faces, and the signatures of non-private methods. If you are curious to see how this number looks
for your class, run the program serialver (it’s located in the bin directory of your Java install), pro-
viding the name of your class as a command-line argument.

But if your class explicitly defines and initializes a static final variable called serialversionuip,
Java will use your value instead of trying to generate one. For example,

Public static final serialVersionUID = 123;

Now, if you keep the value of this variable in the new version of Employee the same as in the old one,
you’ll have some freedom to add more methods to this class, and JVM will assume that both classes
have the same version. If a new version has added a public field, the deserialization process will ignore
it. If a new version has removed a field, the deserialized version will still have it initialized with a default
value. But if you change the data type for the public field, the deserialization process will fail anyway.

SERIALIZING INTO BYTE ARRAYS

An interesting effect will be produced if you serialize your objects into an in-memory array
of bytes — byte[]. This can be the easiest way of creating a sort of memory blob that can be
exchanged among different VMs.

The syntax of such serialization is pretty straightforward. Let’s assume that you have a class called
xvz that implements Serializable and contains all the elements of your report in the proper for-
mat. To prepare a byte array from it, write the code in Listing 17-8.

‘) LISTING 17-8: Turning an object into an array of bytes

Available for ~ XYZ myXyz = new XYZ();
download on
Wrox.com
// Code to fill myXyz with the content goes here

/...

ByteArrayOutputStream baOut = new ByteArrayOutputStream(5000) ;



Trylt | 183

ObjectOutputStream oOut = new ObjectOutputStream(
new BufferedOutputStream(balOut)) ;

//Here comes the serialization part

oOut.writeObject (myXyz) ;
oOut.flush() ;

// create a byte array from the stream

byte[] xyzAsByteArray = baOut.toByteArray();
oOut.close();

Another convenient use for serializing into a byte array is object cloning, which is the creation of an
exact copy of an object instance. Even though the class object, the root of all classes, includes the
method clone (), it works only with objects that implement the cloneable marker interface; oth-
erwise the cloning will fail. Things may get more complicated when an object contains instances of
other objects: You need to program a deep copy of the object.

Serialization into a byte array with immediate deserialization creates a deep copy of the object in no
time. After executing the code from Listing 17-9 you’ll get two identical objects in memory. The vari-
able bestEmployee points at one of them, and the variable c1oneofBestEmployee points at another.

‘) LISTING 17-9: Object cloning with serialization

Available for  Employee bestEmployee = new Employee();
download on
Wrox.com

//Serialize into byte array

ByteArrayOutputStream baOut = new ByteArrayOutputStream() ;
ObjectOutputStream oOut = new ObjectOutputStream(balOut) ;
oos.writeObject (bestEmployee) ;

//Deserialize from byte array

ByteArrayInputStream baIn = new ByteArrayInputStream(baOut.toByteArray());
ObjectInputStream oIn = new ObjectInputStream(baln);

Employee cloneOfBestEmployee = (Employee) oin.readObject();

TRY IT

Create a Java Swing program called MyCustomizablecuT that will enable the user to specify her pref-
erences, such as background color, font family, and size. Selected values should be assigned to prop-
erties of the serializable class UserPreferences and stored in the file preferences.ser. Each time
MyCustomizableGUT is started it should determine if the file preferences.ser exists. If the file does
exist, MyCustomizableGUT should deserialize it and apply previously saved preferences to the GUI.

Lesson Requirements

You should have Java installed.



184 | LESSON17 JAVA SERIALIZATION

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lessonl7 folder in the download.

Step-by-Step

1.
2.

Create a new Eclipse project and name it Lesson17.

Create an executable Swing class called MyCustomizableGuT with a text field and a User
Preferences button.

Program the button to open a new window Preferences (based on gpialog), that has three
drop-downs (aka gcomboBox), and Save and Cancel buttons. The first drop-down will allow
the user to select a color, the second a font, and the third a font size.

Create a serializable class, UserPreferences, that will remember the user’s selections.
When the user has made her choices, the Save button has to serialize the instance of
UserPreferences into a file named preferences.ser.

Each time MyCustomizableGUT starts it has to determine if the file preferences. ser exists,
deserialize it if so, and apply the appropriate color as the background color of the window
MyCustomizableGUI. The font preferences should be applied to the text field.

Run the program to ensure that you can change and save the preferences and that they are
properly applied to the GUL

Please select Lesson 17 on the DVD with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava

18

Network Programming

Computers connected to a network can communicate with each other only if they agree on
the rules of communication, called protocols, that define how to request the data, if the data
should be sent in pieces, how to acknowledge received data, if the connection between two
computers should remain open, and so on. TCP/IP, UDP/IP, FTP, and HTTP are some exam-
ples of network protocols.

Local area network (LAN) refers to a computer network connecting devices in a small area
— the same office or house, or a rack. Interconnected computers located farther apart or that
belong to different companies are part of a wide area network (WAN). The Internet consists
of millions of networks and individual devices. When connected networks belong to the same
organization it is referred to as an intranet. For security reasons intranets are shielded from
the rest of the world by special software called firewalls.

The World Wide Web (WWW) uses uniform resource locators (UR Ls) to identify online
resources. For example, the following URL says that there is (or will be generated on the fly) a
file called training.html located at the remote host known as mycompany . com, and that the
program should use the HTTP protocol to request this file. It also states that this request has
to be sent via port 80.

www . mycompany.com: 80/training.html

The hostname must be unique and it is automatically converted to the IP address of the physi-
cal server by your Internet service provider (ISP), aka your hosting company. The IP address
is a group of four numbers, for example 122.65.98.11. Most of the individuals connected to
the Internet are getting so-called dynamic (not permanent) IP addresses assigned to their home
computers, but for a small extra fee you can request a static IP address that can be assigned to
any server located in your basement, office, or garage. In the enterprises, network computers
usually get static (permanent) IP addresses. For individual use, it’s sufficient to have a dynami-
cally assigned IP address as long as your ISP can find your server by resolving a domain name
to the current IP address.



186

LESSON 18 NETWORK PROGRAMMING

Finding a resource online is somewhat similar to finding a person by his or her address. The role of
an IP address is similar to the role of a street number of a building, and a port plays the role of an
apartment number in that building. Many people can live in the same building, just as many pro-
grams can run on the same server. A port is simply a unique number assigned to a server program
running on the machine.

Multiple Java technologies exist for providing data exchange among computers in a network. Java
provides classes for network programming in the package java.net. This lesson shows you how
to read data from the Internet using the class URL as well as direct socket-to-socket programming.
Lesson 19 is about sending e-mails with JavaMail API. Lessons 26 through 37 introduce you to
other technologies that you can use over the network: Java Servlets, RMI, EJB, and JMS.

READING DATA FROM THE INTERNET

You learned in Lesson 16 that to read local file streams, a program has to specify the file’s location,
such as c:\practice\training.html. The same holds true for reading remote files — the only dif-
ference is that you open the stream over the network. Java has a class, java.net .URL, that will help
you to connect to a remote computer on the Internet and get access to a resource there, provided
that it’s not protected from the public. First, create an instance of the URL of your resource:

try{
URL xyz = new URL("http://www.xyz.com:80/training.html");

}

catch (MalformedURLException e) {
e.printStackTrace() ;

}

The MalformedURLException will be thrown if an invalid URL has been specified, for example if
you typed htp instead of http or included extra spaces. If the MalformedURLException is thrown,
it does not indicate that the remote machine has problems — just check the spelling of your URL.

Creation of the URL object does not establish a connection with the remote machine; you’ll still need
to open a stream and read it. Perform the following steps to read a file from the Internet:

1.  Create an instance of the class URL.

2. Create an instance of the URLConnection class and open a connection using the URL from
Step 1.

3. Get a reference to an input stream of this object by calling the method URLConnection
.getInputStream().

4. Read the data from the stream. Use a buffered reader to speed up the reading process.

While using streams over the networks you’ll have to handle possible I/0O exceptions the way you did
while reading the local files. The server you are trying to connect to has to be up-and-running and,
if you’re using HTTP-based protocols, a special software — web server — has to be “listening to”
the specified port on the server. By default, web servers are listening to all HTTP requests on port
80 and to secure HTTPS requests directed to port 443.



Reading Data from the Internet | 187

The program in Listing 18-1 reads the content of the existing or generated file index.html from
google.com and prints this content on the system console. For you to test this program your com-
puter has to be connected to the Internet. The program may not work properly if your connection
goes through a firewall.

\) LISTING 18-1: Reading the content of index.html from google.com

Available for import java.net.*;

download on . . )
Wrox.com import java.io.*;

public class WebSiteReader {
public static void main(String args[]) {

String nextLine;
URL url = null;
URLConnection urlConn = null;

InputStreamReader inStream = null;
BufferedReader buff = null;

try{

// index.html is a default URL's file name
url = new URL("http://www.google.com" );
urlConn = url.openConnection();

inStream = new InputStreamReader (urlConn.getInputStream(), "UTF8");

buff = new BufferedReader (inStream) ;

// Read and print the lines from index.html
while (true) {

nextLine =buff.readLine();

if (nextLine !=null){
System.out.println(nextLine) ;
telse({
break;

} catch(MalformedURLException e) {
System.out.println("Please check the URL:" + e.toString() );
} catch(IOException el){

System.out.println("Can't read from the Internet: "+ el.toString() );
} finally{
if (inStream != null) {

continues



188 | LESSON18 NETWORKPROGRAMMING

LISTING 18-1 (continued)

try{
inStream.close();
buff.closel();
} catch(IOException el) {
System.out.println("Can't close the streams: "+ el.getMessage());

}

The code in Listing 18-1 creates an instance of the class URL, then gets a reference to an instance
of URLConnection to open a connection with the stream, and, finally, opens TnputStreamReader,
which is chained with Buf feredReader. Run this program and you’ll see the output shown in
Listing 18-2.

\) LISTING 18-2: The fragment of console output shown after google.com is read

Available for <!doctype html><html><head><meta http-equiv="content-type" content="text/html;
daﬂgkg&:" charset=IS0-8859-1"><title>Google</title><script>
window.google={kEI: "BHVpTNWrGoGclgeNrczDBA", kEXPI: "25976,26060",
kCSI:{e:"25976,26060",el: "BHVPTNWrGoGclgeNrczDBA", expi:"25976,26060"},
ml:function(){},kHL:"en", time: function() {return(new Date) .
getTime () },log: function(b,d, c) {var a=new Image,e=google,g=e.lc,f=e.1li;
a.onerror=(a.onload=(a.onabort=function() {delete g[f]}));g[f]:a;c:c||"/gen_204?atyp
=i&ct="+b+"&cad="+d+"&zx="+google. time () ;
a.src=c;e.li=f+1},1c:[],11:0,Toolbelt:{}};

window.google.sn="webhp";window.google.timers={load:{t:{start: (new Date)
.getTime () }}};try{}catch(u) {}window.google.jsrt_kill=1;

</scri
pt>

The class websiteReader explicitly creates the object URLConnection. Strictly speaking, you could
achieve the same result by using the class URL:

URL url = new URL("http://www.google.com") ;
InputStream in = url.getInputStream() ;
Buff= new BufferedReader (new InputStreamReader (in)) ;

The reason you may consider using the URLConnection class is that it could give you some addi-
tional control over the I/0O process. For example, by calling its method setDooutput (true) you
specify that this Java program is intended to write to the remote URL too. In the case of HTTP
connections, this will also implicitly set the type of request to PoST (see Lesson 27). The method
useCaches () of URLConnection also allows you to specify whether the protocol can use a cached



How to Download Files from the Internet | 189

object or should always request a fresh copy. In general, if you are planning to write Java programs
that will work using HTTP protocol, use the class Ht tpURLConnection, which supports HTTP-
specific features, such as processing header fields, getting HT TP response codes, setting request
properties, and so on.

CONNECTING THROUGH HTTP PROXY SERVERS

For security reasons, most enterprises use firewalls (see http://en.wikipedia.org/wiki/
Firewall_%28computing%29) to block unauthorized access to their internal networks. As a result
their employees can’t directly reach the outside Internet world (or even some internal servers), but
go through HTTP proxy servers. Check the settings of your Internet browser to see if you are also
sitting behind a firewall, and find out the hostname and port number of the proxy server if you
are. Usually, web browsers store proxy parameters under the Advanced tabs of their Settings or
Preferences menus.

If your browser has downloaded a page containing a Java applet, the latter knows the parameters
of the proxy servers and can make requests to the remote servers through the firewall. But a regular
Java application should specify the http.proxyHost and http.proxyPort parameters to “drill a
hole” in the firewall. For example, if the name of your proxy server is proxy.mycompany . com and
it runs on port 8080, the following two lines should be added to your Java application that needs to
connect to the Internet:

System.setProperty ("http.proxyHost", "http://proxy.mycompany.com") ;
System.setProperty ("http.proxyPort", 8080);

If you do not want to hardcode these values, pass them to your program from the command line:
java -Dhitp.proxyHost=http://proxy.mycompany.com
—Dhttp.proxyPort=8080 WebSiteReader

The other option for programmatically specifying proxy parameters is to do it via the class java.net.
proxy. The code for the same proxy server parameter would look like this (you can replace the name
of the server with an IP address):
Proxy myProxy = new Proxy (Proxy.Type.HTTP,
new InetSocketAddress ("http://proxy.mycompany.com", 8080);

url = new URL("http://www.google.com/index.html" );
urlConn = url.openConnection (myProxy) ;

HOW TO DOWNLOAD FILES FROM THE INTERNET

Combine the class URL with the reading files techniques and you should be able to download prac-
tically any unprotected file (such as images, music, and binary files) from the Internet. The trick is in
opening the file stream properly. Listing 18-3 shows the code of a Java class, FileDownload, which
takes the URL and the destination (local) file name as command-line arguments, connects to this
resource, and downloads it into a local file.


http://en.wikipedia.org/wiki/Firewall_%28computing%29
http://en.wikipedia.org/wiki/Firewall_%28computing%29

190 | LESSON18 NETWORKPROGRAMMING

J LISTING 18-3: Downloading an arbitrary file from the Internet

Availablefor ~ import java.io.FileOutputStream;
download on . . : .
Wrox.com import java.lo.InputStream;
import java.net.URL;
import java.net.URLConnection;

class FileDownload{
public static void main(String args[]) {
if (args.length!=2){
System.out.println(
"Proper Usage: java FileDownload URL OutputFileName") ;
System.exit (0);
}

InputStream in=null;
FileOutputStream fOut=null;
try{
URL remoteFile=new URL(args[0]);
URLConnection fileStream=remoteFile.openConnection();
// Open output and input streams
fOut=new FileOutputStream(args([1l]);
in=fileStream.getInputStream() ;

// Save the file
int data;
while((data=in.read())!=-1){
fOout.write(data) ;
}
} catch (Exception e){
e.printStackTrace ()
} finally{
System.out.println("The file " + args[0] +
" has been downloaded successfully as " + args[l]);

’

try{
in.close();
fout. flush();
fout.close();
} catch(Exception e) {e.printStackTrace();}

Note how this FileDownload program starts by checking the number of provided command param-
eters: If the number is anything but two, the program prints an error message and quits. Here’s an
example of how you can run this program to download a W-4 tax form from the Internal Revenue
Service website:

java FileDownload http: //www.irs.gov/pub/irs-pdf/fwi.pdf wiform.pdf


http://www.irs.gov/pub/irs-pdf/fw4.pdf

The Stock Quote Program | 191

THE STOCK QUOTE PROGRAM

In this section you’ll learn how to write a program that Motorola, Inc. Common Stock [ ks 78
1 (NYSE: MOT)
can read stock market price quotes from the Internet. bl Sl P
;Fhere are mariyYIn}Eerrl‘eF sites p;rogldlng such quotes; the —— - — ———
nternet portal Yahoo! is one of them. T e o
.. . - z a Volume: 25,934,265
Visit http://finance.yahoo.com, enter the symbol Change: 10.17 (223%)
e Awvg Vol (3m): 31,241,500
of any stock, MOT for example, and press the Get Prev Closa 784 by
5 .. . . Open: 7.62 Market Cap: 18.238
Quotes button. You’ll see the pricing information _ :
1 I f f h b . Bid: 7.78 x 1400 P/E (ttm): 4733
abopt Motorq a, Inc. — a fragment of this web pageis i o 5
dePICted on Figure 18-1. 1y Target Est: 8.88 Div & Yield: NIA (NIA)
But what’s more interesting for our goal is the URL FIGURE 18-1

that is displayed in the Web browser:

http://finance.yahoo.com/qg?s=MOT

Right-click this web page and select View Source from the pop-up menu to see the HTML contents
of this page; you’ll see lots of HTML tags, and the information about MOT will be buried some-
where deep inside. Modify the line in the class webSiteReader from Listing 18-1 to have it print the
content of this page on the system console:

url = new URL("http://finance.yahoo.com/g?s=MOT") ;

You can also store the whole page in a Java string variable instead of printing the lines. Just mod-
ify the while loop in Listing 18-1:
String theWholePage;
String txt;
while (txt =buff.readLine() != null ){
theWholePage=theWholePage + txt;

If you add some smart tokenizing (splitting into parts based on the specified tokens as in

Listing 18-4) of thewholePage, to get rid of all HTML tags and everything but Last Trade info,
you can create your own little Stock Quote program. While this approach is useful to sharpen your
tokenizing skills, it may not be the best solution, especially if Yahoo! changes the wording it uses on
this page. That’s why we’ll be using another URL that provides stock quotes in a cleaner comma-
separated values (CSV) format. Here’s the URL that should be used for the symbol MOT:

http://quote.yahoo.com/d/quotes.csv?s=MOT&f=s11dltlclohgv&e=.csv

This URL produces a string that includes the stock symbol, last trade, date and time of the
price quote, earning per share (EPS), opening price, day’s range, and volume. Compare the CSB
line below with the data shown in Figure 18-1 — they are the same (the date is not shown on
Figure 18-1).

"mMoT",7.81,"8/16/2010","4:00PM",0.17,7.63,7.86,7.58,25934265


http://finance.yahoo.com
http://finance.yahoo.com/q?s=MOT
http://quote.yahoo.com/d/quotes.csv?s=MOT&f=sl1d1t1c1ohgv&e=.csv

192 | LESSON18 NETWORKPROGRAMMING

Now the task of tokenizing the entire web page comes down to parsing a short CSV line. The
StockQuote class from Listing 18-4 does exactly this: It accepts the stock symbol from the com-
mand line, gets the data from Yahoo!, tokenizes the received CSV line, and prints the price quote on
the console.

‘) LISTING 18-4: Printing stock quotes

Available for import java.net.*;
d\lmg!(ugg"l:n import java.io.*;
import java.util.StringTokenizer;

public class StockQuote {
static void printStockQuote(String symbol) {

String csvString;

URL url = null;

URLConnection urlConn = null;
InputStreamReader inStream = null;
BufferedReader buff = null;

try{
url = new URL("http://quote.yahoo.com/d/quotes.csv?s="
+ symbol + "&f=slldltlclohgvé&e=.csv" );

urlConn = url.openConnection();
inStream = new InputStreamReader (urlConn.getInputStream());

buff = new BufferedReader (inStream) ;

// get the quote as a csv string
csvString =buff.readLine() ;

// parse the csv string
StringTokenizer tokenizer = new StringTokenizer (csvString, ",");

String ticker = tokenizer.nextToken();
String price = tokenizer.nextToken();
String tradeDate = tokenizer.nextToken();
String tradeTime = tokenizer.nextToken();

System.out.println("Symbol: " + ticker +
" Price: " + price + " Date: " + tradeDate
+ " Time: " + tradeTime);

} catch(MalformedURLException e) {
System.out.println("Please check the spelling of "
+ "the URL: " + e.toString() );
} catch(IOException el){



Socket Programming | 193

System.out.println("Can't read from the Internet: " + el.toString() );
}finally{

try{
inStream.close() ;
buff.close();

}catch (Exception e) {
System.out.println("StockQuote: can't close streams" +

e.getMessage()) ;

}
public static void main(String argsl[]) {

if (args.length==0) {
System.out.println("Sample Usage: java StockQuote IBM");
System.exit (0);

}

printStockQuote (args[0]) ;

If you’ve gone through all the previous lessons in this book, reading and understanding the code
in Listing 18-4 should be a piece of cake for you. Test the StockQuote program by running it from
Eclipse (enter MOT as an argument in the Run Configuration window) or run it from a command
window as follows:

java StockQuote MOT

SOCKET PROGRAMMING

Java-based technologies offer many options for network communications, and one of the tech-
nologies to consider is sockets. In this section you learn how to use the Java classes socket and
ServerSocket from the package java.net. A socket is a connection end point in IP networking.
TCP/IP protocol maintains a socket connection for the whole period of communication, while UDP
is a connectionless protocol, which sends data in small chunks called datagrams.

The socket address is a pair: IP address and port. When a Java program creates an instance of
the serverSocket class, this instance becomes a server that just runs in memory and listens on
the specified port for other program requests. The following lines create a server that is listening
to port 3000:

ServerSocket serverSocket = new ServerSocket (3000);
client = serverSocket.accept();



194 | LESSON18 NETWORKPROGRAMMING

The client program should create a client socket — an instance of the class Socket — pointing at the
computer/port on which the serversocket is running. The client program can connect to the server
using hostnames or IP addresses too, for example:

clientSocket = new Socket("124.67.98,101", 3000);
clientSocket = new Socket ("localhost", 3000);
clientSocket = new Socket ("127.0.0.1", 3000);

While deciding which port number to use for the serversocket, avoid using port numbers below
1024 to avoid conflicts with other system programs. For example, port 80 is typically used by
HTTP servers; port 443 is reserved for HTTPS; port 21 is typically used for FTP communications;
port 389 is for LDAP servers, and so on. After creating a socket-based connection, both client and
server should obtain references to its input/output streams and use them for data exchange.

Why Use Sockets?

Why even use manual socket programming if you can easily establish inter-computer communication
with, say, HTTP-based protocol (it uses sockets internally), start one of many open-source or commer-
cial web servers, and have clients connect to the server as shown in the preceding sample programs in
this lesson? Because a socket connection has a lot less overhead than any standard protocol.

You can create your own very compact protocol that will allow you to send only the data you
need, with no or minimal headers. Socket communication provides a duplex byte stream, whereon
the data travels simultaneously in both directions, unlike protocols based on the request-response
model. Think of financial trading systems: Speed is the king there, and the ability to send data up
and down at the same time saves milliseconds, which makes a difference.

On the other hand, if you design your application to use sockets, the live connection will be main-
tained for each user connected to serverSocket. If your program has to maintain several thousand
concurrent connections it will require more powerful servers than programs using the request-
response system, with which a connection is maintained only during the time of the client’s request.

The Stock Quote Server with Sockets

Let’s build a socket-based client/server application that emulates both a server providing fake price
quotes for requested stocks and a client consuming this data.

The server will start and listen to requests on port 3000 (see Listing 18-5). The method accept () of the
SocketServer class is the one that waits for the client’s requests. As soon as it starts you’ll see the mes-
sage “Waiting for a quote request” on the system console, and nothing else will happen until the request
comes in from the client. Creating a SocketServer instance binds it to the specified port, but if this
port is already in use by another process you’ll get a BindException.

‘) LISTING 18-5: The server generating stock quotes

Available for import java.io.*;
dmgtggr:" import java.net.*;
public class StockQuoteServer ({



Socket Programming | 195

public static void main(java.lang.String[] args) {
ServerSocket serverSocket = null;
Socket client = null;

BufferedReader inbound = null;
OutputStream outbound = null;

try
{
// Create a server socket
serverSocket = new ServerSocket (3000);

System.out.println("Waiting for a quote request");
while (true)
{
// Wait for a request
client = serverSocket.accept();

// Get the streams
inbound=new BufferedReader (new
InputStreamReader (client.getInputStream())) ;
outbound =
client.getOutputStream() ;

String symbol = inbound.readLine() ;

//Generete a random price
String price= (new
Double (Math.random()*100)) .toString() ;

outbound.write(("\n The price of "+symbol+
" is " + price + "\n").getBytes());

System.out.println("Request for " + symbol +
" has been processed. The price is " + price);
outbound.write ("End\n".getBytes());
}
}
catch (IOException ioe)

{
System.out.println("Error in Server: " + ioe);
} finally{
try{
inbound.close() ;
outbound.close() ;
}catch (Exception e) {
System.out.println("StockQuoteServer: can't close streams"
+ e.getMessage());



196 | LESSON18 NETWORKPROGRAMMING

When a client connects to the socket, the server gets references to its I/O streams and sends ran-
domly generated quotes for the requested stock. In the real world this server would have to be
connected to another program providing real-time market data, but for our purposes generating
random numbers as “price quotes” will suffice. The client program shown in Listing 18-6 has to be
started with a command-line parameter such as IBM or MSFT to produce a price quote.

‘) LISTING 18-6: The client sending requests for stock quotes

Available for import java.io.*;

rocsom  import java.net.*;

public class Client {
public static void main(java.lang.String[] args) {
if (args.length==0) {

System.out.println("Usage: java Client Symbol");
System.exit (0);

OutputStream outbound = null;
BufferedReader inbound = null;

Socket clientSocket = null;

try {

// Open a client socket connection
clientSocket = new Socket ("localhost", 3000);

System.out.println("Client: " + clientSocket);
// Get the streams

outbound = clientSocket.getOutputStream() ;
inbound=new BufferedReader (new
InputStreamReader (clientSocket.getInputStream())) ;

// Send stock symbol to the server
outbound.write((args[0]+"\n") .getBytes());
outbound.write ("End\n".getBytes());

String quote;
while (true) {
quote = inbound.readLine() ;
if (quote.equals("End")) {
break;
}
System.out.println("Got the quote for " + args[0]+":" + quote);
}



Trylt | 197

}catch (UnknownHostException uhe) {
System.out.println ("UnknownHostException: " + uhe);
} catch (IOException ioe) {

System.err.println("IOException: " + ioe);
} finally{

// Close the streams
try{
outbound.close() ;
inbound.close() ;
clientSocket.close();
} catch(IOException e){
System.out.println("Can not close streams..." +
e.getMessage()) ;

Have you noticed that stockQuoteServer appends the word End to indicate that the price quote has
ended? The class client also checks for this word. This is an example of a very simple custom-made
networking protocol.

TRY IT

The goal of this exercise is to test the socket communication in action, even if you have only one
computer.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson18 folder in the
download.

Hints

In this exercise you’ll be using two separate command windows to run the client and the server. But
Eclipse IDE also enables you to have more than one Console view. Find a little icon that looks like a
monitor in the Console view toolbar and click the little triangle next to it to switch between toolbars.


http://www.wrox.com

198 | LESSON18 NETWORKPROGRAMMING

Step-by-Step

1.

2.

Create a new Eclipse project called Lesson18. Copy into this project and compile the classes
StockQuoteServer and Client from the DVD accompanying the book.

Even though you can run both programs from Eclipse, it’s easier to observe the entire process
if you run them from separate command windows. Open two command windows and imag-
ine that they belong to different computers.

In each command window, go to the bin directory of the Lesson 18. In one of them start the
server and in the other start the client — for example

java StockQuoteServer
java Client IBM

Observe that the server generates prices, and that both client and server print the same price.
By starting client and server in different command windows you are starting two separate
JVM’s, emulating network communication between computers.

Open a couple more command windows and start the client program in them, providing
different stock symbols as arguments. Observe that the same server can handle multiple
clients’ requests. If you have access to a real network in which each computer has Java run
time installed, run the client and server programs on different computers — just replace
the localhost in the class client with the network name or IP address of the server’s
computer.

Please select Lesson 18 on the DVD with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava

Processing E-Mails with Java

People send and receive e-mails using e-mail client programs such as Microsoft Outlook and
Gmail. Can you write your own program to send and receive e-mails? The chances are slim
that you’ll need to develop a client to compete with Gmail, but enterprise Java applications
often need the ability to send or receive e-mails in certain conditions.

For example, an application that processes credit card transactions suspects a fraudulent activ-
ity and needs to send an e-mail to the account owner. Such an application becomes an e-mail
client. A Java application provided by your bank can run on your Android smartphone and
have an integrated e-mail inbox that accumulates all messages sent to you by the bank.

Another good example involves the forgotten-password functionality. A user clicks the
Forgot Your Password? hyperlink and enters a valid e-mail address in a text input field.
A couple of seconds later an e-mail containing instructions for resetting the password
arrives in her e-mail inbox. The server-side Java program sent this e-mail automatically
using JavaMail’s application program interface (API).

In this lesson you’ll learn how to write a Java program that can send e-mails reminding you
about your friends’ birthdays.

PROTOCOLS AND SERVERS

For e-mail messaging you’ll be using standard protocols: Simple Mail Transfer Protocol
(SMTP) for sending e-mails and Post Office Protocol (POP) or Internet Message Access
Protocol (IMAP) for retrieving e-mails. The third version of this protocol is called POP3;
IMAP is a more advanced alternative to POP3. The format of the message body and its attach-
ments, if any, is defined by the Multipurpose Internet Mail Extensions (MIME) protocol.

Some vendors use proprietary protocols for e-mails, but we’ll stick to standards. For Java SE,
JavaMail API is an optional package that has to be downloaded separately, but it is included



200 | LESSON19 PROCESSING E-MAILS WITH JAVA

with Java EE. The API is simple to use — it takes only a few lines of code to send an e-mail from a
Java program.

To test a client program that sends e-mails you’ll need to know the hostname and port of some
SMTP server and have an account with the service provider. Typically such servers use port 25 or
587 for e-mails encrypted using Transport Layer Security (TLS) protocol and port 465 for Secure
Sockets Layer (SSL) encryption. Some ISPs may block these ports though.

Apart from an SMTP server hosted by your ISP, you can use the free public server smtp.gmail.com
offered by Google. For the parameters of this server refer to the following Web page: http: //mail
.google.com/support/bin/answer .py?hl=en&answer=13287. Yahoo! also offers a free public
SMTP server at smtp.mail.yahoo.com.

Here’s a word of caution: After you learn how easy it is to write a Java program that sends e-mails,
you might have an urge to start sending mass e-mails to large lists of recipients to promote your
business or share the latest jokes you’ve found online. Unsolicited e-mail is called spam, and if you
write a program that sends dozens of e-mails per minute your ISP will probably notice it and give
you a warning or even terminate your Internet access.

CREATING BIRTHDAY MAILER

Because I’ll be writing a birthday mailer program using Java SE, I need to download the jars (librar-
ies) with JavaMail classes. At the time of this writing JavaMail API 1.4.3 is the latest release, and
you can download it from www.oracle.com/technetwork/java/index-138643.html.

Unzip the JavaMail archive — it includes all required jar files, demos, and documentation. Create
an Eclipse project called Lesson19, right-click the project name, and select Properties = Java Build
Path. Go to the Libraries tab, click Add External JARs, and add mailapi.jar and smtp.jar to
the project from the 1ib directory of the extracted archive. These jars contain all the classes from
the javax.mail package required to send e-mails. If you are using a really old version of Java
(prior to version 6) you’ll also need to download and add to your project the JavaBeans Activation
Framework (JAF).

Required Supporting Classes
At a minimum you have to use the following classes to send an e-mail:

>  javax.mail.Session: This class knows important characteristics of your environment, such
as the name of the mail server.

>  javax.mail.Message: This class represents your message, containing recipients, subject,
content, and so on.

>  javax.mail.internet.InternetAddress: The recipient of your message will be repre-
sented by this class.

>  javax.mail.Transport: This class will pass your message for the delivery to a protocol-
specific transport.


http://mail.google.com/support/bin/answer.py?hl=en&answer=13287
http://www.oracle.com/technetwork/java/index-138643.html
http://mail.google.com/support/bin/answer.py?hl=en&answer=13287

Creating Birthday Mailer | 201

Writing the Mail Sender

Now you’ll learn how to write a program to send e-mail messages. I’ll be using the publicly avail-
able SMTP server from Yahoo!, but if you decide to use the server provided by your ISP you can
find out its hostname and port from the settings of your current e-mail client program. For example,
Microsoft Outlook has this information in the menu Tools > Accounts & Mail = Properties.

Typically SMTP servers require you to provide a valid e-mail address and password for authentica-
tion. Because your JavaMail program won’t use a log-on window, you can hard-code e-mail creden-
tials in a subclass of JavaMail’s Authenticator, as shown in Listing 19-1.

‘) LISTING 19-1: Authenticator class

Available for  package com.practicaljava.lessonl9;
download on
Wrox.com

import javax.mail.Authenticator;

import javax.mail.PasswordAuthentication;
class MyMailAuthenticator extends Authenticator {
protected PasswordAuthentication getPasswordAuthentication() {

return new PasswordAuthentication ("test@yahoo.com", "passwordl23");

If MyMailAuthenticator isn’t able to authenticate using the provided e-mail/password combination,
it’ll throw the AuthenticationFailedException with the error message “Access Denied.” If you’ll
specify a nonexistent sender’s e-mail address, the program will throw suTPSendFailedException
with the error “From address not verified.” If authentication is not required, the class
MyMailAuthenticator is not needed.

A sample file that stores the birthdays of your e-mail contacts is shown in Listing 19-2. It’s a file in a
CSV format, where each line contains the birthday, name, and e-mail address of a contact.

‘) LISTING 19-2: The file birthday.txt

Available for ~ Aug-9,Mary Lou,mlou@gmail.com
dow‘"m:g:gl:" Mar-31, Joljln Smith, jsmith@gmail.com
Aug-9,David Lee,dlee@yahoo.com

The Mailer program (see Listing 19-3) will read this file into an array, and if the birthday’s date is
the same as the current date, it’ll send a “happy birthday” e-mail to this person. The program starts
by creating an object with the properties of the SMTP server at Yahoo! Then it creates an instance
of the MyMailAuthenticator class and gives both of them to the session instance.

When this is done the method main () invokes the method readBirthdayFile (), which
populates ArrayList friends with the data from the file birthday.txt. Then the method



202 | LESSON19 PROCESSING E-MAILS WITH JAVA

iterateThroughBirthdays () parses only those lines in which the birthday date is the same as
the current date. This program uses the class java.util.Scanner, which parses the content of
the String (the friend’s data) based on specified delimiters.

The setPropsandSendEmail () method has the code for sending e-mails. First it creates an instance
of the Message object and populates it with all the familiar parameters: from, recipient(s), subject,
data, and the text of the message. The call to Transport.send () performs the actual process of
sending this message.

‘) LISTING 19-3: The Mailer class

Available for ~ package com.practicaljava.lessonl9;
download on
Wrox.com . . .

import java.io.*;

import java.text.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;

public class Mailer {

private Session session = null;

private static String emailSenderAddress = "yfainll@yahoo.com";
private static String emailSubject = "Happy Birthday!!!";
private String emailText = "Happy birthday dear %s!!!";

ArrayList<String> friends = new ArrayList<String>();
Mailer () {
Properties sessionProperties = new Properties();
sessionProperties.put("mail.smtp.host", "smtp.mail.yahoo.com");
sessionProperties.put ("mail.smtp.user", emailSenderAddress) ;
sessionProperties.put("mail.smtp.port", "25");
(

sessionProperties.put("mail.smtp.auth", "true");

MyMailAuthenticator authentificatorForMessage =
new MyMailAuthenticator () ;

session = Session.getInstance(sessionProperties,
authentificatorForMessage) ;

private void setPropsAndSendEmail (String emailRecipient, String emailText) {
try{
Message emailMessage = new MimeMessage (session);

emailMessage.setFrom(new InternetAddress (emailSenderAddress));



Creating Birthday Mailer | 203

emailMessage.setRecipients (Message.RecipientType.TO,

InternetAddress.parse (emailRecipient, false));
emailMessage.setSubject (emailSubject) ;
emailMessage.setSentDate (new Date()) ;
emailMessage.setText (emailText) ;
Transport.send (emailMessage) ;
System.out.println("Your email to " + emailRecipient +

" has been sent successfully");
}catch (Exception e) {
System.out.println("Your email to " + emailRecipient +
" has not been sent: " + e.getMessage());

e.printStackTrace() ;

private void readBirthdayFile() throws IOException {
FileInputStream birthdayFile = new FileInputStream("birthday.txt");

BufferedReader birthdayFileReader = new BufferedReader (
new InputStreamReader (birthdayFile));

String friendInfo;

while ((friendInfo = birthdayFileReader.readLine()) != null){
friends.add(friendInfo) ;

birthdayFileReader.close();

birthdayFile.close();

private void iterateThroughBirthdays () {
Iterator<String> iterator = friends.iterator();
while (iterator.hasNext()){

scanForManInfoAndSendEmail (iterator.next());

private void scanForManInfoAndSendEmail (String stringFromArray) {

Scanner scannerOfLines = new

continues



204 | LESSON19 PROCESSING E-MAILS WITH JAVA

LISTING 19-3 (continued)
Scanner (stringFromArray) .useDelimiter ("[,\n]");
if (scannerOfLines.next () .equals (getCurrentDateMMMd())) {
String emailAddressee = scannerOfLines.next();
String emailAddress = scannerOfLines.next();

setPropsAndSendEmail (emailAddress,
String.format (emailText, emailAddressee));

}
private static String getCurrentDateMMMd () {

return new SimpleDateFormat ("MMM-d", Locale.US).format (new
GregorianCalendar () .getTime()) ;

public static void main(String[] args) {
Mailer mm = new Mailer();
try {

mm.readBirthdayFile() ;
mm. iterateThroughBirthdays () ;

} catch (IOException e) {

e.printStackTrace() ;

HOW TO RETRIEVE E-MAILS

Even though more often than not the receivers of the messages sent by a Java application will use

one of the popular e-mail clients already available, you may need to incorporate message-retrieving
functionality into your application. In this section I’ll just give an overview of the process of retriev-
ing e-mails programmatically, and in the “Try It” section you’ll write such a program on your own.

As in your local post office, incoming mail should be stored somewhere. The POP3 or IMAP mail
server provides such storage. POP3 is an older protocol that retrieves messages from a single mail-
box. IMAP is newer and more advanced: It allows the organization of messages in folders with fil-
tering support.

To get access to the user’s incoming e-mails the Java program needs to connect to the mail server
and get an instance of the Store object by calling the method getstore () on the Session object.



Useful Open-Source Components | 205

You’ll need to know the hostname of your mail server, the protocol it uses, and the relevant user ID
and password in order to get the Store instance.

The next step is establishing a connection with store by calling its method connect (). After this is
done, get store’s default root folder and then a specific sub-folder, such as TNBOX.

Folders in JavaMail are represented by the class Folder. Its method open () will open the speci-
fied folder for READ_ONLY or READ_WRITE. Finally, the getMessages () method returns an array of
Message objects. Iterating through this array will allow you to retrieve message data by calling
getSubject (), getFrom(), getContent (), and so on.

Listing 19-4 shows a fragment of the code for retrieving messages from a Gmail account. To enable
or disable the IMAP or POP protocol, go to Setting & Forwarding POP/IMAP in your Gmail client.

‘) LISTING 19-4: Fragment of code for e-mail retrieval from Gmail

Available for Properties properties = System.getProperties();

dwm?:&gn Session session = Session.getDefaultInstance (properties);
String host = "pop.gmail.com"; // or "imap.gmail.com"
String username = "yakov";
String password = "mypasswd";
Store store = session.getStore("pop3s"); // or "imap"

store.connect (host, username, password) ;

Folder rootFolder = popStore.getDefaultFolder () ;
defaultPopFolder = defaultPopFolder.getFolder ("INBOX") ;
defaultPopFolder.open (Folder.READ_ONLY) ;

Message[] message = folder.getMessages() ;
for (int i = 0; i < message.length; i++) {

// get message parts here

JavaMail has full support for multipart messages with attachments (see the Multipart,
MimeMultipart, and MimeBodyPart classes), but multipart message support is beyond the scope of
this book. The description of these classes is available in the Java help system. Look for these class
descriptions in the package javax.mail.

USEFUL OPEN-SOURCE COMPONENTS

Apache Commons is a community project that offers a number of open-source reusable components.
One of the libraries contains classes for sending and receiving e-mails form Java. You can read about
thisproﬁctathttp://commons.apache.org/email/userguide.html.

The process of sending a simple e-mail with this library comes down to creating an instance of one
class, simpleEmail. Then you need to set the properties of this object: host, port, from, to, authen-
ticator, subject, and message body. When this is done, just call the send () method.


http://commons.apache.org/email/userguide.html

206 | LESSON19 PROCESSING E-MAILS WITH JAVA

If all you need is to send simple e-mails, the benefits of using the Apache Commons e-mail library
may not be so obvious. But if your program needs to send multipart e-mails with attachments, or
HTML-formatted e-mails, consider using this library. One useful feature of this library is that it
gives you the ability to specify an alternative recipient for bounced e-mails.

There is one more community project to consider: Apache Velocity (http://velocity.apache.org/).
Imagine that you need to write a program that will perform mass mailing of pre-formatted letters,
inserting customer-specific information (such as name and address) into each one. The Apache Velocity
project would be quite handy for this purpose. It is also useful if you want to send automatic account
registrations or password-change e-mails. Instead of hard-coding the letter text into your Java program,
you can create text files (templates) containing special markup to be substituted with real values by your
Java program during run time.

For further details, read the user guide at the following URL: http://velocity.apache.org/
engine/devel /user-guide.html.

Third-party libraries (e.g. Spring Framework, discussed in Lesson 35) hide specifics of the use of
JavaMail API. Check out the documentation on using e-mails with the Spring Framework at the fol-
lowing URL: http://static.springsource.org/spring/docs/2.0.x/reference/mail.html.

TRY IT

Werite a Java program that will retrieve messages from your mail inbox and print their subjects on
the system console.

Lesson Requirements

You should have Java installed. For this section I assume that you’ve created Eclipse project
Lesson19 and that it contains a working version of the Mailer program.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lessonl9 folder in the download.

Step-by-Step
1.  Add JavaMail libraries pop.jar and imap.jar to the project.

2. Read the chapter on message storage and retrieval in the document “JavaMail Design
Specification” and code sample “Showing the message” from Listing B-X in Appendix B
of “JavaMail Design Specification.” This document is located in the doc folder of the
JavaMail distribution.


http://velocity.apache.org/
http://velocity.apache.org/engine/devel/user-guide.html
http://static.springsource.org/spring/docs/2.0.x/reference/mail.html
http://www.wrox.com
http://velocity.apache.org/engine/devel/user-guide.html

Trylt | 207

Werite the Java program MailReader to retrieve and print on the system console the subjects
of messages located in your inbox.

Run MailReader and compare the printed message subjects with the ones displayed by the
mail client you use regularly.

Please select Lesson 19 on the DV D with the print book, or watch online at

www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava




Introduction to Multi-Threading

In March of 2010 I was interviewed by Janice Heiss from Oracle (http://java.sun.com/
developer/technicalArticles/Interviews/community/yakov_ga_2010.html ), and she
asked me to name the Java class I couldn’t live without. I didn’t think twice: Thread. This is
where the power of Java resides. There are books devoted to Java threads, which give you amaz-
ing power and flexibility when it comes to building highly available, scalable, and responsive
applications capable of processing thousands of concurrent requests of various types.

Up until now you’ve been creating Java programs that were executing code sequentially. But
the main power of Java lies in its ability to do things in parallel, or, as they say, to run multiple
threads of execution. As always, going through a practical use case is the best way to under-
stand this feature.

Let’s discuss a program that should display market news and information about the user’s
stock portfolio in the same window. While the market news feed is coming from a remote
computer, stock portfolio data are retrieved from the database and may be located on the
local machine.

Suppose it takes five seconds to get the market news and only three seconds to get the portfo-
lio data. If you run these two tasks sequentially (one after another), you need eight seconds to
complete the job.

But market news doesn’t depend on your portfolio data and these two tasks can run in parallel.
They run on different computers and use different processors. If you can implement parallel
processing, the total time should be less than eight seconds (close to five seconds in our use
case — the time it takes for the longer task to complete).

A Java program can start multiple threads of execution that will run in parallel. Even if you
have only one processor in your computer, it still could be a good idea to run some tasks in
parallel. Think of a web browser that allows you to download a file and perform page brows-
ing at the same time. Web browsers maintain two or more connections to any website, and can
download multiple resources (text, images, videos, music) at the same time. Any web browser
works in a multi-threaded mode.


http://java.sun.com/developer/technicalArticles/Interviews/community/yakov_qa_2010.html
http://java.sun.com/developer/technicalArticles/Interviews/community/yakov_qa_2010.html

210 | LESSON 20 INTRODUCTION TO MULTI-THREADING

If these jobs ran sequentially, the browser’s window would be frozen until the download was
complete. On a multiprocessor computer, parallel threads can run on different CPUs. On a
single-processor computer, threads will take turns getting “slices” of the processor’s time.
Because switching CPU cycles between threads happens fast, a user won’t notice the tiny delays
in each thread’s execution, and browsing will feel smooth.

In many cases, especially on single CPU computers, the benefit of many threads comes about because
there’s a lot of idle time in most operations. In particular, if an operation is I/O bound instead of CPU
bound using multiple threads helps take advantage of those otherwise unused blocks of time.

People also can work in a multi-threaded mode. For example, they can drink coffee while talking on
a cell phone and driving a car. In the airport you can see people walking on the moving belt — they
will reach their gate faster than by standing still.

THE CLASS THREAD

If class A needs to initiate some executions in classes B and ¢, the latter two must declare multi-
threading support from the get-go. Each of the classes B and ¢ must either be inherited from the Java
class Thread or implement one of the following interfaces: Runnable or callable (the latter is cov-
ered in Lesson 21). If a class is inherited from the class Thread it has to override the method run ().

The first version of the market-portfolio example has three classes (see Listings 20-1, -2, and -3). Two of
them are subclasses of the class Thread (MarketNews and Portfolio), and the third (TestThreads) is
just a testing program that instantiates them and starts the execution of some code in each of them. You
must initiate the code that has to work as a thread in the method run ().

‘) LISTING 20-1: Class MarketNews

Available for ~ public class MarketNews extends Thread {
dmg;oggrgn public MarketNews (String threadName) {
super (threadName) ; // name your thread

}

public void run() {
System.out.println( "The stock market is improving!");
}

‘) LISTING 20-2: Class Portfolio

Available for  public class Portfolio extends Thread {
d"m:!ggglg" public Portfolio (String threadName) {
super (threadName) ;

}

public void run() {
System.out.println( "You have 500 shares of IBM ");
}



The Interface Runnable | 211

‘) LISTING 20-3: Class TestThreads starts MarketNews and Portfolio

Availablefor  public class TestThreads {

dow\ﬁgiuggl:n public static void main(String argsl]) {
MarketNews mn = new MarketNews ("Market News") ;
mn.start () ;

Portfolio p = new Portfolio("Portfolio data");
p.start();

System.out.println( "TestThreads is finished");

The method main () in Listing 20-3 instantiates each thread, passing the name for the thread as a
constructor argument, and then calls its start () method. Each thread itself invokes internally the
code located in its method run (). After calling mn.start (), the program TestThread does not wait
for its completion but immediately executes the lines that follow, creating and starting the thread
portfolio. Even if MarketNews will take time, the Portfolio thread will start immediately.

If you run the TestThread program it’ll print the output from threads MarketNews and Portfolio
almost simultaneously — there is no lengthy and time-consuming code in their run () methods. A
bit later, in the section “Sleeping Threads,” I’ll show you how to emulate a lengthy execution. The
output of the TestThread program can vary — it all depends on which thread will finish first.

THE INTERFACE RUNNABLE

The second way to create threads is to implement a Runnable interface. In this case your class also
has to have business logic in the method run (). The second version of our market-portfolio example
(Listings 20-4, -5, and -6) also has three classes, but MarketNew2 and Portfolio2 are not inherited
from the class Thread — they implement the Runnable interface.

Creation of a thread in this case is a two-step process: create an instance of a class that implements
Runnable and then give it as a constructor argument during instantiation of the class Thread.

‘) LISTING 20-4: Class MarketNews2

Available for  public class MarketNews2 implements Runnable {
roxeom public void run() {
System.out.println( "The stock market is improving!");

}

‘) LISTING 20-5: Class Portfolio2

Available for  public class Portfolio2 implements Runnable {
dﬂ‘ﬂwgoﬂn‘i" public void run() {
System.out.println( "You have 500 shares of IBM ");

}



212 | LESSON 20 INTRODUCTION TO MULTI-THREADING

‘) LISTING 20-6: Class TestThreads2

Availablefor ~ public class TestThreads2 {

dmgtzgr:" public static void main(String argsl[]) {
MarketNews2 mn2 = new MarketNews2 () ;
Thread mn = new Thread(mn2, "Market News") ;
mn.start () ;

Runnable port2 = new Portfolio2();
Thread p = new Thread(port2, "Portfolio Data");
p.start();

System.out.println( "TestThreads2 is finished");

Note that I’ve declared the variable port2 in Listing 20-6 to be not of type Portfolio2, but of

type Runnable. I did it for illustration purposes and to encourage you to use what you’ve learned
about casting to interfaces in Lesson 7 (see Listing 7-5). It takes three lines of code in Listing 20-6 to
instantiate and start a thread. You can do this in one line, but this syntax won’t give you a reference
to the thread object should you need to call any methods on this object in the future (see variables
mn and p in Listing 20-6):

(new Thread(new MarketNews2 ("Market News"))).start();

The Runnable interface provides a more flexible way to use threads, because it allows a class to be
inherited from any other class, while having all the features of a thread. For example, a Swing applet
must be a subclass of a javax.swing.JApplet, and, because Java doesn’t support multiple inheri-
tance, it should implement Runnable to support multi-threading.

SLEEPING THREADS

One of the ways to make the processor available to other threads is by using Thread’s method
sleep (), which enables you to specify in milliseconds (and nanoseconds) how long the thread has to
sleep. For example, the thread MarketNews3 in Listing 20-7 puts itself to sleep for a thousand mil-

liseconds (one second) after each output of the message about market improvements.

‘) LISTING 20-7: Class MarketNews3

Availablefor  public class MarketNews3 extends Thread {
dm:;?gg"l:" public MarketNews3 (String str) {
super (str) ;

}

public void run() {
try{
for (int 1=0; 1<10;1i++){



Sleeping Threads | 213

sleep (1000); // sleep for 1 second
System.out.println( "The market is improving " + 1);

}
}catch(InterruptedException e ) {
System.out.println(Thread.currentThread () .getName ()
+ e.toString());

When MarketNews3 goes to sleep, the thread Portfolio from Listing 20-8 gets the CPU and
will print its message and then sleep for 700 milliseconds on each loop iteration. Every second
MarketNews3 wakes up and does its job.

J LISTING 20-8: Class Portfolio3

Availablefor  public class Portfolio3 extends Thread {
download on public Portfolio3 (String str) {
super (str) ;
}

public void run() {

try{
for (int 1=0; 1<10;1i++){
sleep (700); // Sleep for 700 milliseconds

System.out.println( "You have " + (500 + i) +
" shares of IBM");

}
}catch(InterruptedException e ) {
System.out.println(Thread.currentThread () .getName ()
+ e.toString());

After adding the sleeping part to our thread, the program TestThreads3 (see Listing 20-9) will gen-
erate mixed console output about market and portfolio from both threads — this proves that they
are taking turns even with the single-processor machine.

‘) LISTING 20-9: Class TestThreads3

Availablefor  public class TestThreads3 {
download on
Wrox.com
public static void main(String argsl]) {

MarketNews3 mn = new MarketNews3 ("Market News");
mn.start () ;

Portfolio3 p = new Portfolio3 ("Portfolio data");
continues



214 | LESSON 20 INTRODUCTION TO MULTI-THREADING

LISTING 20-9 (continued)

p.start();

System.out.println( "The main method of TestThreads3 is finished");

If you need to “wake up” a sleeping thread before its sleeping time is up, use the method interrupt ().
Just add mn. interrupt () to the class TestThreads3 right after starting the MarketNews thread. This
will trigger TnterruptedException, and MarketNews3 will wake up and continue its execution from
the operator located below the s1eep () method call. The class Thread has a method interrupted ()
that returns true if the current thread has been interrupted. The output of the program TestThreads3
can look as follows:

The main method of TestThreads3 is finished
You have 500 shares of IBM
The market is improving 0
You have 501 shares of IBM
The market is improving 1
You have 502 shares of IBM
You have 503 shares of IBM
The market is improving 2
You have 504 shares of IBM
The market is improving 3
You have 505 shares of IBM
You have 506 shares of IBM
The market is improving 4
You have 507 shares of IBM
The market is improving 5
You have 508 shares of IBM
The market is improving 6
You have 509 shares of IBM
The market is improving 7
The market is improving 8
The market is improving 9

These days it’s hard to find a single-CPU server machine. Most of the readers of this book have
dual-core CPUs — these have two processors in the same chip. Modern JVMs use multiple cores for
multi-threaded applications, but you shouldn’t assume that your program will run twice as fast on
such hardware. JVM optimization is a complex subject and is out of the scope of this tutorial. You
may boost the performance of your system by increasing the number of threads running in parallel,
but you should define the right ratio between the number of threads and the number of processors
during the performance-tuning phase of application development.

HOW TO KILL A THREAD

The class Thread has a method, stop (), that was supposed to know how to kill the current thread.
But it was deprecated many years ago because it could bring some of the objects in your program
into an inconsistent state caused by improper locking and unlocking of the object instances.



How to Killa Thread | 215

There are different approaches to killing threads. One of them involves creating your own method on
the thread, say stopMe (), in which you set your own boolean variable, say stopMe, to false and test
its value periodically inside the thread’s method run (). If application code will set the value of stopMe
to true, just exit the code execution in the method run (). In Listing 20-10, the loop in the method
run checks the value of the variable stopMe, which is initialized with the reference to the current
Thread object. As soon as it is changed (set to nul1 in this case), the processing will complete.

\) LISTING 20-10: Killing a thread

Available for class KillTheThread{
download on

Wrox.com public static void main(String argsl[]) {
Portfoliod4 p = new Portfoliod ("Portfolio data");
p.start();

// Some other code goes here,
// and now it's time to kill the thread
p.stopMe() ;

}
}

class Portfoliod extends Thread{
private volatile Thread stopMe = Thread.currentThread() ;

public void stopMe() {
stopMe = null;
}

public void run() {
while (stopMe == Thread.currentThread()) {
try{
//Do some portfolio processing here
}catch (InterruptedException e ) {
System.out.println(Thread.currentThread () .getName ()
+ e.toString());

The variable stopMe has been declared with a volatile keyword, which warns the Java compiler
that another thread can modify it and that this variable shouldn’t be cached in registers, so that all
threads must always see its fresh value. The class Portfolio4 could be written differently — the vari-
able stopMe could be declared as boolean.

Not every thread can be killed using the code shown in Listing 20-10. What if a thread is
not doing any processing at the moment, but is waiting for the user’s input? Call the method
interrupt () on such a thread. Killing a thread by interrupting it may be the only technique
you need to use in such cases.



216 | LESSON 20 INTRODUCTION TO MULTI-THREADING

If you need to kill a thread that’s busy doing some blocking I/0O operations and the preceding meth-
ods of killing such a thread don’t work, try closing I/O streams — this will cause ToException dur-
ing the current read/write operation and the thread will be over.

If you'd like to read more comprehensive coverage of this subject, see Dr. Heinz Kabutz the Java
Specialist’s newsletter Issue #56, available at www.javaspecialists.co.za/archive/Issue056.html.

THREAD PRIORITIES

Single-processor computers use a special scheduling algorithm that allocates processor time slices to
the running threads based on their priorities. If Thread1 is using the processor and the higher-pri-
ority Thread2 wakes up, Threadl is pushed aside and Thread2 gets the CPU. It is said that Thread2
preempts Threadl.

The class Thread has a method, setPriority (), that allows you to control its priority. There are 10
different priorities, which are final integer variables defined in the class Thread. Some of them
are named constants MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY. Here’s an example of
their usage:

Thread myThread = new Thread("Portfolio");
myThread.setPriority (Thread.NORM_PRIORITY + 1);

If two threads with the same priority need the processor, it’ll be given to one of them using an algo-
rithm specific to the computer’s OS.

THREAD SYNCHRONIZATION AND RACE CONDITIONS

During the design stage of a multi-threaded application’s development you should consider the pos-
sibility of a so-called race condition, which happens when multiple threads need to modify the same
program resource at the same time (concurrently). The classic example is when a husband and wife
are trying to withdraw cash from different ATMs at the same time.

Suppose the balance on their joint account is $120. If a Thread class is responsible for the validation
and update of the balance of their bank account, there is a slight chance that the husband’s thread
will enable him to withdraw $100, but that before the actual withdrawal the wife’s thread will come
in trying to validate a $50 withdrawal. She is also enabled to make her withdrawal, because $120

is still there! The couple would successfully withdraw a total of $150, leaving a negative balance in
their account. This is an example of a race condition.

A special keyword, synchronized, prevents race conditions from happening. This keyword places a
lock (a monitor) on an important object or piece of code to make sure that only one thread at a time
will have access. The code in Listing 20-11 locks the entire method withdrawCash ()so no other
thread will get access to the specified portion of code until the current (locking) thread has finished
its execution of withdrawCash ().


http://www.javaspecialists.co.za/archive/Issue056.html

Thread Synchronization and Race Conditions | 217

‘) LISTING 20-11: Declaring a synchronized method

Available for class ATMProcessor extends Thread{
download on

Wrox.com . . . . )
synchronized withdrawCash(int accountID, int amount) {

// Some thread-safe code goes here, i.e. reading from
// a file or a database

boolean allowTransaction = validateWithdrawal (accountID,

amount) ;
if (allowTransaction) {

updateBalance (accountID, amount, "Withdraw");
}

else {
System.out.println("Not enough money on the account");
}

}

}

The locks should be placed for the shortest possible time to avoid slowing down the program: That’s
why synchronizing short blocks of code is preferable to synchronizing whole methods. Listing 20-12
shows how to synchronize only the portion of the code that may cause the race condition, rather
then locking the entire method withdrawCash ().

\) LISTING 20-12: Declaring a synchronized block

Available for class ATMProcessor extends Thread{
download on

Wrox.com o . )
withdrawCash (int accountID, int amount) {

// Some thread-safe code goes here, i.e. reading from
// a file or a database

synchronized(this) {
if (allowTransaction) {
updateBalance (accountID, amount, "Withdraw");

}

else {
System.out.println("Not enough money on the account");

}
}
}
}

When a synchronized block is executed, the section of the code in parentheses is locked and can’t
be used by any other thread that’s locked on the same section of the code until the lock is released.
Listing 20-12 locks the current instance of the class ATMProcessor (represented by the this key-
word) only for the duration of the updateBalance () method, which is a shorter period of time than
locking withdrawCash () would take.



218 | LESSON 20 INTRODUCTION TO MULTI-THREADING

JAVA ENUMERATIONS

The enum construct is not related to the thread concept and can be used for a vari-
ety of reasons, but because this lesson refers to enumerations for the first time in
this book, a little sidebar explanation seems appropriate.

If you need to define a group of predefined constants, you can use the final key-
word. For example, to define various categories of products in a store you can
declare the following constants:

public static final int CATEGORY_BOOKS = 1;

public static final int CATEGORY _VIDEOS = 2;
public static final int CATEGORY _ELECTRONICS = 3;
public static final int CATEGORY _TOYS = 4;

But Java offers a special keyword, enum, that enables you to define such constants
in a more elegant way:

enum Category {BOOKS,VIDEOS,ELECTRONICS,TOYS}

Not only is this notation more compact, but it also prevents the programmers from
having to prefix each constant with CATEGORY _ to stress that these values represent
a group, but you can define variables to represent the entire group, pass enum as an
argument to a method, and return enum from a method. For example, if you need
to write a program that will redirect the store customer to the proper representa-
tive, you can write something similar to what’s shown in Listing 20-13.

, LISTING 20-13: enum example

Available for enum Category {BOOKS,VIDEOS,ELECTRONICS, TOYS}
download on
Wrox.com

public class EnumExample {

public static void redirectToRepresentative (Category cat) {

switch(os) {

case BOOKS:
System.out.println("Get Mary on the phone") ;
break;

case VIDEOS:
System.out.println("Call Raj");
break;

case ELECTRONICS:
System.out.println("Find Boris") ;
break;

case TOYS:
System.out.println("Email David") ;
break;



Wait and Notify | 219

default:
System.out.println("We don't sell such
products.");
break;
}

All enums implicitly extend java.lang.Enum and implement Comparable and
Serializable interfaces. On top of that you can declare enum variables that imple-
ment other interfaces, and declare additional methods, for example:

enum Category implements Sellable {
BOOKS, VIDEOS, ELECTRONICS, TOYS;

printSalesData (int region) {
// Calculate sales here
}

THREAD STATES

A thread goes through various states during its life span. The class Thread has a method,
getState (), that will return one of the values defined in the enumeration Thread. State.

>

Y Y VY VY Y

BLOCKED: Thread state for a thread that is blocked and waiting to enter or reenter a synchro-
nized method or block of code

NEW: Thread state for a thread that has been instantiated but not started yet
RUNNABLE: Thread state for a runnable thread

TERMINATED: Thread state for a terminated thread

TIMED_WATITING: Thread state for a waiting thread with a specified waiting time

WATTING: Thread state for a waiting thread

The class Thread has a method, isAlive (), that can help you to find out the status of the thread.
If it returns true, the thread has been started and hasn’t died yet. If it returns false, the thread is
either new or already dead.

WAIT AND NOTIFY

The class object also has some methods relevant to threads: wait (), notify (), and notifyall ().
Because every Java class is inherited from the class object, these methods can be called on any object.



220

| LESSON 20 INTRODUCTION TO MULTI-THREADING

Let’s revisit our class TestThreads3, which spawns the threads MarketNews3 and Portfolio3. It
has the following line at the end of the main () method:

System.out.println("The main method TestThreads3 is finished");

Run the program TestThreads3 and it’ll print on the system console something like this:

The stock market is improving 1

You have 500 shares of IBM

The main method of TestThreads3 is finished
The stock market is improving 2

You have 501 shares of IBM

The stock market is improving! 3

You have 502 shares of IBM

Note that the method main () did not wait for the portfolio and market news threads’ completion! But
if the main class needs to wait until the threads complete their actions, you can use the method wait ():

public static void main(String argsl[]) {
mn.start () ;
p.start();

synchronized (this) {

try{
wait (10000) ;
} catch (InterruptedException e){ ...

}
System.out.println("The main method of TestThreads3 is finished");

}

The method call wait (10000) means “wait for up to 10 seconds.” The last printin statement will
be executed either after 10 seconds or when this thread receives notification of some important
event, whichever comes first. Examples of important events are a price drop on the auction for items
you’re interested in, the reopening of the airport after freezing rain, and the execution of your order
to purchase 100 shares of IBM stock. A thread can notify other thread(s) by calling the method
notify () ornotifyAll().

Calling sleep (10000) puts a thread into a not-runnable state for exactly 10 seconds, although
wait (10000) may mean that it will come back to a runnable state earlier. If the method wait () is
called without any arguments, the calling program will wait indefinitely until it receives a notifica-
tion. The call to wait () makes the current thread give up its lock to another one and puts it to sleep
until either the specified time has elapsed or the thread gets a notification from another object. Let’s
consider one of the use cases illustrating this.

ClassA spawns a thread, ClassB, and starts waiting. ClassB retrieves some data, and then sends a
notification back to the instance of classa. The classa resumes its processing after notification has



Wait and Notify | 221

been received. Listing 20-14 shows implementation of this scenario. Note that the classB gets the

reference to the object classa so it knows who to notify.

‘) LISTING 20-14: Notification example

?m?mimr class ClasshA |
ownload on . B .
Wrox.com String marketNews = null;

void someMethod () {

// The ClassB needs a reference to the locked object
// to be able to notify it

ClassB myB=new ClassB(this);
myB.start () ;
synchronized(this) {

wait();

}

// Some further processing of the MarketData goes here...

}

public void setData (String news) {
marketNews = news;

}

class ClassB extends Thread({
ClassA parent = null;

ClassB(ClassA caller){
parent = caller; // store the reference to the caller

}

run () {
// Get some data, and, when done, notify the parent
parent.setData ("Economy is recovering...");

synchronized (parent) {

parent.notify(); //notification of the caller
}
}

The method notifyall () notifies and wakes up all threads waiting for the lock to be released on
this object. If several threads are waiting, those that have the highest priority will run first. If sev-
eral waiting threads have the same priority, the order of awakening is decided by the JVM. While
notify () can work a tiny bit faster than notifyall (), the latter is able to create objects that are

loosely coupled — meaning that they don’t know about each other.



222 | LESSON 20 INTRODUCTION TO MULTI-THREADING

In Listing 20-14 simple replacement of parent .notify () with notifyall () is not enough because
ClassB also passes the data about the economy back to classa. But if ClassB just needs to notify
you about some important application event, notifyAll () can be a better choice.

TRY IT

Implement and test the example from Listing 20-14 and then rewrite it to reduce the tight object
coupling of the objects. classB shouldn’t know the exact type of the object to notify (Classa)

— this makes classB useful with other objects, too. You’ll need to introduce a new interface, say
Updatable, that declares one method, setData (), to make classB work not only with classa, but
with any class that implements Updatable.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson20 folder in the download.

Step-by-Step

1.
2.

Create ClassA as in the code shown in Listing 20-14, and add the method main () to it.

Create ClassB and test the application to see that Classa receives the notification about
the economy.

Declare the new interface, Updatable.
Modify the constructor of ClassB to accept any Updatable object.

Run and test the new version of the application.

?

Please select Lesson 20 on the DV D with the print book, or watch online at
www . wrox.com/go/fainjava fo view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava

21

Digging Deeper into Concurrent
Execution

Even in such a concise tutorial as this one, Java threads deserve two dedicated lessons. Let’s
continue delving deeper into the world of multi-threaded applications.

JOINING THREADS

In Lesson 20 you learned that a thread can wait for a fixed period or for a notification on
some event. Now let’s consider a scenario in which you need to start multiple threads and con-
tinue program execution only when all threads are complete. The Thread class has a method,
join (), that you can use in this case.

Revisit the TestThreads3 program shown in Listing 20-9. If you run this program the system

console will show the message “The main method of TestThreads3 is finished”; after that will
it show the output of the portfolio and market news threads, which keep running for a while.
If you want to make sure that the main method is waiting until the other two threads are fin-
ished, you can use the method join (), as shown in Listing 21-1.

‘) LISTING 21-1: Joining threads

Availablefor  public class TestThreadJoin {
download on
Wrox.com . . . . )
public static void main(String args[]) {

MarketNews3 mn = new MarketNews3 ("Market News");
mn.start () ;

Portfolio3 p = new Portfolio3 ("Portfolio data");
p.start();

try{

continues



224 | LESSON 21 DIGGING DEEPER INTO CONCURRENT EXECUTION

LISTING 20-1 (continued)

mn.join();
p.join();

}catch (InterruptedException e) {
e.printStackTrace () ;

}

System.out.println( "The main method of TestThreadJoin is finished");

The output of the program from Listing 21-1 is shown next. Both Portfolio3 and MarketNews3 are
joined with the main application thread, which prints its message that the main method is finished
only after the other two are done.

You have 500 shares of IBM
The market is improving 0
You have 501 shares of IBM
The market is improving 1
You have 502 shares of IBM
You have 503 shares of IBM
The market is improving 2
You have 504 shares of IBM
The market is improving 3
You have 505 shares of IBM
You have 506 shares of IBM
The market is improving 4
You have 507 shares of IBM
The market is improving 5
You have 508 shares of IBM
The market is improving 6
You have 509 shares of IBM
The market is improving 7
The market is improving 8
The market is improving 9
The main method of TestThreadJoin is finished

Make a small change in the code and place mn.join () before the start of the portfolio thread, and
youw’ll see different output — the ten messages about the market improving will be printed first, fol-
lowed by the ten messages about your shares of IBM.

GOODIES FROM JAVA.UTIL.CONCURRENT

Java 5 introduced lots of goodies that make thread programming a lot more robust and flexible,

and most importantly that increase the performance of multi-threaded applications. In this section
I’ll just highlight some of the must-know techniques, classes, and interfaces from this package. For
detailed coverage of this subject get the book Java Concurrency in Practice, Brian Goetz et al., 2006
Addison-Wesley, ISBN: 0321349601.



Goodies from java.util.concurrent | 225

ReentrantLock versus Synchronized

The package java.util.concurrent.locks includes the class ReentrantLock, which can be used
as a replacement for the synchronized keyword. Using it may improve the performance of your
code. The idea is to place a lock before the section of your program that may cause a race condi-
tion, and to remove the lock afterward. The next code snippet is a revision of the code shown in
Listing 20-12:

private Lock accountLock = new ReentrantLock();

witdrawCash (int accountID, int amount) {
// Some thread-safe code goes here, i.e. reading from
// a file or a database

accountLock.lock(); // place a lock when this thread enters the code

try{

if (allowTransaction) {

updateBalance (accountID, amount, "Withdraw");

}

else {

System.out.println("Not enough money on the account");

}
}finally {

accountLock.unlock(); // allow other threads to update balance

}
}

Note that the lock has to be removed in the finally section to ensure that unlocking always gets
executed, even if there is an exception thrown from the try block. When the code is unlocked it
can be given to one of the waiting threads. The class ReentrantLock has an overloaded constructor
with a boolean argument — if you specify true while creating the lock, the control will be given to
the longest-waiting thread.

There is another useful class, condition, that can be associated with the lock. This object enables
a locked block of code to suspend its execution until other threads notify the current one that
some condition has become true, e.g., the bank account has enough funds now for you to make a
withdrawal.

If you don’t need the flexibility offered by the ReentrantLock/Condition combo, just use the
synchronized keyword with notify () /notifyall () methods to control thread locking. Or, even
better, see if using one of the concurrent collections (reviewed in the section “A Brief Introduction to
Concurrent Collections”) can take care of all your locking needs so you don’t need to create explicit
locks in your code.

Executor Framework

Creating threads by subclassing Thread or implementing Runnable works, but there are certain
shortcomings to these approaches. First, the method run () cannot return a value. Second, an



226

| LESSON 21 DIGGING DEEPER INTO CONCURRENT EXECUTION

application may spawn so many threads that it can take up all the system resources, and if this
happens the application will stop functioning. In other words, you need to control the number of
threads allowed for each application.

You can overcome the first shortcoming by using the callable interface, and the second
one by using classes from the Executor framework. The Executors class spawns the threads
from Runnable objects, ExecutorService knows how to create callable threads, and
ScheduledExecutorService allows you to schedule threads for future execution.

The utility class Executors has static methods that will enable you to create an appropriate execu-
tor. In particular, its method newFixedThreadPool () creates a pool of threads of a specified size.
For example, Executors.newFixedThreadPool (5) gives you an instance of ExecutorService
that automatically supports a pool of not more than five threads. If all five threads are busy when a
request to create a new thread comes in, that request will wait until one of the running threads com-
pletes. Using thread pools ensures that you can control system resources better.

If you need a thread to return some data on completion, create a class that implements the callable
interface and defines a method cal1 () that plays the same role as run () in Runnable. In this case
you’ll need to create threads differently; the class Thread won’t take a Callable object as an argu-
ment. The class Executors comes to the rescue: it offers a number of static methods that will create
a thread from your callable class and return the result of its execution packaged inside the special
object implementing the interface Future.

The method call () is defined with a parameterized value (remember generics?):

public interface Callable <V>{
V call() throws Exception;

}

Accordingly, if some method needs to create a thread using callable, the code should instantiate
the callable thread with a specific data type in place of <v>. For example, the thread Portfolio
may return an Integer as a result of some processing in its call () method:

public class Portfolio implements Callable<Integer>{
public Integer call() {

// Perform some actions
return someInteger;

}
public class MarketData implements Callable<Integer>{
public Integer call() {

// Perform some actions
return someInteger;



Goodies from java.util.concurrent | 227

One way to create a Future object is by submitting an instance of the callable thread to the
Executor. Call the function get () on the Future instance, and it’ll block on the thread until its
call () method returns the result:

//Threads' results can be stored in the collection of Futures
List<Future<Integer>> threadResults= new ArrayList<Future<Integer>>();

// Submit Callables for execution
threadResults.add (myExecutorService.submit (new Portfolio()));
threadResults.add (myExecutorService.submit (new MarketData()));

for (Future<Integer> future : threadResults) {
future.get () ;

Calling methods get () on several instances of the Future objects is equivalent to joining threads.
The process of spawning threads using Executors, Callable, and Future may go like this:

1.  Declare and instantiate a class that implements the callable interface, and program the
business logic in its method cal1 ().

2. Create an instance of the Future object.
3. Create an instance of an ExecutorService using Executors.newFixedThreadPool ().

4. Call the function submit () on the ExecutorService, providing an instance of the callable
object as an argument.

5.  Call the function get () on the Future object from Step 2. This function will wait until the
thread returns the result (or throws an exception).

6.  Accept the result of the thread execution into a variable of the data type used in Step 1.

7. Call the function shutdown () on the ExecutorService from Step 3.

The code in Listings 21-2 to 21-4 demonstrates the spawning of the familiar threads portfolio and
market news using the classes from the Executor Framework. In this example each callable thread
performs some dummy actions and returns an integer as a result.

\) LISTING 21-2: Portfolio that implements Callable

Availablefor  class PortfolioCallable implements Callable<Integer> {
download on
Wrox.com . .

public Integer call() throws Exception {

for (int 1=0; 1i<5;i++){
Thread.sleep (700); // Sleep for 700 milliseconds
System.out.println( "You have " + (500 + i) +
" shares of IBM");

// Just return some number as a result

continues



228 | LESSON 21 DIGGING DEEPER INTO CONCURRENT EXECUTION

LISTING 21-2 (continued)

return 10;
}
}

‘) LISTING 21-3: MarketNews that implements Callable

Available for
download on

Wrox.com class MarketNewsCallable implements Callable<Integer> {

public Integer call() throws Exception {

for (int 1=0; 1<5;1i++){
Thread.sleep (1000); // sleep for 1 second
System.out.println( "The market is improving " + 1);
}
// Just return some number as a result
return 12345;
}
}

The TestCallableThreads class creates a collection of Future objects — one per thread. Executor
creates a pool of two threads and each thread is submitted for execution. The method get () waits
for the completion of each thread, and the result of each call () method is stored in the collection
results.

‘) LISTING 21-4: Spawning threads with the Executor framework

Availablefor  public class TestCallableThreads {
download on
Wrox.com . ! , , .

public static void main(String[] args)

throws InterruptedException, ExecutionException {
//A placeholder for Future objects
List<Future<Integer>> futures =

new ArrayList<Future<Integer>>();

// A placeholder for results
List<Integer> results = new ArrayList<Integer>();

final ExecutorService service =
Executors.newFixedThreadPool (2); // pool of 2 threads

try {

futures.add(service.submit (new PortfolioCallable()));
futures.add (service.submit (new MarketNewsCallable()));

for (Future<Integer> future : futures) {
results.add (future.get());



Goodies from java.util.concurrent | 229

} finally {
service.shutdown () ;

}

for (Integer res: results){
System.out.println("\nGot the result: " + res);

The output of this program is shown next. But if you change the number of threads in the pool from
two to one, the program will first print all messages from the portfolio thread and only after that
print all messages from the market news.

You have 500 shares of IBM
The market is improving 0
You have 501 shares of IBM
The market is improving 1
You have 502 shares of IBM
You have 503 shares of IBM
The market is improving 2
You have 504 shares of IBM
The market is improving 3
The market is improving 4

Got the result: 10
Got the result: 12345

A Brief Introduction to Concurrent Collections

The package java.util.concurrent offers a number of data structures that simplify programming
with threads. I’ll just briefly name some of them in this section.

Queues

The concept of a queue (First In First Out or FIFO) fits well in any process that involves asynchro-
nous intra-object communications. Instead of object a trying to place a direct lock on object B, the
former (aka the producer) can place some data objects in a queue, and the latter (aka the consumer)
will retrieve (dequeue) them from the queue asynchronously. Most importantly, the queues from
the java.util.concurrent package are thread-safe, which means that you can add an object to a
queue without worrying about race conditions.

If the queue is blocking, the thread will also block while trying to add an object to a full queue or
remove an object from an empty one. The following classes implement the BlockingQueue interface:
LinkedBlockingQueue,ArrayBlockingQueue,SynchronousQueue,PriorityBlockingQueue,and
DelayQueue. To add an object to a queue you can use such methods as add (), put (), and offer ().
To retrieve an object from a queue use poll (), remove (), take (), or peek ().

Unbound queues don’t place limitations on the number of elements. ConcurrentLinkedQueue is an
example of such a queue.



230 | LESSON 21 DIGGING DEEPER INTO CONCURRENT EXECUTION

Java 6 has introduced a Deque interface for inserting and removing elements from both ends of the
queue. The class LinkedBlockingDeque is a concurrent implementation of this interface.

Collections

Using concurrent collections is a recommended way of creating thread-safe data structures. Such
collections include ConcurrentHashMap, ConcurrentSkipListMap, ConcurrentSkipListSet,
CopyOnWriteArrayList, and CopyOnWriteArraySet. Java documentation describes when to
use each of these collections. For example, a CopyonwriteArrayList is preferable to a
synchronized ArrayList when the expected number of reads and traversals is much greater

than the number of updates to a list. These collections were written to minimize the time during
which data is locked.

The utility class java.util.Collections has a number of static methods that create thread-safe col-
lections. Their method names start with the word synchronized. For example, synchronizedList ()
takes a regular List (such as ArrayList) as an argument and makes it thread-safe. You can read more
about Java collections at http://java.sun.com/javase/6/docs/technotes/guides/collections/
index.html.

Finding a ready-to-use synchronized collection is better than writing synchronized blocks on
your own — the chances are slim that you’ll write more efficient synchronization code than
already exists in Java.

SWINGWORKER THREAD

Any Java Swing application spawns a number of threads. At the very minimum it runs the main
application thread, the second one captures system events, and the third communicates with the
GUIL. The application itself may spawn additional threads. But if more than one thread will need to
update the UI components, the changes may not be rendered properly, because Swing components
were not made thread-safe to minimize the number of locks that hurt performance.

To avoid this problem, UI updates shouldn’t be made directly, but rather submitted to an event
dispatch thread. Swing uses a single-threaded model, which means that all UI updates are
rendered via a single thread.

Suppose your GUI application is written with Java Swing, and a click on JButton initiates some
server-side data request that takes about 10 seconds to complete. You should never execute long
requests in the event dispatch thread. If you do, then the UI will become frozen, as no updates can
be made until the long running process releases the lock on the thread. Therefore, you need to start
a separate thread for such a long process, and when it finishes, the program has to modify the GUI
via the event dispatch thread.

For example, if the result of a button click has to update a JTextField, you may create a new
thread in the button’s actionPerformed () method and, from within the run () method of this
thread, update the text field. This will work...most of the time, if there are no conflicts with other
threads running in your application.

All Ul-related Swing events (such as button clicks and window repaints) are placed in a special
queue, and the object java.awt . EventQueue retrieves them from this queue. You should direct
modification of the UI (the JTextField in our example) to this queue.


http://java.sun.com/javase/6/docs/technotes/guides/collections/index.html
http://java.sun.com/javase/6/docs/technotes/guides/collections/index.html

SwingWorker Thread | 231

In the older version of Java, to ensure that all application-specific data would modify the GUI via
this queue, developers used the method invokeLater () to ensure that Ul changes were placed in the
EventQueue:

SwingUtilities.invokeLater ()
new Runnable() {
public void run() {
// Do some processing here
//... and then update the UI
myTextField.setText (someData) ;
}
}
)

While this technique still works, it clogs the code with anonymous Runnable classes. The class
javax.swing.SwingWorker gives you a cleaner (though not necessarily simpler) means of dealing
with the event dispatch thread. This thread class implements Runnable and Future, and so can be
submitted to the Executor for execution and return a result.

Let’s say a Swing application needs to make a request to the server to get the market news informa-
tion, which may take a couple of seconds. So that the Ul won’t be frozen for these seconds, this
request has to be performed in a background thread, and when the result is ready the UI has to be
updated. To arrange this, create a subclass of swingWorker and override its doInBackground ()
method, then instantiate it and call its execute () method, as in Listing 21-5.

\) LISTING 21-5: Basic use of SwingWorker

Tﬁﬁmﬁmr class MarketNewsWorker extends SwingWorker <List<String>, String>{
ownload on
Wrox.com . . ) .

@QOverride public List<String> doInBackground () {

// Make a request to the server and return a result,
// i.e. a list of Strings
return myListOfTextData;

// method method overides go here

class TestMarketNews {

public static void main(String[] args) {
new MarketNewsWorker () .execute() ;

}

This code gives you a high-level picture, but there is more to executing the thread with swingWorker.
First, you probably noticed the unknown syntax element @override, which is Java annotation stat-
ing that the method doTnBackground () is being overridden. Adding the @override annotation is not
required here; it’s just an example of an annotation. You’ll learn about annotations in Lesson 24.



232 | LESSON 21 DIGGING DEEPER INTO CONCURRENT EXECUTION

Second, the class MarketNewsWorker uses generics and has two parameters, <List<String>
and string>. The reason for this is that the overridden method doTnBackground () might call
the swingWorker’s process () method, and will call its done () method on completion — this is
where the Ul is being updated. Two parameters indicate what types of data will be returned by
doTnBackground () and given to process () respectively.

Why might you consider calling the method process () during your thread execution? You might do
it to support some kind of progress meter or other means of reporting the progress of long-running
processes. If, for example, a long-running thread is reading a large file or performing some lengthy
calculations, you might want to calculate the percentage of completion and report it to the calling
Swing application.

You are not allowed to call the process () method directly, but have to call a method called
publish (), which will internally call process (). Override process () to add some messages to
the log file or update the progress meter. The code to display the result of the calculations on the
Ul should be written in the method done ().

Listing 21-6 shows you a typical way to program with swingworker. I left out the details on pur-
pose so you’d have something to do for today’s homework.

‘) LISTING 21-6: A typical way to use SwingWorker

QVﬂﬁhﬁim class MarketNewsWorker extends SwingWorker <List<String>, String>{
ownload on
Wrox.com ) . . .

@Override public List<String> doInBackground() {

// Make a request to the server and return a result,
// i.e. a list of Strings
for (String news: someNewsCollection) {

//process each news and report the progress

publish("Processed the news " + news); //this calls process|()

}
return myListOfTextData;

@Override protected void process(String progressMessage) {
// display the progress information here

}

@Override protected void done () {
// modify UI components here by calling get()
// Future's get() gives you the result of
// the thread execution

class TestMarketNews {

public static void main(String[] args) {
new MarketNewsWorker () .execute() ;

}



Trylt | 233

You just completed a rather advanced lesson of this book. The subject definitely requires more research
and practice. Some good content to read next is the lesson on concurrency in Oracle’s Java tutorial,
which you’ll find here: http://download-11nw.oracle.com/javase/tutorial /essential/
concurrency/. As always, trying it hands-on will deepen your understanding.

TRY IT

Create a Swing application with the UI that consists of two JTextArea controls and one JButton
with the label “Get the News.” Prepare two text files with some text information (the news), and
write the code that reads them to the left and right text areas respectively. File reading has to be
implemented concurrently using two SwingWorker threads.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson21 folder in the download.

Step-by-Step
1.  Create a new Eclipse project called Lesson21.

2. Create a class called NewsReader as a subclass of SwingWorker. This class should have a
constructor that takes one argument of type File.

3. Prepare two text files with some news in each.
4. Create a Swing application with two text areas and a button.

5.  On the click of the button instantiate two NewsReader threads. Each thread should get an
instance of the File object pointing to the corresponding news file.

6. Override the NewsReader’s methods doTnBackground () and done () to read the files and
populate the Swing view.

7.  Test this program.

8.  This step is optional. Override the method process () and make sure that it updates the view
with progress information about the reading process. The progress should be displayed as a
percentage: The percentage formula is progressToDisplay=readBytes/FileSize*100.

www.wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 21 on the DV D with the print book, or watch online at



http://download-llnw.oracle.com/javase/tutorial/essential/concurrency/
http://www.wrox.com
http://www.wrox.com/go/fainjava




22

Working with Databases
Using JDBC

Business applications usually store data in the databases. In most of the enterprise applica-
tions, Relational Database Management Systems (RDBMSes) are used as data storage. They
store the data records in tables. Each record (such as that of an employee) is represented by a
table row, which consists of one or more columns or record fields (e.g., name, address, hire
date). RDBMSes understand the SQL language.

The most popular RDBMSes are Oracle, DB2, Sybase, Microsoft SQL Server, and MySQL
Server. All samples from this lesson will use JavaDB, which is included with your JDK
installation.

Java includes two packages that contain classes required for work with DBMSes: java.sql
and javax.sql. The former contains commonly used classes such as Connection, Statement,
and Resultset. The latter is used for supporting database connectivity on the server side, con-
taining classes such as DataSource, and RowsSet.

The JDBC API is not DBMS-specific — if you write a program that uses JDBC classes to
retrieve/update data in Oracle, you’ll be using the same classes to work with MySQL Server
or DB2. You just need the JDBC drivers from the corresponding DBMS vendor — the drivers
hide their database specifics behind the same public JDBC API.

JDBC drivers either pass SQL statements from Java to a DBMS for execution or simply execute
a program stored inside a DBMS (called a stored procedure). If some data has been retrieved
as the result of these actions, your Java program will handle it by making appropriate calls to
the JDBC API. Over the past 15 years the JDBC specification has been evolving and, at the
time of this writing, most drivers comply with JDBC version 4.0.

In this lesson all communications with the DBMS are made by supplying SQL statements to
the JDBC API. There is an alternative way of working with data, by using one of the object-
relational mapping (ORM) frameworks. In Lesson 36 you’ll get familiar with a popular ORM
framework called Hibernate.



236 | LESSON22 WORKING WITH DATABASES USING JDBC

JDBC DRIVER TYPES

A JDBC driver plays the role of the middleman between a Java program and a DBMS. Drivers are avail-
able from database vendors, from Oracle, and from third-party vendors of Java application servers.

There are four general types of JDBC drivers.

A Type 1 driver is a JDBC-ODBC bridge that enables Java programs to work with the database
using ODBC drivers from Microsoft. The drawbacks of ODBC drivers are that they are slower than
the others, must be installed and configured on each user’s machine, and work only on Windows
machines. The Type 1 JDBC drivers are rarely used.

A Type 2 driver consists of Java classes that work in conjunction with the non-Java native drivers
provided by the DBMS vendor. These drivers work much faster than Type 1, but also require instal-
lation and configuration on the machine on which Java programs run.

A Type 3 driver is called a middleware driver and can be provided by vendors of application servers.
It consists of two parts: the client portion performs a DBMS-independent SQL call, which is then
translated to a specific DBMS protocol by the server portion of the driver.

A Type 4 driver is a pure Java driver, which usually comes as a . jar file and performs direct calls to
the database server. It does not need any configuration on the client’s machine, other than including
the name of the main driver’s class in your Java code. That’s why it’s also known as the thin driver.
For example, Java applets can be packaged with this type of driver, which can be automatically
downloaded to the user’s machine along with the applets themselves.

For simplicity I’ll be using JDBC drivers of Type 4 in this lesson, but many production systems can
deploy Type 3 drivers to provide better performance.

CREATING A DATABASE WITH DERBY

In this lesson I’ll be using an open-source DBMS called JavaDB (also known as Derby), which is
packaged with Java 6. It’s a small DBMS that you wouldn’t use for serious production systems,

but it’s great for learning JDBC or to use for many small systems. If you’ve installed Java SDK as
instructed in Lesson 1 (see Figure 1-2), you already have JavaDB installed in the folder c:\Program
Files\Sun\JavaDB. Modify your system variable PATH so it starts with the following code:

c:\Program Files\Sun\JavaDB\bin;

To make sure that you change PAaTH properly, open a command window and enter sysinfo. This
command should print information about your Java environment, and you should find a reference to
Derby and JDBC 4.0, as shown in Figure 22-1.

If you don’t have JavaDB installed, download and install it from http://db.apache.org/derby.
Derby is well documented and if you haven’t had a chance to work with relational DBMSes, down-
load and read the “Getting Started with Derby” manual.

Derby has an interactive command-line utility called ij that you can use to create databases and
tables and populate them with data, among other actions. I’ll show you how to create a sample


http://db.apache.org/derby

Creating a Database with Derby | 237

database and a table to store data about employees. First open a command window and issue the
command startNetworkServer. Figure 22-2 shows the message that Derby has started and is ready
to accept connections on port 1527.

Salect C:\WINDOWS\systom32\cmd.axa
ij> Terminate batch Jjob T ¥

tingssAdmninistra
ava Information
-8_19

a Uend01 Sun_Hicrosystems Inc.
hnne [§ \Pl\ngvan Fil Jikl A _A_19%jre
classpath: Irogram Piles“Javasjdkl.6.8_12%1ibstools.ja
llb/derhu 3 Frogram Fil un~JavaDBxhin
“SunsJavall ins. . #libsderbyclient. jar;c - \Progran Files*
‘1ibsderhytools. jar
ndonws X

y “sfidim sLrator
=\Admin
3 Specil
pecification.version:
Derby Information —————
: Java SE 6 - JDBC '1 5]
SalavalBs o y-jawrl Iﬁ 5.3.A - (RA291?)
JauaIJE" l:lh‘ i8 B - <802917>
g : JavaDBs1ib yn a (BO2317)
[C:*Progran Files‘Sun‘JavaDB.lib‘derbyclient.jar] 16.5.3.8 — <(863917)

FIGURE 22-1

Micernenft Windonws XP [Uepzinon 5.1 _2RHHI
KC> Copyright 1985 2881 Microsoft Corp.

s\Documents and Settings“fAdminictratorded c:h

eruer
:47.859 GHT : Secvurily manayer stalled wusing the Basic server

508.982 CHMT @ Derby Hetwork Bcrver - 18.5.3.8 — <(882917>
started and dy to accept ons on port 1527

FIGURE 22-2

Open another command window and start ij. First, connect to the database Lesson22 by issuing the
following command:

connect 'jdbc:derby://localhost:1527/Lesson22;create=true’

This command will try to connect to the database Lesson22, and will create it if no such database
is found. The next command will create a database table, Employee, to store records that consist of
three fields: EMPNO, ENAME, and J0B_TTITLE. The first field will be stored as an integer, and the other
two as simple text (varchars) allowing 50 and 150 characters respectively.

CREATE TABLE Employee (
EMPNO int NOT NULL,
ENAME varchar (50) NOT NULL,
JOB_TITLE varchar (150) NOT NULL
)

Finally, to populate the table with some data, issue the INSERT command in ij:

INSERT INTO Employee values (7369, 'John Smith', 'Clerk'), (7499,
'Joe Allen', 'Salesman'), (7521, 'Mary Lou', 'Director');



238 | LESSON22 WORKING WITH DATABASES USING JDBC

Figure 22-3 is a snapshot of the command window after the database Lesson22 and the table
Employee have been created, and the three records have been inserted there.

= (=]

18.5

Lt ' jdbciderby: -/ luca % 'l 2iereate=Lrue’ ;

TARLE Fmployer (FHP i AME varchar (5A NOT NILL..JOB_TT
+ (158> HOT MHULL

*John Emith', ‘Clerk’>, (7499,'Joe Allen’,

FIGURE 22-3

If you want to ensure that the records were successfully created in the database, issue the SELECT
SQL statement to retrieve the data:

Select * from Employee;

You’ll see the output of the above SQL statement in the next section. If you are not familiar with the
syntax of SQL, refer to the tutorial at www.w3schools.com/sqgl/default.asp.

SAMPLE JDBC PROGRAM

In this section I’ll show you the steps that you can perform to retrieve the data in any Java program
that works with a relational database using JDBC. A sample program will implement all of these
steps to display the list of employees from the database table Employee.

1. Load the JDBC driver using the method forName () of the Java class class. You have to find
out the name of the class to load from the JDBC driver’s documentation. If you work with
Oracle DBMSes, you can load a Type 4 JDBC driver with the following command:

Class.forName ("oracle.jdbc.driver.OracleDriver") ;

In the case of JavaDB, which was installed and registered with your JDK, you can skip
this step.

2. Obtain the database connection to the database Lesson22 by calling

DriverManager.getConnection (url, user, password);

In the case of Derby DB you don’t have to supply the user and the password; simply provide
the URL of your database, for example

DriverManager.getConnection ("jdbc:derby:Lesson22") ;


http://www.w3schools.com/sql/default.asp

Sample JDBC Program | 239

3. Create an instance of the Java class Statement:

Connection.createStatement () ;

As an alternative, you can create PreparedStatement or CallableStatement, explained
later in this lesson in “The PreparedStatement Class” and “The CallableStatement Class”
sections later in this lesson.

4. For SQL select execute the following command:

Statement.executeQuery("Select ...");

For SQL queries, which produce more than one result, use the method execute ().

For Insert, Update, and Delete SQL statements use the following:

Statement .updateQuery("Insert ...");

5.  Write a loop to process the database result set, if any:

while (ResultSet.next()) {...}
6. Free system resources by closing the Resultset, Statement, and Connection objects.

All these steps are implemented in the class EmployeeList, shown in Listing 22-1, which prints the
records from the table Employee. Even though you don’t need to explicitly load the driver for Derby
with Class. forName (), the location of the driver class has to be known to your program, otherwise
you’ll get a “No suitable driver” error. Either add derbyclient.jar to the CLASSPATH system vari-
able, or just add it as an external .jar to your Eclipse project (see the Java Build Panel, available
from the Eclipse project Properties menu).

‘) LISTING 22-1: The EmployeelList program

Available for  package com.practicaljava.lesson22;
download on
Wrox.com

import java.sqgl.*;
class EmployeeList {
public static void main(String argvI[]) {

Connection conn=null;
Statement stmt=null;
ResultSet rs=null;

try {

// Load the JDBC driver - Class
// This can be skipped for Derby, but derbyclient.jar

continues



240 | LESSON 22 WORKING WITH DATABASES USING JDBC

LISTING 22-1 (continued)
//has to be in the CLASSPATH
// Class.forName ("org.apache.derby.jdbc.ClientDriver") ;
conn = DriverManager.getConnection ("jdbc:derby://localhost:1527/Lesson22");
// Create an SQL query
String sglQuery = "SELECT * from Employee";

// Create an instance of the Statement object
stmt = conn.createStatement () ;

// Execute SQL and get obtain the ResultSet object
rs = stmt.executeQuery (sqglQuery) ;

// Process the result set - print Employees
while (rs.next()) {
int empNo = rs.getInt ("EMPNO");
String eName = rs.getString("ENAME") ;
String job = rs.getString("JOB_TITLE") ;

System.out.println(""+ empNo + ", " + eName + ", " + job );
}
} catch( SQLException se ) {
System.out.println ("SQLError: " + se.getMessage ()
+ " code: " + se.getErrorCode());

} catch( Exception e ) {

System.out.println(e.getMessage()) ;
e.printStackTrace () ;
} finally{

// clean up the system resources
try{
rs.close();
stmt.close();
conn.close() ;
} catch(Exception e){
e.printStackTrace() ;



Processing Result Sets | 241

The output of the program EmployeeList should look like this:

7369, John Smith, CLERK
7499, Joe Allen, SALESMAN
7521, Mary Lou, Director

When you execute any SQL statements, always include processing of errors that may be returned by
the DBMS. Catching the sQLException is the right way to get the error message. Note that the code
in Listing 22-1 calls the method getErrorcode () to extract the database-specific error code from
theSQLException(ﬂﬁeCt

PROCESSING RESULT SETS

Let’s take a closer look at the code in Listing 22-1. After rs = stmt.executeQuery (sqlQuery),
the cursor rs points at the very first record (row) of the result set in memory. Each row contains as
many fields (columns) as were specified in the SQL select statement. Each of the values is extracted
by an appropriate method based on the data type of the field. The names of these methods are self-
explanatory: rs.getString (), rs.getInt (), and so on. If you know the name of a column from
the result, use it as a method argument:

int empNo = rs.getInt ("EMPNO");
String eName = rs.getString("ENAME") ;

JDBC drivers are smart enough to convert the data from the database types to the corresponding
Java types: For example, Derby’s varchar will become Java’s string.

You could have gotten the values of each field by specifying the relative position of the column from
the result set:

int empNo = rs.getInt(l);
String eName = rs.getString(2);

Besides having names, columns in the result set are numbered starting with 1. In some cases num-
bers are your only choice; for example, the following SQL query does not list column names to
select (the asterisk means “all”):

stmt.executeQuery("Select count(*) from EMP");

The class EmployeeList just prints the retrieved data in a loop. You can also place the result set in
a Java collection object for further processing. The ResultSet object holds the database connection
and is not serializable. That’s why common practice for programming server-side operations with
DBMSes is to create a class representing a row from the result set and populate, say, an ArrayList
or other Java collection with its instances.

Listing 22-2 shows an example of such a class, which can represent one employee record. Classes
that hold only the value of some data are often called value objects. Because in distributed applica-
tions such objects may need to be transferred between different computers, they are also known as
Data Transfer Objects (DTOs).



242 | LESSON 22 WORKING WITH DATABASES USING JDBC

‘) LISTING 22-2: The EmployeeDTO

Available for class EmployeeDTO({
download on

Wrox.com

//private properties
private int empNo;
private String eName;
private String jobTitle;

//setters

public void setEmpNo (int val) {empNo=val;}

public void setEName (String val) {eName=val;}
public void setJobTitle(String val) {jobTitle=val;}

// getters

public int getEmpNo () {return empNo;}
public String getEName () {return eName;}
public String getJob() {return jobTitle;}

EmployeeDTO declares private variables to store the data but access to this data is performed via
public setters and getters, the methods that allow external code to set and get the appropriate
values. This technique can be useful when some application-specific logic has to be applied at the
moment when some code needs to get or modify the properties of the class EmployeeDTO.

For example, you can place some authorization code inside the setter to ensure that the external
object has enough permissions to change the property jobTit1le. If the business logic of obtaining
such authorization changes in the future, you need to modify only the code inside the setter, but the
external code will remain unchanged.

The next code snippet shows how the class EmployeeList can prepare a collection of EmployeeDTO
objects while processing the result set retrieved by the SQL select statement.

class EmployeeList {

// Create an object for collection of employees
ArrayList<EmployeeDTO> employees = new ArrayList<EmployeeDTO> () ;

// Process ResultSet and populate the collection

while (rs.next()) {
EmployeeDTO currentEmp = new EmployeeDTO() ;
currentEmp.setEmpNo (rs.getInt ("EMPNO")) ;
currentEmp.setEName (rs.getString ("ENAME") ) ;
currentEmp.setJob(rs.getString ("JOB_TITLE")) ;

employees.add (currEmp) ;

}



The PreparedStatement Class | 243

If this code is deployed on the server’s JVM and you need to send the data to another computer
that runs, say, a Swing client, you can consider applying Java serialization here for sending a
collection of employees to the front. But make sure that the class EmployeeDpTo implements the
Serializable interface.

THE PREPAREDSTATEMENT CLASS

Listing 22-1 uses the class Statement to create an object capable of executing SQL. But this is
not the only way to supply SQL to the JDBC API. The class PreparedStatement is a subclass of
Statement, but it pre-compiles the SQL statement before executing it.

With PreparedStatement you can create SQL with parameters that are dynamically passed by the
program. Suppose you need to execute the query "SELECT * from EMP WHERE empno=..." multi-
ple times, providing the empno values from the array empNumbers []. If you use the class statement,
the variable sqlQuery will have to be pre-compiled on each iteration of the loop:
for (int i=0;i<empNumbers.length; i++) {
sqlQuery="SELECT * from Employee WHERE empno=" + employees[i];
stmt.executeQuery (sglQuery) ;

The class Preparedstatement offers a more efficient solution:

PreparedStatement stmt=conn.prepareStatement (
" SELECT * from Employee WHERE empno=?");

for (int i=0;i<empNumbers.length; i++)

// pass the array's value that substitutes the question mark
stmt.setInt (1, employees[i];)
stmt.executeQuery (sqglQuery) ;

In this case the SQL statement is compiled only once and parameters are provided by the appropri-
ate setxxx () method depending on the data type. The SQL statement may have several parameters
(question marks), and the first argument of the setter enables you to specify each parameter’s num-
ber. For example:

PreparedStatement stmt=conn.prepareStatement (
"SELECT * from Employee WHERE empno=? and ename=?");

for (int i=0;i<empNumbers.length; i++) {
stmt.setInt (1, empNumbers[i];)
stmt.setString (2, empNames[i];)
stmt.executeQuery (sqlQuery) ;

If you need to pass a NULL value as a parameter, use the method setNul1 ().



244 | LESSON 22 WORKING WITH DATABASES USING JDBC

THE CALLABLESTATEMENT CLASS

This class extends Preparedstatement and is used for executing stored procedures from Java. Let’s
say there is a stored procedure entitled changeEmpTitle that takes two parameters: empno and
title. Here’s the code to execute this stored procedure:

CallableStatement stmt = conn.prepareCall("{call changeEmpTitle(?,?)}");

stmt.setInt(1,7566);
stmt.setString (2, "Salesman") ;
stmt .executeUpdate() ;

If a stored procedure returns some values using output parameters, each of the ouT data types has to be
registered before the statement is executed. The next code snippet shows you an example of executing a
stored procedure that has two parameters: The first is an input parameter, and the second is an output
parameter by which the stored procedure can return the result of its execution to the Java program:

CallableStatement stmt = conn.prepareCall (

("{call getEmpTitle(?,?) }");
stmt.setInt (1, 7566);
stmt.registerOutParameter (2, java.sqgl.Types.VARCHAR) ;
stmt .executeQuery () ;
String title=stmt.getString(2);

THE RESULTSETMETADATA CLASS

JDBC enables you to process result sets when the number of returned values is unknown. Imagine
that you need to write a program that can accept any SQL select statement, execute it, and display
the retrieved data. With the class ResultSetMetaData you can dynamically find out how many col-
umns there are in the result set, as well as their names and data types. The following code fragment
gets the number of the database table columns in the result set and for each of them identifies and
prints the column name and type:

String sqglQuery = "select * from Employee";
ResultSet rs = stmt.executeQuery (query) ;

ResultSetMetaData rsMeta = rs.getMetaDatal() ;
int colCount = rsMeta.getColumnCount () ;

for (int 1 = 1; 1 <= colCount; i++) {
System.out.println(
" Column name: " + rsMeta.getColumnName (i) +
" Column type: " + rsMeta.getColumnTypeName (i));

This simple but powerful technique is used internally by ORM frameworks (see Lesson 36) that
can “magically” generate database models and automatically generate Java classes representing
database entities.



The ResultSetMetaData Class | 245

Listing 22-3 shows a Java program called ShowAnyData that prints a result set based on any SQL
Select statement passed from the command line. For example, it can be started as follows:

java ShowAnyData "Select * from Employee"

‘) LISTING 22-3: Using ResultSetMetaData

Available for import java.sql.*;

dﬂ‘ﬂg;"zg,g" class ShowAnyData {

public static void main(String argsl[]) {
Connection conn=null;
Statement stmt=null;
ResultSet rs=null;

if (args.length==0) {

System.out.println("Usage: java ShowAnyData SQLSelectStatement");
System.out.println("For example: java ShowAnyData \"Select * from Employee\"");
System.exit (1) ;

try {
// Class.forName ("org.apache.derby.jdbc.ClientDriver") ;

conn = DriverManager.getConnection (
"jdbc:derby://localhost:1527/Lesson22") ;

stmt = conn.createStatement () ;

// Execute SQL query passed from command line
rs = stmt.executeQuery(args[0]);

// Find out the number of columns, their names and display the data
ResultSetMetaData rsMeta = rs.getMetaDatal() ;
int colCount = rsMeta.getColumnCount () ;

for (int i = 1; i <= colCount; i++) {

System.out.print (rsMeta.getColumnName (i) + " ");

System.out.println();

while (rs.next()){

for (int 1 = 1; 1 <= colCount; i++) {
System.out.print (rs.getString (i) + " ");

}

System.out.print ("\n"); // new line character

} catch( SQLException se ) {
System.out.println ("SQLError: " + se.getMessage ()
+ " code: " + se.getErrorCode ());
} catch( Exception e ) {
System.out.println(e.getMessage()) ;

continues



246 | LESSON22 WORKING WITH DATABASES USING JDBC

LISTING 22-3 (continued)

e.printStackTrace() ;
} finally{

// clean up the system resources
try{
rs.close();
stmt.close();
conn.close();
} catch(Exception e){
e.printStackTrace() ;
}

The output of the ShowAnyData program will be the same as that of EmployeeList shown in
Listing 22-1. But this program can execute any SQL statement as long as you are specifying
valid database objects. Note that the code in ShowAnyData first ensures that you have passed
the command-line argument. If you run this program from a command line, don’t forget to
include the SQL statement in double quotes. In Eclipse you can specify a command-line
argument by selecting the Run Configuration panel in the Arguments tab.

SCROLLABLE RESULT SETS AND ROWSET

In all the preceding examples the code traversed the result set using the method next (), which moves
only the cursor forward. Another option is to create a scrollable result set so the cursor can be moved
back and forth if need be. There is a two-argument version of the method createstatement (). The
first argument specifies the type of scrolling (TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, Or
TYPE_SCROLL_SENSITIVE) and the second makes the result set updateable or read-only (cCoNCUR_
READ_ONLY or CONCUR_UPDATABLE). For example,

Statement stmt = con.createStatement (
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY) ;
ResultSet rs = stmt.executeQuery ("SELECT * from Employee");

The TYPE_FORWARD_ONLY parameter allows only forward movement of the cursor. The difference
between TYPE_SCROLI,_INSENSITIVE and TYPE_SCROLL_SENSITIVE is in whether scrolling reflects
changes that have been made to the result set. The next example sets the cursor at the end of the
result set and moves the cursor backward:

rs.afterLast();
while (rs.previous()) {

int empNo = rs.getInt ("EMPNO") ;

String eName = rs.getString("ENAME") ;

String job = rs.getString("JOB");

System.out.println(""+ empNo + ", " + eName + ", " + job_title);
}



Transactional Updates | 247

You can also move the cursor to a specific row by using the following self-explanatory methods:

rs.absolute(25); // moves the cursor to the 25th row
rs.relative(-4); // moves the cursor to the 21st row
rs.first();
rs.last();

rs.beforeFirst();

If the result set is updatable (CONCUR_UPDATABLE) you can modify the underlying database table
while scrolling. For example, the following statements will update the job title of the employee based
on the current cursor’s position:

rs.updateString ("JOB_TITLE", "Manager") ;
rs.updateRow () ;

Scrollable result sets enable you to traverse the result set in both directions, but they have a draw-
back: They hold the database connection, which may be required by another thread or program.
The package javax.sql includes the interface RowSet, which is a subclass of ResultSet. Rowset
gets the data from the database, then disconnects, but still allows Java to work with the data.

The package javax.sql.rowset has several concrete classes that implement Rowset, such as
CachedRowSet, FilteredRowSet, and WebRowSet. The latter can turn RowSet into an XML stream
to be sent to another tier in the distributed application.

TRANSACTIONAL UPDATES

Sometimes several database modifications have to be processed as one transaction, and if one of

the updates fails, the whole transaction has to be rolled back. These database operations have to be
explicitly committed (finalized) in case of success. If you set the auto-commit parameter on the data-
base connection to false, the database transaction will not be committed until the code explicitly
calls the method commit (), as in the following example:

try{
conn.setAutoCommit (false) ;

Statement stmt = con.createStatement();

stmt.addBatch("insert into Orders " +

"values (123, 'Buy', 'IBM',200)");
stmt.addBatch("insert into OrderDetail " +

"values ('JSmith', 'Brokerl31', '05/20/02')");
stmt.executeBatch() ;

conn.commit () ; // Transaction succeded

}catch (SQLException e) {
conn.rollback(); // Transaction failed
e.printStackTrace() ;

}



248 | LESSON 22 WORKING WITH DATABASES USING JDBC

In the preceding code snippet two Insert statements have to be executed as one transaction, and
if any of them fails, an exception will be thrown and the method rol1back () will undo all the
changes, including those that succeeded.

CONNECTION POOLS AND DATASOURCES

Up until now you’ve been running all sample Java programs on your own computer. But imagine a dis-
tributed application in which multiple clients make requests to the same server, which has to process
their SQL queries. Because obtaining a connection to the database is a slow process, it would be very
inefficient to start every SQL request by obtaining a database connection and disconnecting after the
request is complete. Such applications should reuse the same opened connection for multiple requests.

The package javax.sql includes the interface Datasource, which is an alternative to
DriverManager. Vendors of JDBC drivers for servers implement this interface, and a DataSource
is typically preconfigured for a certain number of connections (the connection pool). It is published
in a directory using the JNDI interface. In such a setup, all clients’ requests will get their database
connections from this DataSource object, eliminating the need to open and close a new connection
for each request. I’ll provide an example of working with Datasource objects in Lesson 31 after
explaining how JNDI works.

TRY IT

In this assignment you’ll modify the class Portfolio from Lesson 22, which was just printing some
hard-coded statements. Now you’ll create and populate the database table Portfolio and then read
and display the data from there.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson22 folder in the download.

Hint

Obtaining a database connection is a slow operation, and doing it from inside the method run ()
every time you start a new thread is not the best solution. Consider creating a database connection
up front and passing it to the thread before starting it.


http://www.wrox.com

Trylt | 249

Step-by-Step
1. In the database for Lesson 22, create the table Portfolio using the following SQL statement:

create table Portfolio(

id NUMBER NOT NULL,

symbol VARCHAR2 (10) NOT NULL,

quantity VARCHAR2 (10) NOT NULL,

price NUMBER NOT NULL, PRIMARY KEY (id)
)

2. Populate the table Portfolio with three records, for stocks traded under the symbols IBM,
AMZN, and AAPL respectively:
insert into Portfolio wvalues (1,'IBM',500,105.50),
(2, 'AMZN',1000,15.25), (3, 'AAPL',2000,272.50) ;
3. Create a new Eclipse project called Lesson22.

4. Create a class called Portfolio that is similar to the one shown in Listing 20-5, but instead
of just printing “You have 500 shares of IBM,” have it connect to the database, select all the
data from the table Portfolio, and print the symbol, quantity, and total value. (Calculate
total value by multiplying price by quantity.)

5. Create a testing class called showMyPortfolio that instantiates and starts the thread

Portfolio.

6.  Test this program.

Please select Lesson 22 on the DV D with the print book, or watch online at
www . wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava




23

Swing with JTable

In this lesson you’ll learn how to work with a Swing control that is advanced and popular for
enterprise applications: JTable. This Ul component enables you to present data in a grid with
rows and columns. After learning the basics of working with JTable, in the Try It section you’ll
apply these new skills to display the portfolio data that, as of Lesson 22, is stored in the database.

In other words, you’ll build a client-server application, where the Swing-based GUI is a client
and the RDBMS is a server. Such architecture was pretty popular in the mid-nineties. Rich
clients were developed in Visual Basic, PowerBuilder, Delphi, Java, or C++, and they connected
directly to database servers such as Oracle, DB2, Sybase, Microsoft SQL Server, and Informix.

In the late nineties, thin clients (plain-looking HTML-based web pages with almost no code
implementing business logic) became the trend. These days applications with rich Uls are com-
ing back, but typically you’ll be using an application server as a middleman between the client
and the data storage. I’ll describe such middlemen starting in Lesson 26, but your UI skills
would be incomplete without your knowing how to program data grids.

JTABLE AND THE MVC PARADIGM

The Swing class gTable is a powerful Ul component created for displaying tabular data like a
spreadsheet. The data is represented as rows and columns; that’s why the JTable component
is often used to display data from relational databases, which store data similarly. JTable was
designed according to the Model-View-Controller (MVC) design pattern, according to which
components responsible for presentation (or the view) are separated from components that
store data (or the model) for that presentation. In general, design patterns suggest language-
independent solutions for common programming tasks.

JTable is responsible for the visible portion of the grid (the V part of MVC), but the data has to
be stored in a different Java class that implements the TableModel interface (the M part). Any
other UI component can play the role of the controller (the C part) and initiate some actions that
will move the data from model to view or vice versa. For example, a click on the JButton can
initiate the population of the table model from the database and display the data in JTable.



252 | LESSON 23 SWING WITH JTABLE

THE MODEL

Swing includes the classes DefaultTableModel and AbstractTableModel, which implement the
TableModel interface and have methods to notify a JTable when the data is changing.

A programmer usually creates a model as a subclass of AbstractTableModel, and this class has to
contain the data in some collection, for example arrayList. When JTable needs to be populated, it
requests the data from a class that implements TableModel, invoking such callback methods as get-
ColumnCount () and getvalueat (). When a Swing program creates an instance of JTable it has to
assign to it a corresponding table model class. Listing 23-1 shows how the class MyTableModel (cre-
ated by you) is given to the constructor of JTable.

Typically, the UI class that creates JTable defines one or more listeners that are notified of any changes
in the table’s data. The incomplete class MyFrame in Listing 23-1 implements the TableModelListener
interface that defines just one method - tableChanged (). This method should contain the code per-
forming data modifications, for example code to save the data in the database.

J LISTING 23-1: A window with JTable

Available for  package com.practicaljava.lesson23;
download on
Wrox.com

import javax.swing.*;

import javax.swing.table.AbstractTableModel;
import javax.swing.event.TableModelEvent;
import javax.swing.event.TableModelListener;

public class MyFrame extends JFrame implements TableModelListener{

private MyTableModel myTableModel;
private JTable myTable;

MyFrame (String winTitle) {
super (winTitle) ;

myTableModel = new MyTableModel() ;
myTable = new JTable (myTableModel );

//Add the JTable to frame and enable scrolling
add (new JScrollPane( myTable)) ;

// Register an event listener
myTableModel .addTableModelListener (this) ;
}

public void tableChanged (TableModelEvent e) {
// Code to process data changes goes here

}

public static void main(String argsl[]) {



The Model | 253

MyFrame myFrame = new MyFrame( "My Test Window" );

myFrame.pack() ;
myFrame.setVisible( true );

class MyTableModel extends AbstractTableModel {
// The data for JTable should be here
}

In very simple cases you can create a JTable without declaring a table model class (3Table has a no-
argument constructor), but Java will internally use its DefaultTableModel class anyway. My sample
class MyFrame, though, will use the data model that’s a subclass of the AbstractTableModel.

Note that the class MyTableModel is an inner class declared inside the class MyFrame. Having a
model as an inner class is not a must, but if the data model will be used with only one specific
JTable, its model might as well be declared inside the same class.

The code in Listing 23-1 is not complete; it doesn’t include any data yet, and the table model must
include the mandatory callbacks described in the next section.

Mandatory Callbacks of Table Models

The class that implements the TableModel interface and feeds data to JTable must include at least
threeca”backlﬂethods:getColumnCount(),getRowCount(),and(getValueAt().

The method getColumnCount () must return an integer value — the number of columns in this
JTable. This method will be called once by a gTable. For example, if you are planning to display
orders, each of which consists of four fields — order ID, stock symbol, quantity, and price — just
put one line in this method:

return 4;

The method getRowCount () must return an integer — it will also be called only once. The data has
to be placed into an array or a data collection (such as ArrayList MyData) before it appears on the
screen, and the code for this method could look like this:

return myData.size(); //myData is an ArrayList in this sample

The method getvalueat (int row, int col) returns an Object and will be called once for each
cell (each intersection of a row and a column). You have to write the code that will return the value
for the requested row and column.

Let’s say you have a class called order, as shown in Listing 23-2, and you want to store instances of
this class in ArrayList myData. This is going to be your data storage.



254 | LESSON 23 SWING WITH JTABLE

J LISTING 23-2: The Order class

Availablefor  public class Order {

dmmrﬂ" private int orderID;
private String stockSymbol;
private int quantity;
private float price;

public Order (int id, String stockSymbol, int quantity, float price){
orderID=id;
this.stockSymbol=stockSymbol;
this.quantity=quantity;
this.price=price;

Whenever the callback getvalueat (int row, int col) is called on the model, you have to return
the cell value based on the passed row and column. The inner class MyTableModel from Listing 23-3
includes the method getvalueat () working with myData, which is an Arraylist of order objects.

‘) LISTING 23-3: The JFrame window with implemented table model

sVﬂ?bﬁfm public class MyFrame extends JFrame implements TableModelListener({
ownload on
Wrox.com

MyTableModel myTableModel;

JTable myTable;

MyFrame (String winTitle) {
super (winTitle) ;

myTableModel = new MyTableModel () ;
myTable = new JTable (myTableModel ) ;

//Add the JTable to frame and enable scrolling
add (new JScrollPane( myTable)) ;

// Register an event listener
myTableModel .addTableModelListener (this) ;
}

public void tableChanged(TableModelEvent e) {
// Code to process data changes goes here

}

public static void main(String args[]) {
MyFrame myFrame = new MyFrame( "My Test Window" );

myFrame.pack () ;
myFrame.setVisible( true );

// Inner class for data model



The Model

255

class MyTableModel extends AbstractTableModel ({
ArrayList<Order> myData = new ArrayList<Order>();

MyTableModel () {

myData.add (new Order(1,"IBM", 100, 135.5f));
myData.add (new Order (2, "AAPL", 300, 290.12f));
myData.add (new Order (3, "MOT", 2000, 8.32f));
myData.add (new Order (4, "ORCL", 500, 27.8f));

}

public int getColumnCount () {
return 4;

}

public int getRowCount () {
return myData.size();

}

public Object getValueAt (int row, int col) {

switch (col) {

case 0: // col 1
return myData.get (row) .orderID;
case 1: // col 2
return myData.get (row) .stockSymbol;
case 2: // col 3

return myData.get (row) .quantity;
case 3: // col 4
return myData.get (row) .price;
default:
return "";

Note the use of generics in the declaration of the myData collection. Another Java feature not to be

missed here is autoboxing — the primitive order fields int and float are automatically converted

into the corresponding wrapper objects Integer and Float.

My Test Window

c
100
300
2000
500

135.5
290.12
R37
FR.]

Running the program from Listing 23-3 will display [@0 8
the window shown in Figure 23-1. Have you noticed  |; i
that the window looks a bit unusual? The reason is i g
that I decided to run this program on my MacBook 4 ORCL
laptop under the Mac OS. Java is a cross-platform
language and this code will run without changes

FIGURE 23-1

under Windows too — the look and feel will be dif-
ferent, though.



256 | LESSON 23 SWING WITH JTABLE

Optional Callbacks of Table Models

The JTable shown in Figure 23-1 doesn’t show the
proper titles of the columns — the auto-generated A, B,

C, and D don’t count. You can fix this easily by over- .06 My Test Window

riding the getColumnName () method in the table model E’;"m" ;ﬁ""" S o
class. This callback, if present, will be called (once for 2 AAPL 300 290.12
each column) to render the column titles. Add the fol- : orcL 500" 278
lowing code to the class MyTableModel and the window
will look as it does in Figure 23-2: FIGURE 23-2

String[] orderColNames = { "Order ID", "Symbol", "Quantity", "Price"};

public String getColumnName (int col) {
return orderColNames[col];
}
If you want to make some of the columns or cells editable, just override the iscellEditable ()

method and return true from this callback for the editable columns. Here’s how to make the third
column of our JTable editable:

public boolean isCellEditable(int row, int col) {

if (col ==2){
return true;
} else {
return false;

}

If your table has editable columns you need to override the method

setValueAt (Object value, int row, int col) and include the code that will copy the data
from the Ul component — JTable — to the appropriate field in its model objects. This method is
called automatically when the user changes the value in a table cell and moves the cursor out of that
cell by pressing the Enter or Tab key or by clicking a different cell.

The following method, setvalueat (), will take the modified order quantity and set the new value
for the quantity field in the appropriate order in the model. By default, all the data shown in
JTable’s cell has the string data type, and it’s your responsibility to do proper casting.

public void setValueAt (Object value, int row, int col){

if (col== 2){
myData.get (row) .quantity=(Integer.valueOf (value.toString()));
}

//Notify listeners about the data change
TableModelEvent event = new TableModelEvent (this, row, row, col);
fireTableChanged (event) ;



Introduction to Renderers | 257

The fireTableChanged () method has been placed in the setvalueat () method to notify any
listener(s) who want to know about the data changes. For example, if the quantity on any order has
been changed and has gone over a certain threshold, the application may need to immediately per-
form some actions to report this to some authority.

Review the code in Listing 23-3. The class MyFrame implements TableModelListener, so the
method tablechanged () will be invoked as a result of the fireTableChanged () method call. Add
the following line to the tableChanged () method:

System.out.println("Someone modified the data in JTable!");

Now run the program and modify the quantity in any row of JTable. The message will be printed
on the system console. But JVM fires a table changed event with a payload — TableModelEvent —
that carries useful information about what exactly has changed in the table model.

TableModelEvent has several constructors; I’ve chosen the one that takes modified rows and columns
as arguments. For example, if you change the quantity in the last row, as shown in Figure 23-2, the
method tableChanged () will receive an instance of TableModelEvent that will encapsulate the refer-
ence to the entire model encapsulating the following values describing the change:

column=2 // the third column

firstRow=3 // starting from the row #4
lastRow=3 // ending with the row #4

Based on this information you can implement any further processing required by the functional
specification of your application. If you need to apply the UI changes to the database, the method
tableChanged () can be the right place to use the JDBC API or other communication with the
server-side code to persist the changes.

There are several functions with names that start with the word fire. For example, to apply each
cell’s change to the database, call the method fireTablecellupdated (). To apply all changes

at once, call the method fireTablebDataChanged (). Refer to the documentation of the class
AbstractTableModel to decide which method fits your needs.

INTRODUCTION TO RENDERERS

The process of transferring data from the table model to JTable is performed by cell renderers.
When the user is modifying the content of the cell, the cell editor is engaged. By default, the content
of each cell in a gTable is rendered using one of three default renderers, based on the type of data
in the column. Boolean values are rendered as checkboxes, javax.swing.Icon is rendered as an
image, and any other object is rendered as a string of characters.

To change the default rendering (for example, if you don’t want to see checkboxes for Boolean val-
ues) you can either override the callback getColumnclass () or define a custom cell renderer. The
latter option gives you a lot more flexibility. For example, you may need to display a photo of a per-
son and his or her name in each cell. Or you may need to show cell values that meet certain criteria
in a different color. To do something like one of these, you need to create a custom renderer.



258 | LESSON 23 SWING WITH JTABLE

The UI portion of each column is represented by the class TableColumn, which has a
property, cellRenderer, of type TableCellRenderer, which defines the only method:
getTableCellRendererComponent (). This method prepares the content for each column’s
cells of gTable and returns an instance of the Component class to be used for the cell
rendering. This process will use DefaultTableCellRenderer unless you create a custom
renderer. Custom renderers give you full control over how the cell is displayed.

The class DefaultTableCellRenderer extends JLabel and is Swing’s implementation of the
TableCellRenderer interface. Let’s look at an example that formats the text in the Price column
shown in Figure 23-2 to be right-justified and to display in red all prices greater than $100.

First the code fragment from Listing 23-4 gets a reference to the fourth column of JTable (remember,
column numbering is zero-based). Then it needs to call the method setcel1Renderer () on this col-
umn, provided that the custom renderer class was defined and instantiated. But you can define, instanti-
ate, and set the custom renderer in one shot by using the mechanism of anonymous inner classes.

The anonymous inner class in Listing 23-4 extends the class DefaultTableCellRenderer

and overrides the callback method getTableCellRendererComponent (). The latter sets the
cell value to be right-justified and to be red if it is greater than 100. At the end, the method
getTableCellRendererComponent () returns a JLabel object to be rendered in the current cell
of JTable

‘) LISTING 23-4: Custom rendering of the Price value

Available for //Assign custom cell renderer to the Price column
daﬂ:?g&gn // Get the reference to the fourth column - Price

TableColumn column = myTable.getColumnModel () .getColumn(3) ;

// Create a new cell renderer as an anonymous inner
// class and assign it to the column price

column.setCellRenderer (
new DefaultTableCellRenderer () {
public Component getTableCellRendererComponent (
JTable table, Object value, boolean isSelected,
boolean hasFocus, int row, int col) {

JLabel label = (JLabel) super.getTableCellRendererComponent (
table, value, isSelected, hasFocus, row, col);

// right-align the price value
label.setHorizontalAlignment (JLabel .RIGHT) ;

// display stocks that cost more than $100 in red
if (((Float) wvalue)>100) {

label.setForeground (Color.RED) ;
} else{



Trylt | 259

label.setForeground (Color.BLACK) ;

}

return label;

} // end of getTableCellRendererComponent

} // end of new DefaultTableCellRenderer

) // end of setCellRenderer(...)

Add this code fragment at the end of the constructor in
the class MyFrame from Listing 23-3 and run the appli-
cation. The screen will show the text in the Price column
right-justified and the first two prices printed in red (see
Figure 23-3).

SUMMARY

My Test Window

Order ID Symbol
1 IBM

2 AAPL

. MOT

4 ORCL
FIGURE 23-3

Quantity
100
300
2onn
500

Price
1358
290.12
K32
7.8

This lesson was a high-level overview of the JTable component, which is probably the most
advanced UI component that deserves serious study if you are planning to develop Java Swing appli-
cations. You can continue studying all the features of JTable by following the official Oracle tuto-
rial at http://download.oracle.com/javase/tutorial /uiswing/components/table.html.

TRY IT

Create an application that will display your portfolio, stored in the database table. You’ll need to use
the database and the Portfolio table you created in the Try It section of Lesson 22.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson23 folder in the download.

Hint

In Windows, the Java installation directory includes several examples of JTable, which can serve as
good complementary material to this lesson. Just go to the folder demo\jfc\TableExample and fol-

low the instructions in the Readme document.


http://download.oracle.com/javase/tutorial/uiswing/components/table.html
http://www.wrox.com

260 | LESSON 23 SWING WITH JTABLE

Step-by-Step

1. Create the Eclipse project Lesson23. Copy there the classes MyFrame and order from the
accompanying DVD. Compile and run the program to ensure that it displays hard-coded
portfolio data, as shown in Figure 23-2.

2. Replace the hard-coded table model ArrayCollection myData with the JDBC code to con-
nect to the database Lesson22, run the appropriate SQL select statement, and populate
myData with data from the received result set.

3. Test this program.

www.wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 23 on the DV D with the print book, or watch online at



http://www.wrox.com/go/fainjava

Annotations and Reflection

In general, metadata is data about your data. In the context of DBMSes, metadata can be
information describing the way you store data, such as the table and field names or primary
keys. Program code metadata is data about your code. Any Java class has its metadata embed-
ded, and you can write a program that “asks” another class, “What methods do you have?” or
similar questions about class fields, constructors and ancestors.

If you’ve ever looked at the source code of any Java class, you can easily identify Javadoc-style
comments for classes, interfaces, variables, and methods. These comments may include spe-
cially formatted words.

In Eclipse you can select any Java class and press F3 to open the source code of this class.
Because the previous lesson was about working with JTable, let’s open the source code of
this class. In the top part of the code you’ll find a description similar to the one that follows (I
removed a large portion of the text for brevity):

*

/
The <code>JTable</code> is used to display and edit regular two-dimensional
tables of cells.
To enable sorting and filtering of rows, use a
{@code RowSorter}.
* As for all <code>JComponent</code> classes, you can use
{@link InputMap} and {@link ActionMap} to associate an
{@link Action} object with a {@link KeyStroke} and execute the
action under specified conditions.
<p>
<strong>Warning:</strong> Swing is not thread safe. For more
information see <a
href="package-summary.html#threading">Swing's Threading
Policy</a>.
<p>

EE I

L . S

* X

@version 1.292 05/30/08



262 | LESSON 24 ANNOTATIONS AND REFLECTION

* @author Philip Milne

* @author Shannon Hickey (printing support)
* @see javax.swing.table.DefaultTableModel
* @see javax.swing.table.TableRowSorter

*/

The special words marked with an @ sign are Javadoc metadata describing links, version, author,
and related classes to see in Java documentation. If you run the source code of this class through the
Javadoc utility the utility will generate HTML output that can be opened by any web browser. It’s a
good practice to include Javadoc comments in your classes.

Javadoc acts as a processing tool that extracts from the source code all comment blocks that start
with /** and end with */. It then formats this text using HTML tags and embedded annotations to
generate program documentation. The preceding text is an example of the use of specific tags that
are predefined, and understood by Javadoc. This was an example of metadata that are understood
by just one utility — Javadoc.

But Java allows you to declare your own custom annotations and define your own processing rules
that will route the execution of your program and produce configuration files, additional code,
deployment descriptors, and more. No matter what your goals, when you create annotations you
also need to create or use an annotation processor to get the expected output.

Starting in Lesson 27 you’ll learn about annotations defined by the creators of Java EE technolo-
gies. But in this lesson you’ll get familiar with Java SE annotations, which you will eventually use
in your projects.

JAVA ANNOTATIONS BASICS

The Java annotation model enables you to add custom annotations anywhere in your code, not just
in the comments section. You can apply custom annotations to a class, a method, or a variable —
just specify allowed targets when the annotation is being defined. Java annotations start with the

@ sign and may optionally have one or more parameters. Some of the annotations are built into Java
SE and are used by the javac compiler, but most of them are consumed by some kind of processing
program or tool.

There are about a dozen of predefined annotations already included with Java SE. You can find
them, along with their supporting classes, in the packages java.lang, java.lang.annotation,
and javax.annotation. You can check the Annotations section of the latest online documentation
on the Java SE API, which at the time of this writing is located at http://download.oracle.com/
javase/7/docs/api/overview-summary.html.

Some of these annotations are used by the compiler (eoverride, @Suppresswarning,
@Deprecated, @Target, @Retention, @Documented, and @Inherited); some are used by

the Java SE run time or third-party run times and indicate methods that have to be invoked in

a certain order (@PostConstruct, @PreDestroy), or mark code that was generated by third-party
tools (eGenerated). I’'m not going to give you a detailed description of how to use each of these
annotations, but I will give you selected examples that will help you get started with annotations.


http://download.oracle.com/javase/7/docs/api/overview-summary.html
http://download.oracle.com/javase/7/docs/api/overview-summary.html

Java Annotations Basics | 263

@Override

In the Try It section of Lesson 3 you overrode the method public double calcTax() in the class
NJTax. The method signature of calcTax () was the same in both NJTax and its superclass Tax.
Now deliberately add an argument to calcTax () in NJTax, as if you had done so by accident.
The code will compile with no errors. But you could have done this by mistake, and instead of
overriding the method as planned, you’ve overloaded it. This won’t happen if you use the
annotation @override whenever you are planning to override a method:

@Override public double calcTax(String something)

Now the compiler will complain with the following error:

The method calcTax(String) of type NJTax must override or implement a supertype
method

The annotation @override signals the compiler that overriding is expected, and that it has to fail if
an override does not occur.

@SuppressWarning

The compiler can generate warning messages that won’t stop your program from running, but that
do indicate potential problems. In some cases, though, you want to suppress some or all warnings so
the output of the project build looks clean. For example,-x1int :none disables all warnings, while
-Xlint:fallthrough instructs the compiler to warn you about if you forget to add the break state-
ment to the switch statement (see Lesson 5). In Eclipse IDE, to set the compiler’s options you right-
click the project and select Properties = Java Compiler &> Errors/Warnings = Potential Programming
Problems.

But what if you want to omit the break keyword in the switch statement on purpose? You still want to
get warned in all other cases about missing break, but not in this particular method. This is where the
@SupressWarnings annotation becomes quite handy and Listing 24-1 illustrates it. To see this example
at work, turn on the compiler’s option that warns you about the switch case fall-throughs.

‘) LISTING 24-1: Custom rendering of the Price value

Available for  package com.practicaljava.lesson24;
download on
Wrox.com ) )

public class SuppressWarningDemo {

@SuppressWarnings ("fallthrough")
public static void main(String[] args) {
int salaryBand=3;
int bonus;
// Retrieve the salary band of the person from some data source here
switch(salaryBand) {

case 1:
bonus=1000;
System.out.println("Giving bonus " + bonus);
break;

continues



264 | LESSON 24 ANNOTATIONS AND REFLECTION

LISTING 24-1 (continued)

case 2:
bonus=2000;
System.out.println("Giving bonus " + bonus);
break;
case 3:
bonus=6000;
System.out.println("Giving bonus " + bonus);
case 4:

bonus=10000;
System.out.println("Giving bonus " + bonus);
break;
default:
// wrong salary band
System.out.println("Invalid salary band");

Note that the break keyword is missing in the case 3 section. In this code it’s done on purpose:

All employees in salaryBand 3 are entitled to two bonuses — six thousand dollars in addition to
ten thousand dollars. The compiler’s annotation @SuppressWarnings ("fallthrough") suppresses
compiler warnings only for this method. In all other classes or methods that may have switch state-
ments, the warning will be generated.

@Deprecated

If you are developing classes that are going to be used by someone else, mark as @peprecated
any classes or methods that may be removed in future versions of your code. Other developers
will still be able to use this code, but they’ll be warned that switching to newer versions is highly
recommended.

@Inherited

This annotation simply means that the annotation has to be inherited by descendants of the class in
which it is used. You’ll see an example of its use in the next section.

@Documented

If you want an annotation to be included in the Javadoc utility, mark it as @Documented. You’ll see
an example of this annotation in the next section.

CUSTOM ANNOTATIONS

Creating your own annotations is more interesting than using core Java or third-party annotations.
First of all, you have to decide what you need an annotation for and what properties it should have.
Then you need to specify the allowed targets for this annotation (for example, class, method, or



Custom Annotations | 265

variable). Finally, you have to define your retention policy — how long and where this annotation
will live. Let’s go through an example to illustrate all these steps.

Suppose you need to create an annotation that will allow the user to mark class methods with a SQL
statement to be executed during the run time. These classes will be loaded dynamically. The goal is
to declare your own annotation to be used by other Java classes, and to write the annotation proces-
sor that will read these Java classes, identify and parse annotations and the values of their param-
eters, if any, and do whatever is required accordingly.

Declaring annotations is very similar to declaring interfaces, but don’t forget to add the @ sign at the
beginning. I’ll name my annotation MyJDBCExecutor:

public @interface MyJDBCExecutor{

If metadata is data about data, then meta-annotations are annotations about annotations. This is
not as confusing as it sounds. To specify where you can use this newborn annotation, define the
meta-annotation @Target. The enumeration ElementType defines possible target values: METHOD,
TYPE, CONSTRUCTOR, FIELD, PARAMETER, PACKAGE, LOCAL_VARTABLE, and ANNOTATION_TYPE. If you
don’t use @Target, the annotation can be used anywhere. For example, this is how you can allow
use of the annotation only with methods and constructors:

import java.lang.annotation.*;

@Inherited

@Documented

@Target ({ ElementType.METHOD, ElementType.CONSTRUCTOR })
@Retention(RetentionPolicy.SOURCE)

public @interface MyJDBCExecutor {

The retention policy in the preceding code snippet is set to SOURCE, which means that this anno-
tation will be used for processing only during the compilation of your program. The other two
allowed values for retention policy are RUNTIME and CLASS.

Annotations with the cLass retention policy stay in the compiled class, but are not loaded during run
time. The crLass retention policy is used by default if a retention policy is not explicitly specified.

Annotations with the RUNTIME retention policy have to be processed by a custom processing tool
when the compiled code is running.

Annotations may have parameters. Say we want to add a single parameter that will allow us to spec-
ify an SQL statement to be processed. Our MyJDBCExecutor has to be declared as follows (omitting
the import statement):

@Target ({ ElementType.METHOD, ElementType.CONSTRUCTOR })
@Retention (RetentionPolicy.SOURCE)
public @interface MyJDBCExecutor ({

String value();



266 | LESSON 24 ANNOTATIONS AND REFLECTION

A sample Java class, HRBrowser, may use this annotation like this:

class HRBrowser{

@MyJDBCExecutor (value="Select * from Employee")
public List getEmployees () {
// add calls to some JDBC executing engine here

If the annotation has only one parameter named value, the “value=" part in the preceding code
snippet is not required. But I’d like this annotation to have three parameters: SQL to execute, trans-
actional support, and a notification flag to inform other users of the application about any database
modifications. Let’s add more parameters to our annotation:

package com.practicaljava.lesson24;
import java.lang.annotation.*;

@Target ({ ElementType.METHOD})

@QRetention (RetentionPolicy.SOURCE)

public @interface MyJDBCExecutor {
String sglStatement () ;
boolean transactionRequired() default false;
boolean notifyOnUpdates() default false;

I’ve replaced the parameter value with a more meaningful sqlStatement, and added two more:
transactionRequired and notifyonUpdates. I gave the latter two default values. If a Java class
won’t need to support transactions and notify other applications about updates, why force software
developers to provide values for these parameters?

If we don’t specify default values the Java compiler will generate compilation errors if the values for
transactionRequired and notifyOnUpdates are missing in classes that use @MyJDBCExecutor.
Here’s an example of a class, HRBrowser, that’s annotated only with a select statement — no other
actions are needed here:

class HRBrowser{

@MyJDBCExecutor (sglStatement="Select * from Employee")
public List<Employee> getEmployees () {
// The code to get the the data from DBMS goes here,
// result set goes in ArrayList, which is returned to the
// caller of the method getEmployees()

return myEmployeeList;

The code sample in Listing 24-2 adds the method updatepata () and uses all three annotation
parameters.



Reflection | 267

‘) LISTING 24-2: Using the annotation MyJDBCExecutor

Available for  class HRBrowser{
download on
Wrox.com
@MyJDBCExecutor (sglStatement="Select * from Employee")

public List<Employee> getEmployees () {
// Generate the code to get the the data from DBMS,
// place them in ArrayList and return them to the
// caller of my getEmployees

return myEmployeeList;

@MyJDBCExecutor (
sglStatement="Update Employee set bonus=1000",
transactionRequired=true,
notifyOnUpdates=true)
public void updateData () {
// JDBC code to perform transactional updates and
// notifications goes here

The annotations with the SOURCE retention policy can be processed by the Annotation Processing
Tool (APT) located in the bin directory of your Java installation. As a result of such processing, the
new source code may be generated for further compilation. (The use of APT is an advanced sub-
ject and is out of the scope of this tutorial. Refer to the following web page for more information:
http://download.oracle.com/javase/1.5.0/docs/guide/apt/GettingStarted.html.)

I was involved in the development of an open-source code generator called Clear Data Builder (CDB)
(available at http: //sourceforge.net/projects/cleartoolkit/). The CDB allows the user to write
a simple Java class that has an abstract method annotated with an SQL statement and several other
parameters, and within seconds to generate complete code for the functional application that has Adobe
Flex code on the client side talking to Java at the server, which is accessing data stored in any relational
DBMS via JDBC. In this project we used only the annotations with the SOURCE retention policy, and
before compiling classes would generate additional code according to specified annotations.

If CDB would be processing the annotation @yJDBCExecutor, it would engage additional tools
and generate and compile all JDBC code for the methods getEmployees () and updateData ()
automatically.

For the annotations with the RUNTIME retention policy you should know how to write an annota-
tion processor, however, as it has to “extract” the values from the annotations during run time, and,
based on those values, engage the appropriate code. But there is one Java feature, reflection, that you
must understand before you can write your own annotation-processing class.

REFLECTION

Strictly speaking the subject of Java reflection doesn’t belong to the lesson on annotations — reflec-
tion is used widely in various areas of Java development. But because this subject has to be covered
before you can proceed with annotation processing, I decided to include it here.


http://download.oracle.com/javase/1.5.0/docs/guide/apt/GettingStarted.html
http://sourceforge.net/projects/cleartoolkit/

268 | LESSON 24 ANNOTATIONS AND REFLECTION

Reflection enables you to find out about the internals of a Java class (its methods, constructors, and
fields) during the run time, and to invoke the discovered methods or access public member variables.
A special class called class can load the class in memory, and then you can explore the content

of the class by using classes from the package java.lang.reflect. Consider the class Employee,
shown in Listing 24-3.

‘) LISTING 24-3: Class Employee extends Person

Available for abstract public class Person {

daﬂ:?g&gn abstract public void raiseSalary();

public class Employee extends Personf{
public void raiseSalary() {
System.out.println("Raising salary for Employee...");

}

The ReflectionSample class in Listing 24-4 loads the class Employee, prints its method signatures,
and finds its superclass and methods. The process of querying an object about its content during run
time is called introspection.

‘) LISTING 24-4: Introspecting Employee

Available for import java.lang.reflect.*;

dmg!ﬁzg"ﬁ" public class ReflectionSample {
public static void main(String args[]) {
try {
Class ¢ = Class.forName ("Employee") ;
Method methods[] = c.getDeclaredMethods() ;

System.out.println("The Employee methods:");

for (int i = 0; i1 < methods.length; i++){
System.out.println("*** Method Signature:" +
methods[i].toString());

Class superClass = c.getSuperclass();
System.out.println("The name of the superclass is "
+ superClass.getName());

Method superMethods[] = superClass.getDeclaredMethods() ;
System.out.println("The superclass has:");

for (int i = 0; i1 < superMethods.length; i++){
System.out.println("*** Method Signature:" +
superMethods[i].toString()) ;
System.out.println(" Return type: " +
superMethods[i] .getReturnType () .getName () ) ;



Reflection | 269

} catch (Exception e) {
e.printStackTrace() ;

}

Here’s the output of the program ReflectionSample:

The Employee methods:

*** Method Signature:public void Employee.raiseSalary ()

The name of the superclass is Person

The superclass has:

*** Method Signature:public abstract void Person.raiseSalary ()
Return type: void

Some other useful methods of the class class are getInterfaces (), getConstructors (),
getFields (), and isAnnotationPresent (). The following code snippet shows how to get the
names, types, and values of the public member variables of the loaded class:

Class ¢ = Class.forName ("Employee") ;

Field[] fields = c.getFields();

for (int i = 0; i1 < fields.length; i++) {
String name = fields[i].getName () ;
String type = fields[i].getType () .getName () ;

System.out.println("Creating an instance of Employee");
Object obj = c.newInstance();
Object value = fields[i].get(obj);
System.out.println("Field Name: " + name + ", Type: "

+ type + " Value: " + value.toString());

The process of reflection uses introspection to find out during run time what the methods (or prop-
erties) are, but it also can call these methods (or modify these properties). The method invoke ()
will let you call methods that were discovered during run time:

Class c= Class.forName ("Employee") ;
Method raiseSalary = c.getMethod( "raiseSalary", null);
raiseSalary.invoke (c.newInstance(),null);

The first argument of the method invoke () represents an instance of the object Employee, and null
means that this method doesn’t have arguments. With reflection, the arguments are supplied as an
array of objects. You can find out what the method arguments are by calling the method Method
.getParameterTypes (), or create and populate them on your own, as in the following example.
Add the following method to the class Employee:

public void changeAddress (String newAddress) {
System.out.println("The new address is "+ newAddress) ;

}



270 | LESSON 24 ANNOTATIONS AND REFLECTION

Note the public qualifier: it’s needed for proper introspection, otherwise the
NoSuchMethodException will be thrown by the following code snippet. The ReflectionSample
class can invoke changeaAddress () as follows:

Class c= Class.forName ("Employee") ;

Class parameterTypes[]= new Class[] {String.class};
Method myMethod = c.getMethod( "changeAddress", parameterTypes) ;

Object arguments[] = new Object[1l];
arguments([0] = "250 Broadway";
myMethod. invoke (c.newInstance (), arguments) ;

Reflection helps in building dynamic component-based applications that can load different classes
based on certain business logic and invoke this logic during run time. Many third-party Java frame-
works read configuration files and then instantiate and use required objects.

RUN-TIME ANNOTATION PROCESSING

The author of a custom run-time annotation usually gives it to other developers along with the pro-
cessing tool. They will add the annotation to their classes and compile them, and the processing tool
will consume these classes during run time. Reuse the code example from Listing 24-2, but this time
imagine that @MyJDBCExecutor becomes the annotation with RUNTIME retention policy and that
there is no need to generate additional source code for the compilation time. Suppose this annota-
tion will be used in HRBrowser, and another class will have to analyze the annotation parameters
and route the execution accordingly.

Now I’ll write the annotation processor class called MyJDBCAnnotationProcessor, and the class
HRBrowser in Listing 24-2 can serve as a command-line argument to that processor:

c:/>java MyJDBCAnnotationProcessor HRBrowser

The class MyJDBCANnnotationProcessor has to load the class HRBrowser, introspect its content, find
the annotations and their values, and process them accordingly. I’ll show you how to write such a
processor, or rather its annotation-discovery part.

Listing 24-5 shows MyJDBCAnnotationProcessor, which starts by loading another class, whose
name was supplied in the command line. After that it introspects the loaded class and places all
references to its method definitions into an array called methods. Finally, it loops through this
array, and for each method that has annotations it finds and prints the values of the parameters
sglStatement, notifyOnUpdates, and transactionRequired.

‘) LISTING 24-5: MyJDBCAnnotationProcessor

Availablefor  import java.lang.reflect.*;

dmg;oggrgn import com.practicaljava.lesson24.MyJDBCExecutor;

public class MyJDBCAnnotationProcessor {

public static void main(String[] args) {
// TODO add a check for the number of command line arguments



Summary | 271

// has to be the name of the class to load.
String classWithAnnotation = args[0];

try {
//Load provided on the command line class
Class loadedClass = Class.forName(classWithAnnotation) ;

// Get references to class methods
Method[] methods = loadedClass.getMethods() ;

// Check every method of the class.If the annotation is present,
// print the values of its parameters

for (Method m: methods) {
if (m.isAnnotationPresent (MyJDBCExecutor.class)) {
MyJDBCExecutor jdbcAnnotation =
m.getAnnotation (MyJDBCExecutor.class) ;

System.out.println("Method: " + m.getName() +
". Parameters of MyJDBCExecutor are: " +
"sglStatement="+ jdbcAnnotation.sglStatement () +
", notifyOnUpdates="+ jdbcAnnotation.notifyOnUpdates() +
, transactionRequired="+ jdbcAnnotation.transactionRequired());

} catch (ClassNotFoundException e) {

e.printStackTrace() ;

After running this processor with the class HRBrowser, the former correctly identifies the annotated
methods and prints the values of their parameters:

Method: getEmployees. Parameters of MyJDBCExecutor are: sglStatement=Select * from
Employee, notifyOnUpdates=false, transactionRequired=false

Method: updateData. Parameters of MyJDBCExecutor are: sglStatement=Update Employee set
bonus=1000, notifyOnUpdates=true, transactionRequired=true

Any class can use more than one annotation. In this case the annotation processor would need to
start by getting all annotations of the loaded class using 1oadedClass.getAnnotations (). It would
then process these annotations in a loop.

SUMMARY

In real-world applications you wouldn’t simply be printing the values of the annotation parameters,
but rather would be executing different branches of your code based on these values. This is the
point of run-time annotation processing. You may ask, “OK, now I know the annotations and their



272 | LESSON 24 ANNOTATIONS AND REFLECTION

values, so what do I do with them?” The big idea is that you’ve written a generic processor that can
work with any classes that include your annotations. It’s a pretty powerful mechanism for all soft-
ware developers who are creating tools for other people to use.

You’ll probably be using annotations and run-time processors written by other people rather than
ones you write yourself. You’ll see lots of examples of using annotations starting from Lesson 27,
while you’re learning about Java EE development. But now that you know what’s going on under the
hood in annotation processors, learning about Java EE annotation will be a lot easier.

TRY IT

Create a class-level run-time annotation called @DBParams that will enable you to specify the name
of the database, the user ID, and the password. Write a processor for this annotation.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson24 folder in the download.

Step-by-Step
1.  Create the Eclipse project Lesson24.
2. Declare there the annotation DBParams with the retention policy RUNTTME targeted to TYPE.
3.  Define three parameters in this annotation: dbName, uid, and password.
4. Create the class MyDBWorker and annotate it with @>BParms populated with some initial values.
5.

Write an annotation processor class called DBParamprocessor to find and print the annota-
tion values in the class MyDBWorker.

6. Run and test DBParamProcessor.

www.wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 24 on the DVD with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com/go/fainjava

25

Remote Method Invocation

So far most of the Java programs in this tutorial have been running in one JVM. There were
two exceptions: In Lesson 18 you used two JVMs while learning about socket programming,
and your JDBC programs from Lesson 22 communicated with another JVM running database
server. The application running on the user’s computer isn’t always allowed to access remote
data directly — that’s one of the reasons distributed Java applications came into the picture.
(The word distributed means having parts of the applications running on several computers.)
The other reason was to provide a centralized server catering to multiple lightweight clients.

There are lots of ways to create Java distributed applications that run on more than one JVM,
and Remote Method Invocation (RMI) is one of them even though it’s being used seldom
these days. For example, a client Java application (JVM1) connects to a server Java application
(JVM2), which connects to the DBMS that runs on a third computer. The client application
knows nothing about the DBMS; it gets the data, an ArrayList of Employee objects, from the
server’s application that runs in JVM2. RMI uses object serialization for the data exchange
between JVM1 and JVM2.

But unlike with socket programming, where the client explicitly connects to the server, with
RMI one Java class can invoke methods on Java objects that live in another (remote) JVM.
Although from a syntax perspective it looks as if the caller and the server’s class are located in
the same JVM, they may be thousands of miles away. The RMI client won’t have a copy of the
server-side method; it’ll just have the method’s local representative — a proxy, or, using the
RMI terminology, a stub.

Any RMI application consists of an RMI server, a client, and the registry (a naming service).
These three components could run on three different JVMs running on different networked
computers. The RMI server creates Java objects that implement business logic, registers them
with the naming service, and waits for remote clients to invoke methods on them.

A client application gets a reference to a remote server object or objects from the registry and
then invokes methods on this remote object. The main concept of RMI is that even though the



274 | LESSON25 REMOTE METHOD INVOCATION

methods are called in the client’s JVM, they are executed on the server’s! RMI supporting classes
and the registry tool are included with the Java SE.

DEVELOPING APPLICATIONS WITH RMI

This lesson is written as an illustration of a sample RMI application with a minimum theory. For a
more detailed description of RMI please refer to the following website: http: //download.oracle

.com/javase/6/docs/technotes/guides/rmi/index.html.
Writing distributed RMI applications involves the following steps:
1. Declaring the remote interface.
2. Implementing the remote interface.
3.  Writing a Java client that connects to the remote server and calls remote methods.
4. Starting the registry and registering the RMI server with it.
5.  Starting the server and the client applications.
Let’s perform each of these steps by developing the RMI version of the Stock Quotes Server (see
its version with sockets in Lesson 18), which will provide a client with price quotes for a specified

stock. Some of the following steps could be combined, but for simplicity’s sake I’ll write a separate
class for each required action.

Defining Remote Interfaces

The Java classes that you are planning to deploy on the server side have to implement remote
interfaces, which declare business method(s) to be invoked remotely by RMI clients. The client’s
code will look as if it’s calling local methods, but these calls will be redirected to a remote server
via the RMI protocol. Following are the rules for creating remote interfaces:

> The remote interface must declare public methods to allow clients to perform remote method
invocation.

The remote interface must extend java.rmi.Remote.
Each method must declare java.rmi.RemoteException.

> Because method arguments and returned data will be traveling across the network by means
of Java serialization, their data type must be serializable.

You start developing the server side of any distributed Java application by answering the question
“What business methods have to be exposed to the client applications and what should their signa-
tures be?” When you know the answer, define remote interfaces that declare those methods.

Listing 25-1 shows the code of the stockServer remote interface that will be implemented on
the server but must exist on the client side too. This interface declares two business methods:
getQuote () and getNasdagSymbols (). The first will generate a random price quote for the
specified symbol, and the second will return the list of valid stock symbols.


http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html

Developing Applications with RMI

| 275

‘) LISTING 25-1: StockServer interface

Available for package com

download on . .

Wrox.com import Java
import java
import java

.practicaljava.lesson25;
.rmi.Remote;
.rmi.RemoteException;
.util.List;

public interface StockServer extends Remote {
public String getQuote(String symbol) throws RemoteException;

public List<String> getNasdagSymbols ()throws RemoteException;

}

Implementing Remote Interfaces

Although the remote interface just declares the methods, you need to create a class that will run
on the server side and provide implementation for those methods. There is a special requirement
to export such a class to the Java RMI run time to enable the class to receive remote calls. This is
somewhat similar to binding to a port in the case of Serversocket (see Listing 18-5), but in the case
of Java RMI the server also creates a stub — a dummy class (for the client side) that contains proxies
of each implemented method from remote interfaces.

The easiest way to export an RMI server instance is by extending it from java.rmi.server
.UnicastRemoteObject, as in Listing 25-2. If your server has to be extended from another class
you can explicitly export the server object by calling UnicastRemoteObject .export ().

Listing 25-2 shows an implementation of the class stockServerImpl, which will process
the client’s requests. This class generates random price quotes for the stocks located in

ArrayList nasdagSymbols.

‘) LISTING 25-2: StockServerlmpl class

Available for  package com.practicaljava.lesson25;
download on
Wrox.com . i )

import java.rmi.*;

import java.rmi.server.*;
import java.util.ArrayList;

public class StockServerImpl extends UnicastRemoteObject
private String price=null;

private ArrayList<String> nasdagSymbols = new ArrayList<String>();

public StockServerImpl () throws RemoteException {
super () ;

// Define some hard-coded NASDAQ symbols
nasdagSymbols.add ("AAPL") ;
nasdagSymbols.add ("MSFT") ;
nasdagSymbols.add ("YHOO") ;
nasdagSymbols.add ("AMZN")

’

implements StockServer {

continues



276 | LESSON 25 REMOTE METHOD INVOCATION

LISTING 25-2 (continued)

nasdagSymbols.add ("MOT") ;
}

public String getQuote(String symbol)
throws RemoteException {

if (nasdagSymbols.indexOf (symbol.toUpperCase()) != -1) {

// Generate a random price for valid symbols

price = (new Double(Math.random()*100)).toString() ;
}
return price;

}

public ArrayList<String> getNasdagSymbols ()throws RemoteException {
return nasdagSymbols;
}

Registering Remote Objects

To make a remote object available to clients, you need to bind it to some name in a registry, a nam-
ing service that knows where exactly in the network your RMI server stockServerImpl is running.
This will allow Java clients to look up the object on the host machine by name.

Listing 25-3 depicts the code that binds the instance of stockServerImpl to port 1099 on the host
machine, which is the local computer in my example. To the rest of the world this server will be
known as QuoteService.

‘) LISTING 25-3: Starting the server and binding it to a registry

Available for ~ package com.practicaljava.lesson25;
download on
Wrox.com ) . ) )

import java.rml.Naming;

import java.rmi.RMISecurityManager;
import java.net.MalformedURLException;
import java.rmi.RemoteException;
public class StartServer ({
public static void main (String args[]) {

try {

StockServerImpl ssi = new StockServerImpl () ;
Naming.rebind("rmi://localhost:1099/QuoteService",ssi);

}catch (MalformedURLException el) {
System.out.println(el.getMessage());



Developing Applications with RMI | 277

}catch (RemoteException ex) {
ex.printStackTrace() ;

}

}

There are two methods in the class java.rmi.Naming that can bind an object in the registry. The
method bind () binds an RMI server to a name. It throws AlreadyBoundException if the binding
already exists. The method rebind () replaces any preexisting binding with the new one. In addition
to binding a server to a name, this also ensures that the clients requesting such services as getQuotes ()
or getNasdagSymbols () receive their stubs — the local proxies of the remote methods.

The registry must be up and running by the time you start the program in Listing 25-3. One way
to start the registry is by entering start rmiregistry in the Windows command window or
rmiregistry in Mac OS.

Instead of starting the registry manually, you can start it from within the StartServer program itself
by calling the following method:

LocateRegistry.createRegistry (1099) ;

If you know that another process has already pre-created the registry, just get its reference and bind
the server to it. The getRegistry () method can be called without arguments if the RMI registry
runs on the default port 1099. If this is not the case, specify the port number (5048 in the follow-
ing example). The variable registry in the following code fragment is a stub to the remote object
StockServerImpl:

StockServerImpl ssi = new StockServerImpl () ;
Registry registry = LocateRegistry.getRegistry(5048);
registry.bind("QuoteService", ssi);

Writing RMI Clients

The client program, running anywhere on the Internet, performs a lookup in the registry on the host
machine (using the host machine’s domain name or IP address) and obtains a reference to the remote
object. Listing 25-4 shows a sample client program. Notice the casting to the StockServer type of
the data returned by the method 1ookup ().

Even though the class stockserverTmpl has been bound to the name QuoteService, because this
class implements the stockServer interface we can cast the returned object to it. The variable
myServer will see only the methods defined in this interface, while the class stocksSertverImpl
may have other public methods too.

‘) LISTING 25-4: RMI client

Available for  package client;
download on
Wrox.com ) ) )
import java.rmi.*;

continues



278 | LESSON25 REMOTE METHOD INVOCATION

LISTING 25-4 (continued)
import com.practicaljava.lesson25.StockServer;
public class Client {
public static void main (String args[]) {

if (args.length == 0) {
System.out.println("\n Sample usage: java client.Client AAPL");
System.exit (0);

}

try {
StockServer myServer = (StockServer)
Naming.lookup ("rmi://localhost:1099/QuoteService") ;

String price = myServer.getQuote(args[0]);
if (price != null){
System.out.println("The price of " + args[0] +
" is: $" + price);
}
else{

System.out.println("Invalid Nasdag symbol. " +
"Please use one of these:" +
myServer.getNasdagSymbols () .toString()) ;

}

} catch (MalformedURLException ex) {
System.out.println(ex.getMessage());
}catch (RemoteException ex2) {
System.out.println(ex2.getMessage());
}

Security Considerations

Can any RMI client restrict the actions that remotely loaded code can perform on the local computer?
Can the server restrict access? You can specify a security policy file containing access restrictions. For
example, in the code in Listings 25-3 and 25-4 you can start the main () method with the following:

if (System.getSecurityManager () == null) {
System.setSecurityManager (new RMISecurityManager());

Theckwsjava.rmi.RMISecurityManagerexmndsthechssjava.lang.SecurityManagerandpro-
vides a security context under which the RMI application executes. In RMI clients the goal is to prevent
remotely loaded stub code from downloading unsecured code via remote method invocation.

The RMI client uses a file in which security policies are defined. You can use the default security
file, java.policy, located in your JDK or JRE installation directory under 1ib/security. The



Trylt | 279

default policy file gives all permissions to the code, but you can create your own file and supply it
either via the command-line parameter or in the code before the security manager is set:

System.setProperty ("java.security.policy",

"mypolicyfile");

For a more detailed description of security policy files refer to the documentation at http://
download.oracle.com/javase/1l.3/docs/guide/security/PolicyFiles.html.

Java applets can also serve as RMI clients, but they don’t need RMI security managers. The only
restriction on them is that they can connect only to the RMI server running on the same host on

which they were deployed.

Finding Remote Objects

RMI clients find remote services by using a naming or directory service. A naming service runs on a
known host and port number. The subject of naming and directory services will be covered in more

detail in Lesson 31.

By now you know that an RMI server can start its own registry that offers naming services for RMI
clients. The behavior of the registry is defined by the interface java.rmi.registry.Registry, and
you saw an example of binding to the registry in the section “Registering Remote Objects.”

By default the RMI registry runs on port 1099, unless another port number is specified. When the
client wants to invoke methods on a remote object it obtains a reference to that object by looking up
the name. The lookup returns to the client a remote reference, aka stub.

The method 1ookup () takes the object name’s URL as an argument in the following format:

rmi://<host_name>[:<name_service_port>]/<service_name>

host_name stands for the name of a computer on the local area network (LAN), or the name of
a domain name system (DNS) on the Internet. name_service_port has to be specified only if the
naming service is running on a port other than the default. service_name stands for the name of
the remote object that should be bound to the registry.

Figure 25-1 illustrates the architecture of
an RMI application. In the Try It section
you’ll implement this architecture for our
sample stock quote service.

TRY IT

In this exercise your goal is to start and test
all the parts of the distributed Stock Server
application, and you’ll run all these parts
on the same computer. To emulate multiple
computers you’ll open three command win-
dows: one for the RMI client, one for the

RMI

Registry 1. Start registry

3. Client looks up
server by name

2. Register server
with registry

4. Server found,
stub received

5. Client calls
stub method,
which communicates
with method on server

Your RMI
Server

FIGURE 25-1


http://download.oracle.com/javase/1.3/docs/guide/security/PolicyFiles.html
http://download.oracle.com/javase/1.3/docs/guide/security/PolicyFiles.html

280 | LESSON 25 REMOTE METHOD INVOCATION

registry, and one for the server. If everything is done properly you should be able to start the RMI
client with one of the stock symbols known to the server, and get a price quote back.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson25 folder in the download.

Hints

There is an RMI plug-in for the Eclipse RMI that may be handy for developing RMI-based distrib-
uted applications. It contains a useful utility called RMI Spy that shows all outgoing and incom-
ing method calls, and measures execution times. Another useful utility in this plug-in is Registry
Inspector, which displays information about objects in the registry. The RMI plug-in is available
from www.genady.net/rmi/index.html.

Step-by-Step

1. Create an Eclipse project called Lesson25 with two packages: client and com

.practicaljava.lesson25.

2. Incom.practicaljava.lesson25 create the interface StockServer that extends java
.rmi.Remote, as in Listing 25-1.

3. In com.practicaljava.lesson25 create the class StockServerImpl that extends
UnicastRemoteObject and implements the interface StockServer, as in Listing 25-2.

4. Incom.practicaljava.lesson25 create the class StartServer from Listing 25-3 to start
the server and bind it to the naming service.

B. Inclient create the class client that will access the remote server. Follow the code from
Listing 25-4.

6. Compile all the classes.
7.  Open three command windows.

8.  Start the RMI registry from the first command window. The naming service will listen
to default port 1099. If you are running this program in Windows, use the command
start rmiregistry. If you are running Mac OS, use the command rmiregistry.

Don’t expect to see any confirmations that the registry has successfully started. The absence
of error messages is your confirmation.


http://www.wrox.com
http://www.genady.net/rmi/index.html

Trylt | 281

9. In the second command window, start and register StockServer with the naming service
(registry) that you just started. In the command line specify the system property java.rmi
.server .codebase — this is where your StockServer compiled class is located. I created
this example on my MacBook with the user name yfain11, and my Eclipse workspace was
located in the directory practicalJdava. The codebase command-line option starts with -D
and is shown in bold.

java -classpath /Users/yfainll/practicalJava/workspace/Lesson25/bin
-Djava.rmi.server.codebase=

file:/Users/yfainll/practicalJdava/workspace/Lesson25/bin/ com.practicaljava.
lesson25.StartServer

After you enter a command similar to the preceding, the server will start and bind to the
registry, printing the following message in the command window:

<QuoteService> server is ready.

10.  Open the third command window and switch to the bin directory — the client sub-directory
should be there, as you created it in Step 1. Run the client program, passing the stock symbol
as a command line argument, and the client will connect to your “remote” server and receive
the price quote, for example:

java client.Client AAPL

Figure 25-2 shows how the three command windows look on my MacBook. They will look similar
in Windows.

L Nala Terminal — bash — 827

Lost logint Sob Oct 9 83121142 on ktye@02 L
yukov-Toins-actook-pro-:3= yroinklf meiregistry

& N O Terminal — java — 83x9

Last logini Sot Oct 9 8311913 on tiye008 L]
VU= TS -Ocbok - D=2 yTEIndLS juve —clusspath Asers/yfainklproct oo | Jovas
vorksoace/LessoridB/bin ~Djova.mi .server .codsbasesf i le:/Users/viainll/proct ical Jav
a/vorkepoce/LesrondE/bin/ com.proctical jova. LeesondS. StartServer

<QUOTESErVICE> TETVEr 1T ready.

Terminal — bash — 82x12

Last login: Sat Oct 9 B3:3i:11 on tyveddd L]
wakov faine mckeok pro 2i= yfainldd cd flesrs/vfainll/procticolJovasvorkepoce/Les
wunZ8in

yakov-fains-mochook-pro-2:bin vioirdid java clisnt.Client AARL
The price of AMPL 1s: §E2.B834EITIES4T4T
yakoy-fains-mactook-pro-2:oin yroinlld jova ciient.Client ANZN
The price of MON \s: §93.5M7TM12172656
yakow faine mackook pro-2ibin yfairddd |

FIGURE 25-2

www . wrox . com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 25 on the DVD with the print book, or watch online at



http://www.wrox.com/go/fainjava




Java EE 6 Overview

Starting from this lesson you’ll be learning about Java Enterprise Edition (Java EE or formerly
J2EE), which is a powerful, mature, and widely used platform for development of distributed
applications. The word enterprise here doesn’t imply that it is only for large-scale applica-
tions. Java EE components are used for the development of everything from an application for
a local pizza parlor’s website running on a five-hundred-dollar computer to a super-powerful
Wall Street trading application that runs on a cluster of hundreds of interconnected servers.

This lesson is an overview of the Java EE architecture, concepts, components, and terms that
will be covered in detail in the remaining lessons of this book. The goal of these lessons is to
give you an understanding of how to approach the development of Java EE applications by
showing you how to build small applications rather than making you read the thousand-page
manuscript that would otherwise be required for detailed coverage of this subject.

There are an abundance of online materials and books published on the subject of Java EE,
and when you will figure out which components are a good fit for your project, finding mate-
rials on the selected topic will not be difficult at all. My task is to help you in making that
decision and getting you started in the quickest possible way. The Oracle website Java EE at a
Glance is a good complement for this lesson: www.oracle.com/technetwork/java/javaee/
overview/index.html.

If you start browsing the Internet trying to find more information on Java EE, you can easily
get confused by trying to compare the features of different versions of Java EE components. 1
highly recommend that you stay focused on the features of Java EE 6, which is the most cur-
rent platform and the easiest to use. It was released in December 2009.


http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

284 | LESSON 26 JAVAEE 6 OVERVIEW

THE BIG PICTURE

Go to your favorite online job search engine and search for job listings with the keyword J2EE.
Even though J2EE was re-branded into Java EE many years ago, recruiters and job agencies keep
referring to this platform as J2EE. Here’s one of many job descriptions I found on a major Internet
job board:

Title: Java/J2EE Engineer with Core Java, Hibernate

Skills: J2EE, JMS, Spring, MQ, EJB, J2EE, Servlets, JDK, Core Java, Websphere, Junit, log4j,
Apache, Oracle, SQL

The candidate should know:

* Core Java 6

* Expertise in EJB, J2EE, Servlets

* Expertise in Web Services, JAX-WS, JAX-RPC
* Working knowledge of Hibernate, JDBC, JPA (Oracle)
* Java Frameworks: JUnit, Log4j

* Qracle 11, SQL

* Expertise in Development IDEs: Eclipse/RAD
* Knowledge of Spring framework

* WebSphere Application Server v6/7

* JMS and WebSphere MQ v6/7

How many items from this list of skills did you recognize after mastering the first 25 lessons of this
book? You know Core Java 6, JDBC, Eclipse, and SQL. After studying the remaining lessons you’ll
understand what other skills are required in this ad, why they are required, and how they all fit
together. You’ll also have technical knowledge of many of the buzzwords listed there.

JCP, JSR, and Other Acronyms

The Java community is accustomed to lots of acronyms. Initially these acronyms might sound intim-
idating and confusing, but with a little effort they will make perfect sense and explain the way the
Java ecosystem lives and functions.

Each version of Java EE includes a set of specifications for various technologies, such as Servlets,
JavaServer Pages (JSP), Enterprise Java Beans (E]JB), and Java Messaging Service (JMS). Each of these
specifications has been defined by an organization called the Java Community Process (JCP). If a person
or a group of people decides to propose a specification for some future technology, it will create a Java
Specification Request (JSR) and form a group of experts to work on this specification. JSRs are num-
bered. For example, the specification for Servlets 3.0 was described in JSR 315.



The Big Picture | 285

If you decide to get familiar with any specific JSR, visit the website http://jcp.org. Currently
Java EE includes 45 JSRs, Java SE has 44, and Java ME (Micro Edition covers small devices) has 85.
In other words, Java EE is based on standards. If you’d like to get hold of the 33 specifications that
were included in Java EE 6, they are described in JSR 316 and are available at http://jcp.org/
aboutJava/communityprocess/final/jsr316/index.html.

Tiers of Java EE Applications

A typical distributed Java application can be divided into three or four logical tiers. (If the applica-
tion is getting data directly from a DBMS, as described in Lesson 22, it has a two-tier client-server
architecture, and Java EE components are not needed.) Figure 26-1 shows selected technologies and
possible ways of building a distributed application that includes Java EE tiers or layers.

Client Presentation Business Data
Tier Tier Tier Tier
Y ) ) Y
T M

Thin HTML | HTTP = __JPA, T
Client |~ ” - JpBC || DBMS
Web —
) SE— container —
JavaFX | HTTP | running |_ RMIIOP EJB _JMS =
Client N | servilets, ~| Container ” MOM
~— JSP, JSF, -
/ EJB Lite —
Java HTTP UAXRS | [ web
Applets Tor JAX-WS || Service
—

HTTP JCA
RMI/IIOP >
Java RESTful or SOAP Any External
Application | | JAXRS »|  Web Service System
or JAX-WS

~——

] [

Client Server
FIGURE 26-1

The client tier can be implemented on a user’s desktop, notebook, or mobile phone, or any other
device that has JRE or can connect with Java on the web server. You can create a client as an inde-
pendent Java application, an applet, or a thin client (an HTML/JavaScript file running in a web
browser). The word thin refers to the fact that no business processing is being done on the client
side, so the server has to work hard processing all application logic for all clients.

If you’re building a web application, the web tier (aka the presentation tier) comes into the picture.
You have your choice of JSP, JavaServer Face (JSF), Servlets, or web services. These components are
responsible for the look of your thin client. Java Swing and JavaFX are typically (but not necessar-
ily) used as fat clients of web applications. The word fat here refers to the fact that the client can
contain some business logic, which minimizes the load on the server.


http://jcp.org
http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html

286 | LESSON 26 JAVAEE 6 OVERVIEW

The business logic of your application is placed in the business tier, which is represented by EJBs. In
the past E]Bs were pretty heavy components and third-party frameworks such as Spring (see Lesson
35) became a popular choice for implementing the business tier. But Java EE 6 will regain its market
share in this department because it’s a light POJO- and annotation-based technology that incor-
porates the best features of the third-party framework. POJO stands for plain old Java object — a
Java class that can be written any way you want and doesn’t have to extend any framework class or
implement mandatory interfaces. This term is easily understood by people who witnessed the evolu-
tion of EJBs, which were Java classes that had to be written and deployed in a certain convoluted
way and accompanied by heavy XML configuration files. Things changed drastically, and now E]Bs
have turned into POJOs marked with annotations. If for some reason you skipped Lesson 24 on
annotations, you should go back and study it; otherwise you won’t understand most of the remain-
ing material in this book.

While drawing the diagram for Figure 26-1, I moved the Web Services box a couple of times
between the presentation and business tiers. On one hand, Web Services (see Lesson 34) are based
on web communication protocols; on the other hand they can serve as a facade hiding anything,
including an entire legacy application written in COBOL on mainframes. In the final version of my
diagram, Web Services span both tiers and exist as a separate box in the data tier.

Using DBMSes remains the most popular but not the only way to store data in enterprise Java EE
applications. The data can be served by an external web service or arrive as a real-time feed from
some messaging infrastructure. MOM stands for message-oriented middleware, and you’ll learn
what it is in Lesson 30.

Without some practical example, all these new buzzwords may not make much sense to you. You’ll
see examples in the upcoming lessons, but let’s just briefly discuss how you can rebuild the Stock
Market application that you already started developed using sockets and RMI.

> Have an applet to connect to StockQuoteServlet, which creates what is known as a
session EJB called stockMarketQuote, which connects to external stock exchange
software and requests a price quote on the specified symbol(s). This session bean has
a timer that updates the quotes every second.

Do as described in the previous bullet, but replace the applet with a thin HTML client.
The same as before, but replace the Servlet with a JSP.

The same as before, but replace the JSP with a JSF.

Y Y YV VY

The same as before, but replace the session bean with a timer with a message-driven bean
(MDB) that subscribes via MOM to the external stock exchange application that sends back
new prices only when they change.

> The same as before, but add a session bean with business that will process every price quote
received by MDB and apply a secret modeling algorithm, and on certain conditions send a
message to buy or sell a specific number of shares of the suggested stock to a third-party trad-
ing system via a call to a web service.

Is this enough? I can keep going. As you can see, there are many ways to design a distributed Java
EE application. This is what Java architects do for a living.



The Big Picture | 287

Containers versus Application Servers

Java EE tiers are implemented in containers. It’s easy to guess that containers were created to contain
something. In the Java EE world containers not only contain, but also control the birth, life, and
death of Java components. For example, you don’t need to write the new statement to create a new
instance of an EJB; the container will create a pool of them based on configuration parameters. Even
on the client side, while reading about applets you might have noticed that applets’ life cycles are
controlled by the JRE, which can be called an applet container. Basically, a container is an area inside
JVM that can support a lifecycle of certain types of Java objects, such as applets, servlet, EJB, etc.

Containers can take care of various functions, and one of them is thread safety. It’s great that multiple
clients can connect and make requests to the same server, but can you be sure that a thread initiated by
Mary won’t interfere with John’s thread? An EJB container implements a single-threaded model ensur-
ing that each client’s request operates in a dedicated thread. Containers may offer transactional sup-
port with Java Transaction API (JTA) and persist data for you with Java Persistence API (JPA).

In the first few lessons I used a blueprint analogy to explain the relationship between Java classes
and objects. I’ll use this analogy again, but this time to explain the relationship between the Java EE
specification and application servers. The Java EE is a specification, and when a release is published,
vendors who want to implement it in their software products create application servers that support
this specification.

Multiple vendors offer their versions of a Java EE application server. The question is what version
of the Java EE specification they support. Currently the application servers GlassFish (Oracle) and
JBoss (Red Hat) support Java EE 6. At the time of this writing WebLogic (Oracle) and WebSphere
(IBM) are still on Java EE 5, but should offer support of the latest specification soon.

Java EE application servers have to support multiple containers, for example a Servlet container

and an EJB container. Some vendors prefer to create products supporting only certain technologies
defined in the Java EE specification. For example, Tomcat (Apache), Jetty (Eclipse Foundation), and
Resin (Caucho) offer support for selected technologies (such as Servlets and JSP), which makes them
suitable for implementing web applications, but if you are planning to create web applications based
on one of these products, you’ll need to figure out what other tools or frameworks will be needed to
support transactions, the business tier, data persistence, and more.

In this book I’ll be using GlassFish 3 from Oracle, which is fully compliant with Java EE 6. I have
selected the most widely used technologies in Java EE development today. In particular you’ll be
learning about the following:

> Java Servlets 3.0
Jsp2.2

EJB 3.1

JPA 2.0

JTA 1.1

CDI 1.0

JIMS 1.1
JAX-RS 1.1

Y Y Y VY VY VY Y



288 | LESSON 26 JAVAEE 6 OVERVIEW

Two of the acronyms in this list have not been spelled out yet in this book. CDI stands for Context
and Dependency Injection and JAX-RS is Java API for RESTful Web Services. You may feel over-
whelmed with all these terms, but I’ll try to explain them in easy-to-understand language.

PROFILES AND PRUNING

Although Java EE 6 offers a full stack of server technologies, most of the real-world applications
don’t need all of them. In the past, to get Java EE certified, a vendor of an application server had to
implement all JSRs that were listed in the Java EE specification. But most of the applications don’t
use all technologies included in full Java EE specification. This is how that concept of a profile came
about. A profile is a preconfigured subset of Java technologies geared toward solving a specific type
of application. Currently, besides the Full Profile, there is the Web Profile, which is designed specifi-
cally for the development of web applications. Web profiles include Servlets JSF, JSP, CDI, EJB Lite,
JPA, JTA, Interceptors, Managed Beans, and Bean validation.

In the future new profiles may be created to address specific needs of developers. For example,
chances are that a new profile will be created for developers for small devices. In general, the mecha-
nism of lightweight profiles should encourage vendors of web containers to expand their support of
Java EE by implementing web profile components. For example, creators of the Resin container are
focusing on the implementation of a web profile.

Pruning is a way to reduce the size of the Java EE platform. The pruning process starts with mark-
ing in JavaDoc the technologies that are candidates for removal. Then, based on the reaction of the
Java community, they will be either removed from the future specifications or not. As an example,

some of the Java EE components (such as EJB 2.x) will be removed in Java EE 7.

MISCELLANEOUS CONCEPTS

You may say, “I want my RMI-based stock server application back. Why make things so complex?”
The reason is that the only instance of UnicastRemoteObject in our RMI StockServer may need
to process thousands of concurrent user requests, and because of this you’ll need to write code
ensuring that such concurrent processing is thread safe.

Servlet and EJB containers are scalable and they take care of all multi-threading issues, enabling
you to write application code as if the application were the only user! This alone should be a good
reason for using the Java EE stack as opposed to RMI. Without going into a detailed comparison
between RMI and Java EE, I’ll just add that if you need to deploy your StockServer application
on the Web, corporate firewalls won’t allow clients that use the JRMP communication protocol
required by RMI.

Java EE is a very robust, reliable, and scalable platform and you will appreciate what its container
will do for your code. I’ll just mention a couple of concepts here.

If you want Java EE containers to help you, help them by providing configuration parameters (anno-
tations) that specify how many instances of the same session bean stockMarketQuote you want
pre-created for you by the EJB container. Each of these session beans may be “rented” from a pool
to the client’s request, and then put back. How many beans do you need? I don’t know. I don’t have



Trylt | 289

enough information at this point, as it depends on the load on your system — the number of concur-
rent (simultaneous) requests for price quotes that have to be supported by your system.

Java EE implements dependency injection. An object doesn’t have to reach out to get the resources
it needs, because the container injects the resources into the object using annotations. you’ll see
examples of CDI later in the book.

Interceptors offer a mechanism by which containers can intercept method invoked on your session

beans. When the call is intercepted you can specify additional code to be called before or after the

method is executed. For example, imagine that you need to add logging before certain methods are
called. Adding interceptors is an easy way to do this.

Integration of Java EE 6 with third-party web frameworks like Spring and Hibernate is made easy
by web fragments.

Starting in the next lesson you’ll have a chance to apply all these concepts and features.

TRY IT

This lesson was a high-level overview of the Java EE 6 platform. The hands-on exercises starting
from the next lesson will require that you have an application server installed, and installing the
GlassFish v3 server is your next assignment.

Lesson Requirements

You should have Java installed.

Hints

NetBeans IDE has very good support for Java EE 6. By now switching from one IDE to another should
be as easy for you as switching from one bicycle to another. If youd like to experiment with NetBeans 7
IDE instead of Eclipse, download the Java bundle from http: //netbeans.org/downloads/index
.html — it includes NetBeans 7 IDE with the GlassFish v3 server packaged and preconfigured.

Step-by-Step

1. Download GlassFish Server Open Source Edition. At the time of this writing the latest ver-
sion, GlassFish 3.0.1, is available at the following URL: https://glassfish.dev.java
.net/public/downloadsindex.html#top.

2. Click the Download button, and the next web page will offer downloads for Windows,
Linux, and Mac OS. You will have your choice of two profiles: full platform and web profile.
Get the full platform distribution for your OS and follow the installation instructions.

3. If you are using Windows, just run glassfish-3.0.1-windows.exe.


http://netbeans.org/downloads/index.html
https://glassfish.dev.java.net/public/downloadsindex.html#top
https://glassfish.dev.java.net/public/downloadsindex.html#top

290 | LESSON 26 JAVA EE 6 OVERVIEW

Mac OS users should use the Unix distribution called glassfish-3.0.1-unix.sh. In the
Terminal window set the executable permissions and then run the installer:

chmod +x glassfish-3.0.l1-unix.sh

./ glassfish-3.0.1-unix.sh
During the installation process you’ll be asked to select the directory where GlassFish Server
will be installed. In my case, on Mac OS, it’s /Users/yfainll/glassfishv3.

Select and enter the password on the next screen, shown in Figure 26-2. Note that by default
GlassFish Server will run on port 8080 and the port for server administration is 4848.

ANA GlassFish Server Open Source Edition_
C.’ - q
Administration Settings
Welcome
License

Installation Directory
Administration Settings
Update Configuration
JOK Selection

Ready To Install Configure the administration settings for the server. Please provide username

Progress and password for the server. You may leave the password field empty if you
Product Registration would like to configure the server for unauthenticated logins.
Summary

Admin Port [1848 ]

Hitp Port  [B0B0 |

Usemame  Jadmin ]

Password | ]

ORACLE

Created by Oracle with
contributions from the
Glasslish community

Conca o]

FIGURE 26-2

Click Next and Install on the next two pop-ups. The installation process will start and at the
end you may optionally register your newly installed copy of GlassFish Server. Your installa-
tion process is complete.

Download the Oracle GlassFish Server 3.0.1 Quick Start Guide from http://docs.sun
.com/app/docs/doc/821-1757 and test your server by starting and stopping the default


http://docs.sun.com/app/docs/doc/821-1757
http://docs.sun.com/app/docs/doc/821-1757

Trylt | 291

domain as described in this document. For reference, here’s the output in my Terminal win-

dow after I start GlassFish on my Mac:

vakov-fains-macbook-pro-2:bin yfainll$ ./asadmin start-domain
Waiting for DAS to start ...........
Started domain: domainl

Domain location: /Users/yfainll/glassfishv3/glassfish/domains/domainl
Log file: /Users/yfainll/glassfishv3/glassfish/domains/domainl/logs/server.log

Admin port for the domain: 4848
Command start-domain executed successfully.

After the server has successfully started, open your web browser and enter http: //
localhost:8080/ — you should see the GlassFish welcome page.

www . wrox . com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 26 on the DVD with the print book, or watch online at



http://localhost:8080/
http://localhost:8080/
http://www.wrox.com/go/fainjava




Programming with Servlets

Web applications can serve static or dynamic content. Some examples of static content are text
files with HTML markup, images, and video. Dynamic content is formed on the fly. Think of
a web application that enables you to browse the inventory of an online store. The content you
see on your screen is being created based on your queries — in other words, dynamically.

In the Java EE world, web content is served either by a program running in a container with
deployed servlets, JSP, JSF, or a third-party framework, or it’s a SOAP or RESTful Web
Service. Servlets, JSP, and JSF not only return the data, but also present it as formatted HTML
pages, hence the term presentation layer (refer to Figure 26-1). Web Services, on the other
hand, return just the data (see Lesson 34).

A servlet is a Java program written by certain rules and deployed in a Java EE-compliant servlet
container of your choice. The client program can be a lightweight HTML, JavaScript, applet, or
JavaFX program. In this lesson I’ll be explaining the most widely used means of web communi-
cation: HTTP requests and responses. HTTP stands for Hypertext Transfer Protocol.

All examples in this lesson will work in any Java EE container supporting the Servlet 3.0 spec-
ification. I use GlassFish v3.

Figure 27-1 shows a web browser making HTTP requests to MyServlet, a servlet written by
you or another developer, and receiving HTTP responses that MyServlet sends back.

THE BIG PICTURE

Before you even learn how to create servlets, let’s look at the components and the workflow of
an imaginary online store, www.MyBooks . com, developed with Java servlets.

> The client’s machine just needs a web browser. The bookstore will consist of a number
of HTML web pages for getting user input. The Web browser sends it to the server
with the name MyBooks . com in the form of an HTTPRequest object.

> The MyBooks . com computer has to run some web server software, usually on port 80.
For secure communication with HTTPS (HyperText Transfer Protocol Secure) the port
443 is used. The web server will “listen to” the users’ requests. If a web server receives
a simple request for static HTML content, the web server will process the request



294 | LESSON 27 PROGRAMMING WITH SERVLETS

without needing to engage any additional software, and it’ll send back HTTPResponse with the
requested static content.

> The website MyBooks . com will also run a servlet container with deployed servlet(s). If the
web server receives a user request to find books based on some criteria, it’ll create and pass
HttpServletRequest to the appropriate servlet, FindBooks, which is deployed and running
in the servlet container. The next section shows sample HTML containing a form that explic-
itly lists FindBooks.

> The servlet creates (on the fly) the HTML page listing the found books that meet the
requested search criteria, and sends it to the web server in HttpServletResponse, which
wraps it inside the Ht tpResponse object and sends it back to the user’s web browser.

> The user’s browser displays the received page without knowing if it is an old static HTML
page or a freshly baked one.

Web Server Servlet Container
R
HttpServiet
HTTPRequest Request
Br\:)ve:e HttpServiet MyServiet
wser __HTTPResponse __Response
~—
POJO, EJB
DBMS, External
Application, ...
FIGURE 27-1

THE THIN CLIENT

Listing 27-1 shows a simple HTML file with a form containing a text input field and a Submit but-
ton, which users can use to find a book by its title.

‘) LISTING 27-1: HTML that gives 404

Available for <html>

download on

Wrox.com <head> .
<title>Find a book</title>
</head>
<body>

Enter a word from the book title:
<form action=http://www.MyBooks.com/servlet/FindBooks method=Get>
<input type=Text name=booktitle>



How to Write a Servlet | 295

<input type=Submit value="Search">
</form>
</body>
</html>

Create a file called BookSearch.html containing the code from Listing 27-1. Open this file in a web
browser (File ©> Open), enter any text in the input field, and press Search. You’ll get an error mes-
sage because there is neither a server nor a servlet called FindBooks at this address. But now you see
what the thinnest client can look like.

Clients communicate with servlets using HT TP protocol, and when no requested network resource is
found, the HTTPResponse object comes back with an error. If the server responds, but the requested
resource (the FindBooks servlet) is not there, the error code 404 is returned. If the server doesn’t
respond, the web client will show an appropriate error code. If the client’s request successfully received
the needed resource from the server, the HTTPResponse contains the status code 200. The list of all pos-
sible HTTP status codes is available at www.w3 .org/Protocols/rfc2616/rfc2616-secl0.html.

HOW TO WRITE A SERVLET

To create a servlet, write a class that extends from HTTPServlet and annotate it with the @websServlet
annotation. The class HTTPServilet extends GenericServlet, which defines the method service ().
The method service () receives the client’s response and directs it to one of the methods of your class
that’s a descendant of HTTPServilet. You have to override either of the methods doGet () or doPost ().
Which one to override? This depends on the client’s request method. If the client uses the method Get
(see Listing 27-1), override the callback doGet (), as in Listing 27-2.

‘) LISTING 27-2: Your first servlet

Available for import javax.servlet.ServletException;
dwm?:&gn import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;

@WebServlet (urlPatterns="/books", name="FindBooks" )
public class FindBooks extends HttpServlet ({

@Override
public void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException {
// The code processing request goes here
// The resulting Web page will be sent back via the
// I/0 stream that response variable contains
PrintWriter out = response.getWriter();
out.println("Hello from FindBooks") ;


http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

296

| LESSON 27 PROGRAMMING WITH SERVLETS

If you properly deploy this servlet on MyBooks . com, the HTML client from Listing 27-1 will get as a
response a web page containing the text “Hello from FindBooks.” Note that the import statements
include classes from the javax.serviet package, which is not included with Java SE — you need Java
EE 6 SDK installed. GlassFish Server comes with Java EE 6, but if you are using a different container
you can get it from www.oracle.com/technetwork/java/javaee/downloads/index.html.

HOW TO DEPLOY A SERVLET

The annotation ewWebservlet is where you specify servlet deployment parameters. Prior to Java EE 6
you needed to specify deployment parameters in an XML file, but now that’s optional. Our FindBooks
servlet uses the deployment parameters urlPatterns, and name. The former is used to match one of
the servlets deployed on the server to the URL. The value /books means that whenever the client sends
a request containing the pattern books in its URL, the request has to be redirected to the FindBooks
servlet. For example, the servlet container will send the request http: //localhost:8080/books to the
FindBooks servlet.

Each application server and servlet container has a directory known as a document root. It is used
not only for servlet-based websites, but also for the deployment of static HTML files. For example,
if you put the HTML file TermsaAndconditions.html in the subfolder 1egal of the document root
of the server MyBooks . com, users would need to direct their web browsers to www.mybooks . com/
legal/TermsAndConditions.html.

In the GlassFish application server the default document root is the directory /glassfish/
domains/domainl/docroot. In Apache Tomcat it’s the directory webapps. If you are planning to
create a servlet, its deployment directory will also be located in the document root, but it will con-
tain the subdirectories weB-INF and META-INF.

weB-INF will have the subdirectories classes and 1ib and the optional file web. xm1. The latter is
optional if you can specify all deployment parameters in annotations. But if you have both annota-
tions and web . xm1, the values in this file will override the corresponding values in the annotations. This
allows changing deployment parameters without requiring recompilation of the servlets. The weB-INF
directory also may have some container-specific files. For example, GlassFish has the file sun-web.xm1,
in which it stores the context root, which is the root directory of your Web application as well as the
part of the URL that’s used to access your application in the Web browser (/Lesson27 in our case).

The directory META-INF may have files containing metadata about this web application, like mani fest
.mf or other data specific to a third-party framework or application server content. For example,
Apache Tomcat has a file called context . xml where you may find information about the JDBC driver.
This directory may also contain the file web-fragments.xm1, which is a module of deployment mainly
used by third-party frameworks to store their specific deployment parameters.

This is what the directory structure of the application deployed in the document root directory can
look like:

document root dir
WEB-INF

Classes

Com


http://www.oracle.com/technetwork/java/javaee/downloads/index.html

Installing the GlassFish Plug-In for Eclipse | 297

Practicaljava
lesson27
FindBooks.class
Lib
META-INF

manifest.mf

The class com.practicaljava.lesson27.FindBooks was compiled into the directory classes. If
you had some third-party jar files you could add them to the 1ib directory.

When your web application is complete, most likely it’ll consist of multiple files, and typically the
entire directory structure is deployed as one compressed file with the extension .war, which stands
for web archive. Such files can be created manually, by your IDE plug-ins, or by one of the build
tools like Ant or Maven. Later in this lesson I’ll show you how to create a war file with Eclipse for
Java EE Developers.

INSTALLING THE GLASSFISH PLUG-IN FOR ECLIPSE

It’s a lot more convenient to develop and deploy Web applications when you don’t need to leave

the IDE. Eclipse for Java EE is a good fit for the development of web projects. NetBeans IDE and
Intelli]IDEA are also good tools for Java EE developers. Because I'll be using GlassFish Server, let’s
install the GlassFish plug-in that’s available for Eclipse IDE Helios or later.

From Eclipse’s Help menu select Eclipse Marketplace. A new window will pop up: Enter GlassFish
in the Find field. This search will return several GlassFish-related plug-ins; pick the Tools Bundle for
Eclipse. This is a bundle that comes as two plug-ins. Press Install and follow the instructions. At the
end of the installation, Eclipse will restart showing a GlassFish welcome window; close it and switch
to the Java EE perspective.

Now configure GlassFish Server. The Eclipse view will allow you to start and stop the server and
deploy applications without needing to leave Eclipse. Select File ©> New = Other and pick Server in
the opened window. Select the option GlassFish Open Source Edition 3 (Java EE 6).

The next pop-up will ask you about a default JRE (it must be Java 1.6 or above) and where
GlassFish Server should be located. According to my installation (see Lesson 26) I specified /Users/
yfainll/glassfishv3/glassfishand pressed Next. Accept default parameters for domaini in the
next window and press Finish. Eclipse will start GlassFish Server, asking you for the administrator’s
ID and password that you specified when installing GlassFish in the previous lesson.

If you did everything right your Eclipse Servers view should look like Figure 27-2, and the Console
view should show output similar to the following:

Waiting for DAS to start ...............

Started domain: domainl

Domain location: /Users/yfainll/glassfishv3/glassfish/domains/domainl

Log file: /Users/yfainll/glassfishv3/glassfish/domains/domainl/logs/server.log
Admin port for the domain: 4848

Command start-domain executed successfully.



298 | LESSON 27 PROGRAMMING WITH SERVLETS

[£ Markers | 1 Properties | 414 5 rvers B3 = B snippets| B Console |
+ GlassFish Server Open Source Edition 3 (Java EE G) at localhost [Started, Synchronized]

FIGURE 27-2

HOW TO CREATE A SERVLET WITH ECLIPSE

In the File = New menu of Eclipse, select the option Create Dynamic Web Project. In the pop-up
window name it Lesson27. Note that by default the GlassFish target run time has been selected (see
Figure 27-3). If you have another servlet container configured in your Eclipse installation, you can
deploy it under a different run time (such as Tomcat).

[.TaY+)

Dynamic Web Project =
Create a standalone Dynamic Web project or add it to a new or existing Enterprise Application. |I °

Project name. | Lesson27 }

_Project location
¥ Use default location

Location: /Users/yfainL1/practicallava/workspace/Lessond s _ Browse...

Target runtime

|_GlassFish Server Upen Source Edition 3 Uava EE 6) o) (mew b

Dynamic web module version
=
3.0 )

Configuration

| Default © for Glasskish Server Upen Source Edition 3 Gava ke 6) b ( Modify.. )

A good starting point for working with ClassFish Server Open Source Edition 3 (Java EE 6) runtime.
Additional facers can later be installed 1o add new funcricnality 1o the project.

__EAR membership
"] Add project to an EAR

EAR project name: EAR ) Mew Project... |
Warking sets
(] Add project to working sets
Working sets: v [ Selec.
@ [ <Back ([ Mest> ) ([ Cancel ) [ESFinishiss)
#“

FIGURE 27-3



How to Create a Servlet with Eclipse | 299

Click Finish, and it’ll create a new Eclipse project, which is not the same as the projects you’ve been
creating so far. It has a subfolder called webcontent that contains the weB-1nF and META-TNF direc-
tories that will be used for deployment in the servlet container of your choice.

Right-click the project name and select New > Servlet, then specify com.practicaljava.lesson27
as the name of the package, and the class name as FindBooks. Click Next and edit the URL map-
ping field to be /book. Click Next again. The next window will ask you which method stubs youd
like to have auto-generated; keep the default docet () and doPost (). Finally, click Finish, and the
code in Listing 27-3 will be generated (I removed the comments).

\) LISTING 27-3: Generated FindBooks servlet

Available for  package com.practicaljava.lesson27;
download on
Wrox.com . ) ) .

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet (description = "The servlet that searches for books",
urlPatterns = { "/books" })
public class FindBooks extends HttpServlet ({
private static final long serialVersionUID = 1L;

public FindBooks () {
super () ;
// TODO Auto-generated constructor stub

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException{
// TODO Auto-generated method stub

protected void doPost (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException{
// TODO Auto-generated method stub

Add the following two lines in the doGet () method to get access to the output stream and send the
message “Hello from FindBooks™:
PrintWriter out = response.getWriter();

out.println("Hello from FindBooks") ;

Don’t forget to add the import statement for Printwriter. The final step is to deploy the servlet
under GlassFish Server. Open the Servers view, right-click the server, and select Add and Remove



300 | LESSON 27 PROGRAMMING WITH SERVLETS

from the menu. Select the Lesson27 project in the left panel and add it to the right one (see
Figure 27-4). Click Finish.

The servlet deployment is finished. Now right-click FindBooks in the Eclipse project, select Run on
Server > GlassFish and click Finish. Eclipse will run its internal web browser and will display the
message shown in Figure 27-5. Please note that the URL ends with /books according to the specified
urlPatterns parameter, http://localhost:8080/Lesson27/books.

Because servlets belong to the presentation layer, let’s change the presentation a little bit. This code
in doGet () will show the output in a larger font and in the header <H2> style:

PrintWriter out = response.getWriter();
out.println("<html><body bgcolor=yellow>") ;
out.println("<h2>Hello from FindBooks</h2>");

If you want to create a war file deployable on any servlet container, find the Deployment Descriptor
section in your Lesson27 project, right-click it, and select Export to WAR. In a couple of seconds
yow’ll have Lesson27.war, a file that you can deploy in any Java EE 6—compliant container.

[ Fa¥s) Add and Remove...
Add and Remove
Madify the resources that are configured on the sereer |
=
Muove resources to the right o configure them on the server
Available: Configured:
L Add > )
< Remove
Add All >>
<< Remove All
E] If server is started, publish changes immediately
@ <k ) (CNet> ) (CConcel ) ()
£
FIGURE 27-4

H e | @e 9| @

" O ([J] FindBooksjava | (@

47 http:{ /localhost:BOBO/Lessan2 7 fbooks

Hello from FindBooks

FIGURE 27-5



HTTP Get and Post Requests | 301

BROWSER-SERVLET DATA FLOW

One servlet can serve multiple users, so let’s review the entire process of client-servlet communica-
tion. Java Servlets run in a container, which automatically spawns a new thread for every client’s
request without requiring you to do any thread programming.

The web browser can use an HTML form, a link, or another program that can send, say, a Get or
Post request to the server. In the very beginning, when the first user’s request hits the FindBooks
servlet, the container will check if this servlet is up-and-running. If not, the container will start

it and call the servlet’s method init () — even if you didn’t override this method, it exists in the
superclass HttpServlet.

Then the container calls the method service () of the servlet’s superclass, which redirects the
request to doGet (), doPost (), or similar doXxx (), passing the arguments HttpServletRequest
and HTTPServletResponse. Your code can get the data entered by the user from the
HttpServletRequest object with the method getParameter ().

After you get the parameter(s), process it in the business layer, which can be implemented either as
POJOs talking to some data store or as an EJB. Return the result to the client by getting the refer-
ence to the Printwriter object — it knows how to send text data to the user. For non-textual
results use the class outputStream instead of Printwriter. Don’t forget to set the content type
by calling setContentType (). For example, if you are sending an object containing PDF content
and want the browser to automatically open Acrobat Reader, call the function Response
.setContentType ("application/pdf") ;.

The servlet container controls when the servlet is loaded, and when its init (), service(), and
destroy () methods are called. The method destroy () is called when a server administrator
decides to unload the servlet, or the server is gracefully shutting down, or the server needs to free
some resources. The following code retrieves the name of the book entered by the user and responds
with the price of 65 dollars:

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String title = reqg.getParameter ("booktitle");;
PrintWriter out = res.getWriter();

res.setContentType ("text/html") ;
out.println("<html><body>") ;

out.println("<h2>the book "+title+" costs only $65");
out.println("<p>Please enter your credit card number");
out.println("</body></html>") ;

HTTP GET AND POST REQUESTS

HTTP specification defines several methods for data exchange on the Web, but Get and Post are the
most widely used ones. If you don’t specify the method, Get is used by default. Because the HTML tag
<form> in Listing 27-1 used method=Get, the FindBooks method doGet () will be invoked by the con-
tainer. In this case the web browser will append the values entered in the form to the end of the URL



302

| LESSON 27 PROGRAMMING WITH SERVLETS

after the question mark. For example, if the user enters the word apol1o as a book title, the URL may
look like this:

http://www.mybooks.com?booktitle=Apollo

If a form submits multiple values, the URL will include several key/value pairs after the question
mark. With Get it’s easy to copy and paste or bookmark the URL with parameters. On the other
hand, with get the data is not protected — you can see it in clear text.

The method post is typically used to send larger amounts of data to the server. It’s always used to
send binary data to the server. Of course, the log-in forms should use Post because you don’t want
the user’s ID and password to be shown in the URL. To process Post requests, servlets have to over-
ride the method dopost ().

It’s common to use Get for data retrieval and Post for both data retrieval and modification.

SESSION TRACKING

HTTP is a stateless protocol. If a user retrieves a web page with a list of books from the FindBooks
servlet or any other server-side program as a result of an HTTP request, and then goes to another
web page, this second page does not know what was shown on the first one. To preserve data to
more than one web page, session tracking has to be implemented.

A session is a logical task, which the user is trying to complete by visiting a website. For example,

the process of buying a book may involve several steps: book selection, input of billing and shipping
information, and so on. All of these steps combined to form an example of a session. When a purchase
order is placed, the session is over. To create a session, call the method request.getsSession (true).
Calling this method without an argument will give you either a reference to the existing session or nul1.

The session information can be stored either on the client or on the server side. On the client side the
user’s session data can be stored using cookies (defined in the next section) or URL rewriting. The
server-side alternative for storing session data is a session tracking API that implements the interface
javax.servlet.http.HTTPSession.

Cookies

A cookie is a small piece of data that a container sends to the web client to be stored on the disk.
On every subsequent request from that client, the cookie is returned to the server, uniquely associat-
ing the request with a given session. The cookies are persistent, but the user may disable them by
selecting the appropriate option in the web browser. When the session is created, a special cookie,
JSESSIONTID, is sent to the client. Here’s how the servlet can send a business-related cookie (javax
.servlet.http.Cookie) to the client:

Cookie myCookie = new Cookie("bookName", "Java Programming 24-hour trainer");

// Set the lifetime of the cookie for 24 hours

myCookie.setMaxAge (60*60*24) ;
response.addCookie (myCookie) ;

This is how a servlet can retrieve a client’s cookies that arrive with HttpServletRequest:

Cookie[] cookies = request.getCookies();



Session Tracking | 303

for (i=0; 1 < cookies.length; i++){
Cookie currentCookie = cookiel[il];
String name = currentCookie.getName () ;
String value = currentCookie.getValue();

}

Even though you can store multiple cookies on the client, as in the preceding code, it’s not a good
idea to send the application data back and forth over the network. Typically the session data is
stored in the HTTPSession object described later in the section “Server-Side HTTPSession.”

URL Rewriting

If a client disables cookies, the URL rewriting may be used for session tracking. In this case the session
ID and other required session data are attached to the URL string. If you’ve noticed something such as
jsessionid=12345 in the URL string of any website, it means that URL rewriting is being used.

Server-Side HttpSession

You should keep the data that belong to a user’s session (such as the shopping cart) inside the
javax.servlet.http.HttpSession object in the servlet container, which creates one such object
per client. The servlet can store there any Serializable objects. The following line creates a session
object (or finds a previously created one):

HttpSession mySession = request.getSession (true);

The call getsession (true) means “find this client’s session object or create a new one if no object
is found.” Usually the shopping process consists of a number of subsequent servlet calls (list an
inventory, add an item to the shopping cart, enter shipping information, etc.). The method call
getSession (true) should be used in the very first servlet that opens the business process that can
be called a user session. At this moment the application server generates a unique session ID and
sends it to the user’s web browser using either a cookie or URL rewriting.

The call getsession (false) means “find my session object,” assuming that it has been created in
the previous steps of the session. If this call returns null, the session object has been destroyed and
you might want to display a message saying that the session has expired, and the user has to start
the process from scratch. Let’s assume that the following class represents a book on the server side:

class Book {
String title;
double price;

This is what you can do in the method doGet () of the servlet to create a session and a shopping cart:
HttpSession session = request.getSession(true);
// This sample uses Vector object here to store selected books.
// Try to get the shopping cart that might have been
// created during previous calls to this servlet.

Vector myShoppingCart=session.getAttribute ("shoppingCart") ;

if (myShoppingCart == null) {



304 | LESSON 27 PROGRAMMING WITH SERVLETS

// This is the first call - instantiate the shopping cart
myShoppingCart = new Vector();

// create an instance of a book object
Book selectedBook = new Book();

selectedBook.title=request.getParameter ("booktitle") ;
selectedBook.price= Double.parseDouble (request.getParameter ("price"));

// Add the book to our shopping cart
myShoppingCart.addElement (selectedBook) ;

// Put the shopping cart back into the session object
session.setAttribute ("shoppingCart", myShoppingCart) ;

When the book order has been placed the program should close the session by making the fol-
lowing call:

session.invalidate() ;

If the session has not been invalidated explicitly, the application server will do it automatically after
a specific period. This period is called timeout and is a configurable parameter.

Filters

Even after a servlet is deployed you still can change the way it processes requests and responses
without modifying the servlet’s code. You can create filters — code that can be configured to process
HTTP requests before they are passed to the servlet, or right after the servlet returns the request.
Filters are good for adding such functionality as authentication, logging, encryption, data compres-
sion, and audit reporting.

None of these actions depend on the business logic implemented by servlets. Besides, why write code
with compressed logic over and over again in each servlet if you can create one filter and apply it to
all of them before the data is sent to the client? What if you need to compress and encrypt? Write
two filters and chain them so both are applied to the same servlet.

To create a filter, write a class that implements the interface javax.servlet.Filter annotated
with ewebFilter. There are three methods in this interface: doFilter (), init (), and destroy ().
Here’s a sample of a filter class to be used with two servlets, FindBooks and RemoveBook:

@WebFilter (servletNames={"/FindBooks", "/RemoveBook"})
public class MyAuthenticationFilter implements Filter {

@Override
public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)throws IOException, ServletException {

// user authentication code goes here

//Call the next filter, if any
chain.doFilter (request, response);



Event Listeners | 305

@Override
public void init(FilterConfig filterConfig) throws ServletException {}

@Override
public void destroy() {}

The container gives the filter both request and response objects. You can check passed parameters
by the client (such as by checking ID/password), perform authentication, and, if the user is not valid,
call response.getwriter () and send the user the message “You don’t belong here” without even
passing control to the servlet.

The method destroy () is called once before the container removes the filter; if the filter has cre-
ated some resources such as DBMS connections, close them in the filter’s code. The method init ()
is invoked on the filter only once during its instantiation. The filter gets the Filterconfig object,
which gives you access to the servlet context and initialization parameters if these are specified in
the @webFilter annotation or in the file web. xmi:

@WebFilter (servletNames={"/FindBooks", "/RemoveBook"},
initParams={name="community", value="adults"})

EVENT LISTENERS

Several important events happen to a servlet during its life cycle. You can write code reacting to
these events in custom event listener classes. For example, the container fires events when the servlet
context is created, and if you are interested in processing this event, create a class that implements
the ServletContextListener interface. To catch the moment when the session has been created,
invalidated, or timed out, use HttpSessionListener. To catch the beginning of the processing of
the servlet request, create a class implementing ServletRequestListener.

Imagine that you need to gather statistics on the usage of the bookstore servlet and log the date and
time when each user’s session was created and destroyed. Listing 27-4 prints the session ID on cre-
ation and invalidation of every user’s session.

‘) LISTING 27-4: HttpSession listener

Available for import javax.servlet.http.HttpSessionListener;
d&ﬂgtgg£n import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSession;
import javax.servlet.ServletConfig;
import javax.servlet.annotation.WebListener;

@WebListener
public class BookStoreSessionListener implements HttpSessionListener({

public void init(ServletConfig config) {
continues



306 | LESSON 27 PROGRAMMING WITH SERVLETS

LISTING 27-4 (continued)

}

public void sessionCreated (HttpSessionEvent event) {
HttpSession session = event.getSession();
System.out.println("BookStore session created; id:"+ session.getId());

}

public void sessionDestroyed (HttpSessionEvent event) {
HttpSession session = event.getSession();
System.out.println("BookStore session destroyed; id:"+ session.getId());
}

To test this listener, modify the code of doGet () in the servlet FindBooks from Listing 27-4 to cre-
ate and destroy the session. (In more realistic scenarios the session creation and destruction would
be performed in different methods.)
protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

// Get or create the session
request.getSession (true) ;

PrintWriter out = response.getWriter();
out.println("<html><body bgcolor=yellow>") ;
out.println("<h2>Hello from FindBooks</h2>");

//Destroy the session
request.getSession(true) .invalidate() ;

To emulate the multiple-users scenario, make the first request to the FindBooks servlet from Eclipse
IDE, and another one from the web browser by copying the URL http://localhost:8080/
Lesson27/books into the address bar. You should see the creation and destruction of two sessions
with different IDs in the Eclipse Console view, which runs the server:

INFO: BookStore session created; 1d:104903cldd6a8306cb33all6257a
INFO: BookStore session destroyed; i1d:104903cldd6a8306cb33all6257a

INFO: BookStore session created; 1d:104fl6ba2e714bdd8981c7ea2e87
INFO: BookStore session destroyed; id:104fl6ba2e714bdd8981c7eal2e87

ASYNCHRONOUS SERVLETS

It’s great that servlets automatically create and allocate a separate thread for each user’s request,
but each thread takes up system resources (both memory bytes and CPU cycles), and after a certain
number of concurrent requests the server will simply stop responding. Imagine if thousands of users
simultaneously hit the FindBooks servlet that has to perform a three-second DBMS search for each
request. During these three seconds the container will hold the lock on each thread, doing nothing
but waiting for the result of the DBMS query (running on another server!).



Trylt | 307

The idea of asynchronous servlets is to minimize the time of thread locking. If User A makes a
request that takes three seconds on a DBMS server, the container’s thread will be given to the
request of User B, and, when User A’s result comes back from the DBMS, the container will allocate
this (or another) thread to return the result to User A. This architecture can substantially increase
the number of concurrent requests that can be processed on the same server.

In the past, vendors of servlet containers offered their proprietary solutions for asynchronous pro-
cessing. Jetty implemented its version of reusing thread via a concept called continuations, whereby
the thread given to a request is suspended for the time required for the business logic to complete,
and then is resumed when the result is ready. Apache Tomcat and GlassFish implemented technology
based on the event-based model called Comet, whereby an HTTP connection to the servlet con-
tainer is maintained, and the server pushes the data to the client via this connection.

The Servlets 3.0 specification has introduced a standard, Comet-based way of creating
asynchronous Java EE web applications. In doGet () or doPost () you can instantiate the
object javax.servlet.AsyncContext, which creates an asynchronous worker thread and
doesn’t lock the client’s thread while preserving the client’s request and response objects.
Asynchronous processing is out of the scope of this tutorial, but you can find a detailed
example of programming an asynchronous servlet at http://bit.1ly/b0iBcr.

TRY IT

Write a simple HTML client with one text input field that has a Submit button. The user will enter the
stock symbol she wants to get a price quote for. Generate a random quote and return a web page with
the quote. Reuse the code from stockServerTmpl from Listing 25-2 to generate the price quotes.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson27 folder in the download.

Hints

You can find several examples of Servlet 3.0 web applications at www.oracle.com/technetwork/
java/javaee/documentation/code-139018.html.

Step-by-Step
1.  Create an HTML client similar to the one from Listing 27-1 to allow the user to enter the

stock symbol.

2. Create a servlet called stockServerservilet that will take one parameter, the stock symbol,
and instantiate a class called stockQuoteGenerator that should have the code similar to
Listing 25-2. There’s no need to implement Remote interface though.


http://bit.ly/b0iBcr
http://www.wrox.com
http://www.oracle.com/technetwork/java/javaee/documentation/code-139018.html
http://www.oracle.com/technetwork/java/javaee/documentation/code-139018.html

308 | LESSON 27 PROGRAMMING WITH SERVLETS

3. Pass the stock symbol received from the client to StockQuoteGenerator and get the price.
4. Return the dynamically created HTML page to the client via the request object.

5.  Test the servlet in Eclipse IDE first, and then create the war file and deploy it in the document
root of GlassFish Server, installed in Lesson 26.

6.  Start GlassFish Server.

7. Open the HTML file you created in Step 1 in your web browser and test the servlet by enter-
ing various stock symbols.

Please select Lesson 27 on the DV D with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava

JavaServer Pages

JavaServer Pages (JSP) was created as a next step in servlets’ evolution. JSP 2.2 is part of the
Java EE 6 specification, and with it you can do everything that you can do with servlets, but
more easily. Let’s say you’ve created and deployed a servlet, which displays “Hello World.”
The servlet gets a hold of the output stream of the response object and executes the following
line of code:

out.println("<html><body>Hello World </body></html>");

Let’s say you run a small software company that employs Alex, an expensive Java developer,
and Matilda, a junior Web designer who doesn’t know Java but does know HTML. What if
you need to change the layout of this HTML page, such as by adding several empty lines on
top? It’s not a big problem — Alex can modify the preceding line of code, recompile it, and
redeploy the servlet. But for making small changes in the HTML-based Ul it’s more efficient to
use Matilda. This is where JSP becomes very handy. Ask Matilda to create the following text
ﬁk,HelloWorld.jsp

<html>
<body>

Hello World
</body>
</html>

Place this file into the document root directory (see Lesson 27) in your servlet container run-
ning at, say, MyBooks . com. Now the users can access this JSP by entering the following URL in
their web browsers:

http://www.MyBooks.com/HelloWorld. jsp

Upon the first request to this page, the JSP container (vendors of servlet containers support
JSP, too) will automatically generate, compile, and deploy a servlet based on the content of the
file Helloworid. jsp. All subsequent calls to this JSP will be processed a lot faster, because the
servlet Helloworld will already be deployed, loaded in memory, and running. As a matter of
fact, JSP, as well as servlets, can be preloaded so that even the first user’s request is responsive.



310 | LESSON 28 JAVASERVER PAGES

You might think that you could make a simple web page by creating Hel1oworid. html without all
this extra code generation. This is true, as long as your page is static and does not use any external
dynamically changed data. Remember that HTML is not a programming language but a markup
language — it can’t even add two and two, but JSP can (see MyCalculator. jsp in Listing 28-1).

EMBEDDING JAVA CODE INTO HTML

JSP defines tags that enable you to embed Java code into an HTML page. When the servlet is auto-
matically generated behind the scenes, this Java code will also be included and executed as part of
this servlet. JSP tags are included in angle brackets: for example, the <¢=. . .%> tag displays the value
of the variable or expression:<%=2+2%>. During the servlet generation process performed by the JSP
engine, these tags will be replaced with the regular Java code. For example, the tag <¢=2+2%> will
automatically be replaced by a JSP container with the following Java statement:

out.println(2+2);

Listing 28-1 shows the content of the two-plus-two calculator called Mycalculator. jsp. <BR> is an
HTML tag for inserting line breaks. Note that Alex, the programmer, had to write only the expres-
sion inside the JSP tag; the rest was done by Matilda. Consider this task separation an example of
the designer-developer workflow.

‘) LISTING 28-1: MyCalculator.jsp

Available for <html>
download on <body>

Wrox.com
HTML created by Matilda goes here...
<br>
You may not know that 2 + 2 is <%= 2 + 2%>
<br>
More HTML created by Matilda goes here...
</body>
</html>

Create a Dynamic Web Project in Eclipse called Lesson 28. It’ll automatically create a file called
index. jsp — a Hello World JSP under the WebContent directory with the content shown in
Figure 28-1. Deploying any JSP is a simple matter of copying the JSP file into the document root
directory of your JSP container. Of course, if your JSPs are part of a multi-file project, most likely
you’ll be deploying them in a war file, as described in Lesson 27.

Right-click the name index. jsp and select Run on Server and you’ll see the Hello World web page.
Make a copy of index.jsp named Mycalculator.jsp and replace the content in the <body> part
with the content from the <body> section from Listing 28-1. Run it and you’ll see the web page in
Eclipse, as shown in Figure 28-2. The expression <2 + 2%> has been precompiled and replaced
with 4. A JSP is nothing more than a servlet that is automatically generated from a file containing

valid HTML and JSP tags.



Implicit JSP Objects | 311

_Java EE - Lesson28/WebContent/index.jsp - Eclipse - /Users/yfainl1/practical k e

| @ | 3 & v lv o G

<¥#poge contentType="text/html” pageEncoding="UTF-8"%
<!DOCTYPE WTML PUBLIC "-//W3C//DTD HTML 4.81 Transitional//EN"
"hitp:/Swww.wd.org/TR/htmldNoose . dbd">

= <html>
= <heuds
<mata http-equiv-"Content-Type" content-"text/html; charset=UTF-8">
<titlesfilassFish ISP Pagec/titles
</head>
<budy>
<hi=Hello Worldl</his
</hadys
</ html>
FIGURE 28-1

If you need to change the appearance of the page
(colors, fonts, data allocation) without chang-
ing the expression (2+2), Matilda can do it eas-
ily! After the changes are applied, the JSP will & | hitp:/flocalhost:8080/Lesson28/MyCalculator.jsp
be automatically regenerated into a new servlet HTML created by Matilda goes here...

and redeployed. Usually you do not even have to m‘:ﬁ’“;m‘:g‘:’ﬁ;";;m;;‘;m k.

restart the server. The only exceptions are pre-

loaded JSPs that are configured to be initialized FIGURE 28-2

on server startup. Any business logic changes

inside the JSP tags will be programmed by Alex.

IMPLICIT JSP OBJECTS

Because JSPs are built on top of servlets, the main concepts remain the same. Following is the list
of predefined variables that you can use in JSP pages. These variables are initialized by the JSP con-
tainer, and you can use them without explicit declarations.

»  request has the same use as HttpServletRequest.
>  response has the same use as HttpServletResponse.

> out represents the output write stream Jspwriter. This variable points at the same object as
HttpServletResponse.getWriter () in servlets. For example, a simplest JSP that returns a
result from a Java class called currencyconverter might look like this:

<html>
<body>
<% out.println(CurrencyConverter.getDollarRate()); %>
</body>
</html>

session represents an instance of the user’s HTTPSession object.

> exception represents an instance of the Throwable object and contains error information. This
variable is available only from the JSP error page (described later in the section “Error Pages”).



312

| LESSON 28 JAVASERVER PAGES

> page represents the instance of the JSP’s servlet.

> pageContext represents the JSP context and is used with Tag Libraries (described later in
this lesson in the section of that name).

application provides access to web context. Its use is similar to that of ServletContext.

>  config provides initialization information used by the JSP container. Its use is similar to that
of the class ServletConfig.

OVERVIEW OF THE JSP TAGS

Each JSP tag starts and ends with an angle bracket and can be included in any HTML file, but you
need to save them as . jsp files for proper identification and processing by JSP containers. This sec-
tion is a brief overview of JSP tags. For more detailed coverage refer to the JSP documentation at
http://java.sun.com/products/jsp/docs.html.

Directives

Directives do not generate screen output, but instruct the JSP container about the rules that have to
be applied to the JSP. Some of the JSP directives are page, include, attribute, and taglib.

Page directives start with <@ page and are only in effect within the current page. Directives are
used\NkhSudlaUrﬁnHesasimport,extends,session,errorPage,contentType,andsonm(ﬁh-
ers. For example, to import the java.io package use this directive:

<%@ page import="java.io.*" %>
Include directives to allow the inclusion of any text from a file or any code from another JSP, at the
time when the page is compiled into a servlet, as in the following example:
<%@ jsp:include page="calcBankRates.jsp" %>

<%@ include file="bankRates.txt" %>

To use a third-party library of custom tags you need to specify where this library is located, as in the
following example:

<%@ taglib uri="my_taglib.tld" prefix="test" %>

The attribute directive enables you to define attributes of custom tags, like this:

<%@ attribute name="corporate_logo_file_name" %>

Declarations

Declarations are used to declare variables before they are used. You can declare a variable salary

like this:

<%! double salary; %>


http://java.sun.com/products/jsp/docs.html

Overview of the JSP Tags | 313

The variable salary is visible only inside this page. You can declare Java methods in the JSP page the
same way:

<%! private void myMethod() {

%>

The code contained in the declaration block turns into the Java code in the generated servlet.

Expressions

Expressions start with <%= and can contain any Java expression, which will be evaluated. The result
will be displayed in the HTML page, replacing the tag itself, like this:

<%= salary*1.2 %>

Scriptlets

Initially scriptlets were created to give JSP developers a place to put any valid Java code to be
included in the generated servlet’s _jspService () method, which is an equivalent of the servlet’s
method service (), for example a scriptlet can look like this:

<% lastName = "Smith"; %>

With the creation of JSP Standard Tag Libraries (JSTL) and Expression Language (EL) there is now
no need to use scriptlets, but this syntax still works.

Comments

Comments that start with <%-- and end with --%> will be visible in the JSP source code, but will
not be included in the resulting HTML page.

<%-- Some comments --%>

If youd like to keep the comments in the resulting web page, use regular HTML comment notation:

<!-- Some comments -->

Standard Actions

Although the directive include adds the content of the included page during compile time, the ele-
ment jsp:include does it during run time.

<jsp:include page "header.jsp" />

The element forward enables you to redirect the program flow from the current JSP to another one
while preserving the request and response objects. The other way of redirecting the flow is to use
response.sendRedirect (someURL), but in this case new request and response objects are cre-
ated, which results in a client request to the server.

<jsp:forward page = "someOther.jsp" />



314 | LESSON 28 JAVASERVER PAGES

The plugin element ensures that your JSP includes an applet or a Java bean (described later in the
“JavaBeans” section). During run time the web browser replaces this tag with one of the HTML
tags: <object> or <embed>.

<jsp:plugin type=applet code="PriceQuotes.class" >

The nested tag <jsp:param> is used to pass parameters to an applet or a bean:
<jsp:plugin type=applet code="Login.class">
<jsp:params>
<jsp:param name="userID" value="SCOTT" />
<jsp:param name="password" value="TIGER" />
</jsp:params>
</jsp:plugin>

ERROR PAGES

Let’s say we have a file called calcTax. jsp containing code that may throw Java exceptions. Instead
of scaring users with stack trace output screens, prepare a friendly taxErrors. jsp explaining the
problem in plain English.

calcTax.jsp may have an HTML <form> in which the user enters gross income and the number of
dependents. The request for tax calculations is sent to the server’s calcTax Java class, which might
throw an exception during its processing. Include the name of the error page that has to be shown in
case of exceptions:

<html>
Some code to calculate tax and other HTML stuff goes here

<%@ page errorPage=taxErrors.jsp %>

</html>

Next comes the error page taxErrors. jsp, which illustrates how to use the JSP variable exception,
which displays the error message in a user-friendly way, and also contains more technical error descrip-
tion for the technical support team:

<html>
<body>
Unfortunately there was a problem during your tax calculations. We are
working on this issue - please try again in 10 minutes.
If the problem persists, please contact our award winning technical support
team at (212) 555-2222 and provide them with the following information:
<br>
<%$=exception.toString()>

</body>
</html>



JavaBeans | 315

JAVABEANS

JavaBeans specification defines a bean as a Java class that implements the Serializable inter-

face and that has a public no-argument constructor, private fields, and public setter and getter
methods. The similar concept of Data Transfer Objects (DTOs) was introduced in Lesson 22 (see
Listing 22-2). Java beans are used mainly for data storing and exchange. In JSP they are used to
avoid mixing Java code and HTML (see also the section “Tag Libraries” later in this lesson; they are
also helping to avoid mixing Java and HTML).

Think of the MVC pattern in JSP-based web applications. The JSP belongs to the view tier, the servlet
can play a role of a controller, and the Java bean can represent a model. Although you can mix HTML
with business logic coded in scriptlets, declarations, and expressions, you should avoid doing this and
separate presentation from business logic processing and data storage. First, this will allow you to split
the work more easily between Alex and Matilda, and second, you’ll be able to have more than one pre-
sentation solution (e.g., a different Ul for mobile devices) reusing the same Java code.

Using beans is the first step in separating processing logic and presentation. Listing 28-2 shows an
example of a bean, called student.

‘) LISTING 28-2: Student bean

Available for import java.io.Serializable;
download on
Wrox.com
class Student implements Serializable{

private String lastName;
private String firstName;
private boolean undergraduate;

Student () {
// constructor's code goes here

}

public String getLastName () {
return lastName;
}
public String getFirstName () {
return firstName;
}
public void setLastName (String value) {
lastName = value;
}
public void setFirstName (String value) {
firstName = value;
}
public void setUndergraduate (boolean value) {
undergraduate = value;

continues



316 | LESSON 28 JAVASERVER PAGES

LISTING 28-2 (continued)

public boolean isUndergraduate () {
return undergraduate;

Don’t confuse JavaBeans with Enterprise Java Beans (EJB), which is a different concept and will be
covered in Lesson 32.

Using JavaBeans in JSP
To use a bean with JSP, first you need to specify its name and location, and after that you can set or
get its properties. Following are some examples of bean usage:

<jsp:useBean id="Student" class="com.harward.Student" />
<jsp:getProperty name="Student" property="LastName" />
<jsp:setProperty name="Student" property="LastName" value="Smith"/>

The next code snippet populates the student bean’s properties LastName and FirstName based on the
data from the HTML tag <form>, which has two HTML text input fields called 1.Name and FName:

<jsp:setProperty name="Student" property="LastName" value=
"<%= request.getParameter ("LName") %>" />

<jsp:setProperty name="Student" property="FirstName" value=
"<%=request.getParameter ("FName") %>" />

If property names are the same in the HTML form and in the bean, mapping the HTML form’s and
the bean’s fields becomes even simpler with the asterisk notation:

<jsp:setProperty name="Student" property="*" />

How Long Does a Bean Live?

If a JSP variable is declared inside a scriptlet, it has a local scope. To give it an instance scope,
declare the variable using the declaration tag. You can define a bean’s scope using the scope attri-
bute of the tag jsp:useBean. The following list defines the various scopes.

> page: The bean is available only within the current page and will be destroyed as soon as the
user exits the page. This is a default scope. For example:

<jsp:useBean 1id="Student" class="com.harward.Student" scope="page" />

> request: The bean is alive for as long as the request object is alive. Even if the control will
be redirected to a different JSP by means of the tag jsp: forward, the bean will remain avail-
able on the new page because it’ll be using the same request object, like this:

<jsp:useBean 1d="Student" class="com.harward.Student" scope="request" />



Loading JSP from Servilets | 317

>  session: The bean is available for all pages until the user’s session ends (see the section
“Session Tracking” in Lesson 27).

<jsp:useBean 1id="Student" class="com.harward.Student" scope="session" />

>  application: The bean is available for all users and all pages — this is a global bean.

<jsp:useBean id="Student" class="com.harward.Student" scope="application" />

LOADING JSP FROM SERVLETS

In line with the separation of presentation and processing, JSP should have a bare minimum of any
processing. When the servlet receives the data to be sent to the user, instead of sending to the client
hard-coded HTML tags it should load and send the JSP page to the client. Ideally, the JSP should be
laid out by a Web designer.

Let’s say you have a servlet that needs to load a JSP based on the user’s selection in the HTML
window. If you don’t need to get new copies of the request and response objects you’ll need to
create an instance of the RequestDispatcher class and call its method forward (), providing
HttpServletRequestandHttpServletResponseasargunwnw,aSShOWthlLﬁﬁng28-3.The
servlet Myserviet returns to the Web browser either the JSP showing the data of the Toyota dealer-
ship or the JSP showing data about Nissan vehicles.

‘) LISTING 28-3: Servlet loading JSP

Availablefor  public class MyServlet extends HttpServlet({
d&ﬁg?gg;" public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException {

ServletContext context = getServletContext();
RequestDispatcher requestDisp = null;

String make = req.getParameter ("carMake");

if (make.equals("Toyota") {
requestDisp = context.getRequestDispatcher ("Toyota.jsp");
requestDisp. forward(req, res) ;

}

else if (make.equals("Nissan") {
requestDisp = context.getRequestDispatcher ("Nissan.jsp");
requestDisp. forward (req, res) ;

}

In some cases the current servlet performs all interactions with the user, and just needs to load the
code of another servlet or JSP. For this purpose use the method include () instead of forward():

requestDisp.include (req, res) ;



318 | LESSON 28 JAVASERVER PAGES

Because this redirection happens on the server side, the initial URL is still displayed in the web
browser’s address bar. To provide the new URL (to allow the user to bookmark the resulting page,
forexanqﬂd,useresponse.sendRedirect(“/new_URL"L

TAG LIBRARIES

Yet another way of minimizing the amount of code in JSP is to use tag libraries containing custom
and reusable tags — either your own original library or a library created by someone else. Each cus-
tom tag looks similar to a regular one, but under the hood is always supported by a Java class (or
classes) written by a programmer to provide the required functionality.

If you want to create your own custom tags to be used with JSP you have to do the following:

> Create a tag library descriptor — an XML file with the extension . t1d. It has to be deployed
in the directory WEB-INF/tags.

> Create Java classes that provide business logic supporting the tags. Such classes are usually
deployed as jars in the weB-1NF/11ib directory.

> Register the tag library with the web application.

Listing 28-4 shows a sample tag library descriptor file. The tag DowJones should display a Dow
Jones index value. The empty value in <bodycontent> means that this is a simple JSP tag with no
content and could be used like this: <sts:DowJones/>.

‘) LISTING 28-4: Sample .tld file

Available for <?xml version=" 1. 0" encoding="UTF-8" ?>
daﬂg%g&:" <taglib xmlns=" http: / / j ava. sun. com/xml/ns/ j 2ee"
xmlns: xsi=" http: //www. w3. org/ 2 001/XMLSchema-instance"
xsi: schemalocation=" http: //java. sun. com/ xml/ns/j2 ee
http: //java. sun. com/ xml/ns/j2 ee/web-jsptaglibrary_2 _0. xsd"
version="2 . 0" >
<tlib-version>1.0</ tlib-version>
<shortname>sts</shortname>
<uri>http://www.mystockserver.com:8080/taglib</uri>
<info>Wall Street tag library</info>

<tag>
<name>DowJones</name>
<tagclass>DowJonesTag</tagclass>
<bodycontent>empty</bodycontent>
<info>Displays the Dow Jones index</info>
</tag>

</taglib>

The class supporting a JSP tag (e.g. DowJonesHandler) has to implement the interface javax
.servlet.jsp.tagext.SimpleTag or extend SimpleTagSupport. The JSP container will call



Tag Libraries | 319

DowJonesHandler’s methods to set the JSP context — setPageContext ()— start the execution of
the tag’s code — dostartTag (), etc. This class gives you a default implementation of the SimpleTag
interface and initialized references to the pagecontext and parent. Place required logic for the tag
in the doTag () method, which is called by the container at request time.

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

public class DowJonesHandler extends SimpleTagSupport{
public int doTag() throws JspException, IOException{

String dowQuote;

// Obtain the DowJones quote by accessing

// http://finance.yahoo.com/q?d=t&s="DJI or similar
dowQuote=...;

// and write it to the client
JspWriter out = getJspContext().getOut();
out.print ("The last price is " + dowQuote) ;

To make a tag library recognizable by your JSP container, register it by inserting the following frag-
ment into the file web. xm1:

<taglib>
<taglib-uri>
http://www.mystockserver.com/taglib
</taglib-uri>
<taglib-location>
/WEB-INF/taglib.tld
</taglib-location>
</taglib>

When you’ve done all this, create a simple file called test. jsp and start using your tag library. The
sample JSP in Listing 28-5 uses the tag <DowJones>.

‘) LISTING 28-5: Using a custom tag in a JSP

Available for <html>
Sounooth _pcac
<%@ taglib uri=http://www.mystockserver.com/taglib prefix="sts" %>
</head>
<body>
Today's Dow Jones index: <sts:DowJones/>
</body>
</html>



320

| LESSON 28 JAVASERVER PAGES

If a tag requires some parameters, they should be specified in the . t1d file with the tag <attribute>,
for example:

<tag>

<attribute>
<name>tradeDate</name>
<required>false</required>
</attribute>
</tag>

The setter method has to be provided in the tag handler class for each parameter. Setters have to be
named according to the same naming convention as Java beans:

public void setTradeDate (String tradeDate) {

}

Custom tag libraries are created by application developers to fit the needs of a specific project(s).
Third parties can also provide non-standards-based tag libraries, as with the open source implemen-
tation of JSP tag libraries in the project Apache Taglibs (http://tomcat.apache.org/taglibs/).

JSTL

JSP Standard Tag Libraries (JSTL) is a standardized specification for library components that includes
actions that are reusable for many JSP-based applications. Standard JSTL guarantees that any Java
EE—compliant JSP container will include and support these components. There are five JSTL librar-
ies. They contain an iterator, if statements, tags for XML processing, tags for executing SQL, tags for
internationalization and commonly used functions.

While the JSP in Listing 28-3 had to specify the location of the tag library on your server, standard-
ized libraries have predefined URLs. For example, to use the forEach iterator you’d need to specify
the following URI: http://java.sun.com/jsp/jstl/core. XML processing tags are located at the
following URI: http://java.sun.com/jsp/jstl/xml. Accordingly, the code fragment that uses
the iterator can look like this:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<c:forEach var="item" items="S${sessionScope.cart.items}">
</c:forEach>

Learning programming with JSTL and Expression Language is out of the scope of this tutorial;
please refer to the Oracle tutorial at the following URL: http: //download.oracle.com/javaee/5/
tutorial/doc/bnake.html.

TRY IT

Rewrite the sample stock server application that you created in the “Try It” section of Lesson 27, but
this time do it using JSP and Java beans. Write a simple HTML client with one text input field and
a Submit button. The user will enter the stock symbol she wants to get a price quote for. Generate


http://tomcat.apache.org/taglibs/
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://download.oracle.com/javaee/5/tutorial/doc/bnake.html
http://download.oracle.com/javaee/5/tutorial/doc/bnake.html

Trylt | 321

a random quote and return a web page with the quote. Reuse the code of stockserverImpl from
Listing 25-2 for generating the price quotes.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson28 folder in the download.

Step-by-Step

1. In the Eclipse project Lesson28 select the option File & New. Create a new JSP file named
StockQuote. jsp to allow the user to enter a stock symbol and request a price quote. Eclipse
will create a file that looks like this:

<%@ page language="java" contentType="text/html; charset=IS0-8859-1"
pageEncoding="IS0-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/htmld/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=I50-8859-1">
<title>Insert title here</title>
</head>
<body>

</body>
</html>

2. Create a Java class called stockServer to contain a method with one parameter — the stock
symbol — and will calculate the price quote for the specified stock with code similar to what
is shown in Listing 25-2. There’s no need to implement Remote interface though.

3.  Use required JSP tags to include the StocksServer Java class in StockQuote. jsp, and display
the price quote generated by its method getQuote () as well as the list of all available stock
symbols by calling getNasdagSymbols ().

4. Addan HTML <form> tag to StockQuote. jsp with one text input field and a Submit but-
ton so the user can enter the stock symbol and request the price quote.

5. Runand test Stockguote. jsp from Eclipse.

Please select Lesson 28 on the DV D with the print book, or watch online at
www . wrox . com/go/ fainjava to view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava




Developing Web Applications
with JSF

In the previous lesson I mentioned that the JSP specification was created on top of servlets to
simplify Web application development and as a step toward the separation of responsibilities
between web designers and developers. I also said that you should minimize the use of Java
code in a JSP page. But JSP doesn’t enforce this practice. JavaServer Faces (JSF) does, and
using it is the best way of developing Java EE web applications with a thin client.

The current version, JSF 2.0, is based on the Facelets framework that was originally an open-
source product. You’ll be creating JSF web pages in extensible HTML (.xhtm1 files), which
means that the HTML has to be well-formed — every open tag should have a closing one, the
values for the tags’ attributes must be placed in quotes, the elements tags must respect case-
sensitivity, and the document must have a single root tag.

Like JSP, the JSF framework is tag-based. But JavaServer Faces has several important advan-
tages over JSP:

> The JSF framework comes with a set of Ul components, while JSP uses standard
HTML components.

> ]JSF is event-driven.

> You can’t add Java to .xhtm1 files, which enforces clean code separation between Java
and HTML.

JSF offers easy navigation between web pages.

JSF introduces configurable managed beans, which contain processing logic and
navigation.

I’ll give you more details on each of these bullet points later in this lesson.



324 | LESSON 29 DEVELOPING WEB APPLICATIONS WITH JSF

THE BIG PICTURE

The JSF framework is a part of the presentation tier and it enforces the separation of presentation
and processing logic. Reiterating the MVC paradigm, the library of JSF components is responsible
for the UI, the servlet Facesserviet plays the role of a controller, and managed beans are the
model. The processing logic can be placed in POJO classes, in EJB, or in third-party systems, as
shown in Figure 29-1.

Web Server Servlet Container

SR e N
HttpServiet

HTTPRequest Request

)

JSF
Components

~

Y

Web Renderer

Browser

Faces

HttpServiet
poerv Servlet

__HTTPResponse Response

N ¥
)

Managed
Beans

POJO, EJB,
DBMS, External
Application, ...

FIGURE 29-1

The managed beans can be linked to the UI JSF components so that when, for example, you fill out
a form on a web page, the entered values are automatically assigned to the corresponding field in
your Java bean. Sometimes beans that support UI components are called baking beans.

Without further ado, let’s start working on a two-page web application to enroll students into classes.
The first page will enable users to enter student ID, name, and course, and the second page will con-
firm the enrollment. The Ul will be supported by managed beans, which will serve as a data model,
but the data won’t be saved (persisted) anywhere (you’ll learn about persistence in Lesson 33).

MANAGED BEANS

Managed JSF beans are similar to JavaBeans, introduced in Lesson 28, but the word managed
means that they can be linked directly to JSF components. Besides storing data they may also con-
tain information about page navigation. FacesServlet controls the managed beans.

Let’s start working on the student enrollment example by creating a managed bean called student.
But first create a new dynamic web project called Lesson29 in Eclipse IDE.



Managed Beans | 325

Thencraﬂethe]avacbﬁsStudentintheﬁﬂdercom.practicaljava.Lesson29.beansandadd
the annotation @ManagedBean right above the class name. Eclipse will mark this line with a red x,
complaining about the missing import statement. Right-click this x, select the option Quick Fix,
and import this annotation class from the javax. faces.bean package. The annotation registers the
class student as a JSF resource. Add the @RequestScoped annotation to ensure that the container
creates a new instance of this bean for each user’s request.

Declare three private variables: int studentId, String name, and long classId. Then select
Source = Generate Getter and Setters and the rest of the student code will be auto-generated. It
will look like Listing 29-1.

\) LISTING 29-1: Managed bean Student

Available for  package com.practicaljava.lesson29.beans;
download on

Wrox.com . ) ) Lo
import java.io.Serializable;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Student implements Serializable{

private long studentId;
private String name;
private int classId;

public long getStudentId() {
return studentId;

}

public void setStudentId(long studentId) {
this.studentId = studentId;

}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public int getClassId() {
return classId;

}

public void setClassId(int classId) {
this.classId = classId;

Configuration of the managed beans is done using annotations — no additional configuration files
are required. But if you specify the file faces-config.xml in the WEB-INF directory, its setting will
override the annotation values.



326 | LESSON 29 DEVELOPING WEB APPLICATIONS WITH JSF

CREATING A JSF WEBSITE

The content of the baking bean student will have to be populated from the UI. With JSF you can
either select the components that you want to put on each web page 4 la carte, or use a more struc-
tured and efficient approach called templating. I’ll explain the creation of JSF sites with templating.

Templating

The layout of most websites is similar: They have headers, footers, left and/or right sidebars, and
content areas. This was taken into consideration by the designers of Facelets, who introduced tem-
plating. For example, you can define one template for a site that contains a header and a footer, and

just change the views displayed in the content area based on the user’s actions. This is what templat-
ing is all about.

You start developing the website by creating an .xhtm1 file containing the main layout, and then
add a number of views, or composition pages. Each of these composition pages will declare which
template it has to use, define the required components for the content area, and either reuse the
headers and footers from the template or override them. You’ll find the methodology of creating
pages easy to understand when you create a sample template and composite page.

In Eclipse select File = New & XHTML page, and accept the default location, the webcontent
directory. Enter studentTemplate as the name of the file and click Next. Then select New Facelet
Template in the pop-up window shown in Figure 29-2.

AOO New XHTML File
Select XHTML Template .
Select a template as initial content in the XHTML page. < >‘

(v Use HTMI Templare

Templates:

Name Description

New Faceler Composition Fage Creares a new Faceler page for use with a emg
New Facelet Footer Creates a footer for use with the Facelet templ
Mew Facelet Header Creates a header for use with the Facelet temp;
New Facelet Template |Creates a basic header/content/footer Facelst
New XHTML File (1.0 frameseq xhtmi 1,0 frameset

New XHTML File (1.0 strict) xhtml 1.0 strict

New ¥HTML File (1.0 transitional) xhtml 1.0 transitional

[ : ERES
Preview:

«|DOCTYPE himl PUBLIC "-//W3L//DTD XHTML 1.8 Transitional//EN"
"http:/Swew.w3.org/ TR/ xhtml1/0TD/xhtmll-transitional.dtd"> m
<html xmlins="http:/“wow.n3.0rg/ 1999/ xhtol "
xmlns:ui="http:/Fjava.sun. com/jsf/ Facelets">
<head=
<titles<ui:insert name="title">Default title</ui:insert></title»

Templates are "New HTML' templates found in the HTML Templates preference page.

{?) ( <Back ) Next - ( cancel ) (rmishesd)

FIGURE 29-2



Creating a JSF Website | 327

This will create a basic webpage template with three sections — header, content, and footer — as
shown in Listing 29-2.

\) LISTING 29-2: Facelet template StudentTemplate.xhtml

Available for
download on
Wrox.com

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<title><ui:insert name="title">Default title</ui:insert></title>
</head>

<body>
<div id="header">

<ui:insert name="header">
Header area. See comments below this line in the source.

<!-- include your header file or uncomment the include below
and create header.xhtml in this directory -->
<!-- <ui:include src="header.xhtml"/> -->
</ui:insert>

</div>

<div id="content">
<ui:insert name="content">
Content area. See comments below this line in the source.
<!-- include your content file or uncomment the include below
and create content.xhtml in this directory -->

<!-- <div> -->
<!-- <ui:include src="content.xhtml"/> -->
<!-- </div> -->
</ui:insert>
</div>

<div id="footer">
<ui:insert name="footer">
Footer area. See comments below this line in the source.

<!-- include your header file or uncomment the include below and create
footer.xhtml in this directory -->
<!--<ui:include src="footer.xhtml"/> -->
</ui:insert>
</div>
</body>
</html>

The three sections enclosed in the HTML <div> tags suggest that the web pages that will be using this
template might have a header, a content area, and the footer. If you don’t need this page layout just
delete the appropriate <div>. If you need a sidebar create a <div> section with the ID sidebarleft or
sidebarright. Notice the ui prefix inside the tags: It points at the namespace where all the Facelets



328

| LESSON 29 DEVELOPING WEB APPLICATIONS WITH JSF

components reside. The namespace concept (see xmlins in the code) comes from XML. You can use
any prefix instead of ui, but it should uniquely identify the location of the components referred to by
the prefix. Namespaces are defined in the top portion of the template in Listing 29-2. You can have
more than one namespace defined in your JSF page. The h prefix is typically used for HTML JSF com-
ponents, and f for the core ones:

xmlns:ui=http://java.sun.com/jsf/facelets
xmlns:h=http://java.sun.com/jsf/html
xmlns: f="http://java.sun.com/jsf/core"

I’ll make a slight text edit to the code in order to have the header and the footer displayed in a large
font — note the HTML tag <h1>:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<title><ui:insert name="title">Student Portal</ui:insert></title>
</head>

<body>

<div id="header">
<ui:insert name="header">
<hl>Welcome to my Students Portal</hl>
</ui:insert>
</div>

<div id="content">
<ui:insert name="content">
The content of my student portal goes here </ui:insert>
</div>

<div id="footer">
<ui:insert name="footer">
<h1>The footer of my portal is here</hl>
</ui:insert>
</div>

</body>
</html>

You can run and test this template in Eclipse: Right-click studentTemplate.xhtml and select Run
as ™ Run on Server. If the GlassFish server is not running, Eclipse will start it for you and deploy the
Lesson29 web application. Figure 29-3 shows how the internal Eclipse web browser will show this
page. You can also enter the URL http://localhost:8080/Lesson29/StudentTemplate.xhtml
into a regular web browser — the output will be the same.

I want to keep this well-designed header and footer on each page of my student portal that has views
with changing content in the middle. Let’s create a new file called Enrolistudent.xhtmil, but this
time select New Facelets Composition Page in the pop-up window shown in Figure 29-2. Eclipse
will create the file shown in Listing 29-3.



Creating a JSF Website | 329

"}“ http://localhost: BOB0 /Lesson29/5tudent lemplate_ xhtmi

Welcome to my Students Portal

The content of my student portal goes here

The footer of my portal is here

FIGURE 29-3

‘) LISTING 29-3: Default composition page in Eclipse

Available for <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
dwmrggg" "http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="">
<ui:define name="header">
Add your header here or delete to use the default
</ui:define>
<ui:define name="content">
Add your content here or delete to use the default
</ui:define>
<ui:define name="footer">
Add your footer here or delete to use the default
</ui:define>
</ui:composition>
</html>

Note that this Facelet also has three sections, like the template in Listing 29-2. To link this page to
a template, add StudentTemplate.xhtml to the template attribute. To reuse the header and the
footer from the template, just remove the Facelets tag <ui:define> for the header and footer, as in
Listing 29-4. When the JSF implementation can’t find the definitions for these sections, it’ll use the
ones from the template.

\) LISTING 29-4: EnrollStudent.xhtml, first version

Available for <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
download on "http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
continues



330 | LESSON 29 DEVELOPING WEB APPLICATIONS WITH JSF

LISTING 29-4 (continued)

xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="StudentTemplate.xhtml">
<ui:define name="content">
Add your content here or delete to use the default
</ui:define>
</ui:composition>
</html>

Now run this page in Eclipse or in your web browser, but add /faces to the URL, like this:
http://localhost:8080/Lesson29/faces/EnrollStudent.xhtml.Bydeﬁuﬂtthﬁ\wﬂlengage
FacesServlet, which knows how to properly interpret all JFS tags. Figure 29-4 shows the first ver-
sion of the Enroll Student page.

™ || @ hp:/ flacathost:B08D /Lesson2D /StudentTemplata.xhimi £2

o s o Sy
M 7 | hitp: flocalhost:BOE0/Lesson 2y Student emplate xhtmi

Welcome to my Students Portal

The content of my student portal goes here

The footer of my portal is here

FIGURE 29-4

To complete the Enroll Student page, let’s add several JSF tags: form, inputText, outputText, and
commandButton. Listing 29-5 shows the updated version of Enrol1Student.xhtml. Note that the
value attribute of each inputText tag is bound to the corresponding field of the student bean. The
first letter of the bean name starts with a lowercase letter (student, not student). The <br/> tag is
just an HTML tag indicating a line break.

‘) LISTING 29-5: EnrollStudent.xhtml, second version

Available for <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
download on "http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="StudentTemplate.xhtml">
<ui:define name="content">

<h:form>

<h:outputText value="Student Name:"/>



Creating a JSF Website | 331

<h:inputText value="#{student.name}" title="name" id="name" /> <br/>

<h:outputText value="Student ID:"/>
<h:inputText value="#{student.studentId}" title="id" id="studentId"/> <br/>

<h:outputText value="Class ID:"/>
<h:inputText value="#{student.Id}" title="classId" id="classId" /> <br/>
<h:commandButton action="enrolled" value="submit" />

</h:form>
</ui:define>
</ui:composition>
</html>

Run Enrollstudent.html and you’ll see the great-looking portal in Figure 29-5. Just to prove that
the Ul is really bound to the bean student, I’ve hard-coded my name in this class. That’s why you
see it in the form. The Student ID and Class ID fields show zeros — default values for numbers.

: (E ) ( i J @ ( _' ?!!'K:E:h“ |host:8080/Lesson29/faces/EnrollStudent.xhtmi
rial 1=

Welcome to my Students Portal

Student Name: Yakov Fain
Student ID: v
Class ID: o

(" submit )

The footer of my portal is here

FIGURE 29-5

Page Navigation

The command button in Listing 29-5 has the attribute action="enrolled". This means that
after this form is processed, the web application has to navigate to another JSP called Enrol1ed.
Listing 29-6 shows this page.

J LISTING 29-6: Enrolled.xhtml

Available for <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
dwmkggg“ "http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"

continues



332 | LESSON29 DEVELOPING WEB APPLICATIONS WITH JSF

LISTING 29-6 (continued)
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="StudentTemplate.xhtml">
<ui:define name="content">

<h:outputText value="#{student.name}"/>, thank you for enrolling in class
<h:outputText value="#{student.classId}" />

</ui:define>

</ui:composition>
</html>

It’s a pretty simple way of arranging page navigation, isn’t it? I’ve enrolled myself into class 123 in
EnrollStudent.xhtml. After pressing Submit, I got the confirmation shown in Figure 29-6.

8nNo6

@)" @ _f X.J |: A _1{ (|_| http:/ /localhost:8080/Lesson29/faces/EnrollStudent.xhtmi
0 Stwdentporal

Welcome to my Students Portal

Yakov Fain, thank you for enrolling in class 123

The footer of my portal is here

FIGURE 29-6

The commandButton button can be used for a different purpose: to call a method on a bean. You
can write a bean just to serve as a data model, but nothing prevents you from writing a method
that performs some business logic or performs other actions, such as getting data from a web ser-
vice or saving data using EJBs. In the next code snippet the click on the button will call the method
doSomething () on the bean Student.

<h:commandButton value="Do Something" action="#{student.doSomething}" />
The method dosomething () can return a String containing the name of the next JSF page to be
called, just like this:

class Student{

public String doSomething () {
// Do something and navigate to the next page
return "TheNextPage.xhtml";

To become familiar with other tags available in Facelets, refer to Chapter 5 of the Java EE 6 tutorial,
available at http://download.oracle.com/javaee/6/tutorial/doc/giepx.html.


http://download.oracle.com/javaee/6/tutorial/doc/giepx.html

Converters and Validators | 333

CONVERTERS AND VALIDATORS

Managed beans can have converters and validators assigned to them. A Java class has strongly typed
fields, but when the data arrives at the web page it has to be converted into strings. JSF performs
this conversion automatically for Java data types, but you can write your own converter and add some
application-specific logic.

Validators enable you to put some constraints on the data in the managed beans. You can either use
predefined annotations such as @NotNull, @Min, and @Max from javax.validation.constraints
to specify the data validation constraints on the bean’s fields, or create your own custom annota-
tions that implement constraints specific to your application. The standard validators on the fields of
the student bean may look like this:

@ManagedBean
@RequestScoped
public class Student implements Serializable{

@NotNull (message="you must enter Student ID"
@Size (min=8, max=10,

message="Student ID must include between 8 and 10 symbols")
private long studentId;

@Size(min=2, message="Name can have less than two characters")
private String name;

@NotNull (message="Please enter Class ID")
private int classId;

The core JSF library has standard validators that can validate length, and ranges for long and double
values. You encapsulate these validators right in the JSF file, like this:

<h:inputText value="#{student.name}" title="name" id="name" >
<f:validateLength minimum="2"/>
</h:inputText>

To create a custom validator (such as creditcardvalidator) you need to write a Java class that
implements the javax.faces.validator.validator interface and performs the validation in the
method validate (). If the value is not valid, the method has to throw a validatorException.
Custom validators must be registered in faces-config.xml.

<validator>
<validator-id>CreditCardvalidator</validator-id>
<validator-class>myvalidators.CreditCardvalidator</validator-class>
</validator>

Custom validators can be used in a JSF page with the <f: validator> tag, as in the following
example:
<h:inputText value="#{student.creditcad}" title="card" id="card" >

<f:validator id="CreditCardvalidator"/>
</h:inputText>



334 | LESSON 29 DEVELOPING WEB APPLICATIONS WITH JSF

TRYIT

Rewrite the sample stock server application that you created in the “Try It” section of Lesson 28,
but this time do it using JSF. The JSF client should have one text input field with a Submit button.
The user will enter the stock symbol she wants to get a price quote for. Generate a random quote
and return a web page with the quote. Reuse the code for stockServerTmpl from Listing 25-2 to
generate the price quotes. The web page should show the list of available stocks.

The managed bean will have a method called getQuotes () that should be called when the user
clicks the Submit button.

Lesson Requirements

You should have Java installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson29 folder in the download.

Hints

NetBeans 7 IDE supports JSF better than Eclipse does. It has a number of wizards, and in particular
you can easily define the navigation of your web pages in a graphical interface. (See http: //netbeans
.org/kb/docs /web/jsf20-support.html for details.) The other popular IDE, Intelli] IDEA 9,

also offers excellent support for JSE. (Refer to www.jetbrains.com/idea/features/javaserver_
faces.html for details.)

Step-by-Step

1.  Create a new StockServer bean, which will include the methods getguote () and
getNasdagSymbols ().
2. Define a JSF template.

3. Create two JSF pages: one for making a request for a price quote for a specific stock, and
the other one for showing the result. The Submit button in the first web page should call the
method getQuote () on the managed bean.

4. Run and test this JSF application.

Please select Lesson 29 on the DV D with the print book, or watch online at

www . wrox.com/go/fainjava fo view the video that accompanies this lesson.



http://www.wrox.com
http://netbeans.org/kb/docs/web/jsf20-support.html
http://www.jetbrains.com/idea/features/javaserver_faces.html
http://www.wrox.com/go/fainjava
http://netbeans.org/kb/docs/web/jsf20-support.html
http://www.jetbrains.com/idea/features/javaserver_faces.html

Introducing JMS and MOM

People send messages to each other via e-mail, instant messages, Twitter, Facebook, and so on.
People can also communicate using more traditional methods such as the post. You just need
to drop a letter in a mailbox, and the rest will be taken care of by postal service providers and
logistics companies such as USPS, FedEx, UPS, and DHL.

Applications can send messages to each other using message-oriented middleware (MOM),
which plays a role similar to that of the delivery services. A program “drops the message” into
a message queue (think mailbox) using the Java Messaging Service (JMS) API, and the mes-
sage is delivered to another application that reads messages off of this queue.

Although JMS is a part of the Java EE specification, you can use it with Java SE applications
without needing to have any Java application server — just make a . jar containing JMS classes
available to your program. In this lesson you’ll learn how to write simple Java clients to send and
receive applications with the JMS API via a MOM provider. In Lesson 31 I’ll show you how to
bring a Java EE application server to the messaging architecture, and why it’s beneficial. Finally,
in Lesson 32 youw’ll learn about the value that message-driven beans bring to the table.

MESSAGING CONCEPTS AND TERMINOLOGY

You have already learned several methods of data exchange in distributed Java applications —
direct socket communication, RMI, and HTTP-based interactions. But all of them were based
on remote procedure calls (RPC) or the request/response model. MOM enables you to build
distributed systems that communicate asynchronously.

JMS is an API for working with MOM. JMS itself isn’t the transport for messages. JMS is to
MOM what JDBC is to a relational DBMS. Java applications can use the same JMS classes
with any MOM provider. Here’s a list of some popular MOM software:

> WebSphere MQ (IBM)
»  EMS (Tibco Software)



336 | LESSON 30 INTRODUCING JMS AND MOM

> SonicMQ (Progress Software)
> ActiveMQ (open source, Apache)
> Open MQ (open source, Oracle)

If you place an order to buy some stocks by calling the method placeorder () on a remote machine,
that’s an example of a synchronous or blocking call. The calling program can’t continue until the
code in the placeorder () method is finished or has thrown an error.

With asynchronous communications it’s different — you can place an order but don’t have to wait
for its execution. Similarly, when you drop a letter in a mailbox you don’t have to wait for a mail
truck. The same applies to e-mail — press the Send button and continue working on other things
without waiting until your message has been received. Recipients of your e-mails also don’t have to
be online when you send a message; they can read it later.

The process of placing a trading order comes down to putting a Java object that describes your order
into a certain message queue of your MOM provider. After placing an order, the program may con-
tinue its execution without waiting until the processing of the order is finished. Multiple users can
place orders into the same queue. Another program (not necessarily Java) should be de-queueing

and processing messages. Figure 30-1 shows how a trading application can place orders (and receive
executions) with another application running on a stock exchange.

Brokerage Company Message-Oriented Middleware Stock Exchange
Outgoing Message Queue
Message orders 90ng 9 | Message
>» [T TTTTTTTTT]
Producer Consumer
4
Order Order
Receiver Processor
Incoming Message Queue
Message CCITITIIIITT |« Message
Consumer Producer

FIGURE 30-1

To increase the throughput of your messaging-based application, add multiple consumers read-

ing messages off of the same queue. You can create a consumer Java program that starts multiple
threads, each of them de-queuing messages from the same queue. In Lesson 32 you’ll see how easy it
is to configure multiple consumers using message-driven beans.

After your order has been processed, the appropriate message object will be placed into another
queue and, if your application is active at that time, it will de-queue the message immediately upon
its arrival. If your application is not running, but you’ve opted for guaranteed delivery (explained
later in this lesson), the messages will be preserved in the queue by the MOM provider.

Even if the application in a brokerage company is down when the order execution arrives from the
stock exchange, it’ll be saved in the MOM server until the receiving program is up again.



JMS API Overview | 337

TWO MODES OF MESSAGE DELIVERY

A program can send or publish a message. If it sends a message to a particular queue, and another
program receives the message from this queue, we call this point-to-point (P2P) messaging. In this
mode a message is deleted from a queue as soon as it’s successfully received.

If a program publishes a message to be consumed by multiple recipients, that’s publish/subscribe
(pub/sub) mode. A message is published to a particular topic and many subscribers can subscribe
to receive it. The topic represents some important news for applications and/or users, for example
PriceDropAlert, BreakingNews, et cetera. In pub/sub mode a message is usually deleted from a
queue as soon as all subscribers receive it (read about durable subscribers in the section “How to
Subscribe for a Topic”).

Another good example of a pub/sub application is a chat room. A message published by one person
is received by the other people present in the chat room. Developing a chat room with JMS and
MOM is a pretty trivial task.

Message delivery can be guaranteed, and MOM, just like the post office, will keep the message in
a queue until the receiver gets it. In this mode messages are persistent — the MOM provider stores
them in its internal storage, which can be a DBMS or a file system. In a non-guaranteed mode
MOM will deliver a message only to the receiving applications that are up-and-running at the
moment that the message arrives.

JMS API OVERVIEW

JMS is a pretty simple API that includes Java classes that enable you to send and receive messages.
Following are the names of the major JMS interfaces and a short description of each. All of them are
defined in the package javax.jms. All Java EE 6 JMS classes and interfaces are listed at http://
download.oracle.com/javaee/6/api/javax/jms/package-summary.html, but I’ll just give you
the summary of the main ones.

> Queue is a place to put (or get) your messages. The messages will be retrieved using the first
in first out (FIFO) rule. A message producer (sender) puts messages in a queue and a message
consumer (receiver) de-queues them.

> QueueConnection is an interface (it extends Connection) that represents a particular con-
nection to MOM (and plays a similar role to the JDBC class connection).

>  QueueConnectionFactory is an object that creates Connection objects (just the JDBC class
DataSource does).

>  QueueSession is an object that represents a particular session between the client and the
MOM server. QueueConnection creates a session object.

QueuesSender is an object that actually sends messages.
> QueueReceiver receives messages.

TopicPublisher publishes messages (it has a similar functionality to QueueSender).


http://download.oracle.com/javaee/6/api/javax/jms/package-summary.html
http://download.oracle.com/javaee/6/api/javax/jms/package-summary.html

338

| LESSON 30 INTRODUCING JMS AND MOM

>  TopicSubscriber is an object that receives messages (it has a similar functionality to

QueueReceiver).
> Topic is an object that is used in pub/sub mode to represent some important application event.
TopicPublisher publishes messages to a topic so the TopicSubscribers can subscribe to it.

>  Message is an object that serves as a wrapper to an application-specific object that can be
placed in a JMS queue or published to a topic.

TYPES OF MESSAGES

Every message contains a header and optional body and has facilities for providing additional
properties. The header contains the message identification (unique message ID, destination, type, et
cetera). The optional properties can be set by a program to tag a message with application-specific
data, for example Urgentorder.

The optional body contains a message that has to be delivered. Following are the types of JMS mes-
sages that you can place in a message body. All these interfaces are inherited from javax.jms.Message.

>  TextMessage is an object that can contain any Java String.
>  ObjectMessage can hold any serializable Java object.

>  BytesMessage holds an array of bytes.

>  StreamMessage has a stream of Java primitives.

>

MapMessage contains any key/value pairs, for example 1d=123.

HOW TO SEND A MESSAGE

Queues have to be preconfigured in MOM and their names must be known before a program can
start sending messages. In the real world a MOM server administrator manages queues and other
messaging artifacts. When Java developers get to know the queue parameters, they have a choice of
either creating message objects (such as ConnectionFactory and Queue) programmatically every
time they need to send or receive a message, or pre-creating objects bound to some kind of naming
service (you’ll see examples in Lesson 31).

A program has to perform the following steps to send a message:
1.  Create (or get from some naming server) a ConnectionFactory object.
. Create a Connection object and call its start () method.

Create a Session object.

Create a Queue object.

ahwWwN

. Create a MessageProducer object.



How to Send a Message | 339

6. Create one of the Message objects (such as TextMessage) and put some data in it.

7. Call the sena () method on the QueueSender.

8. Close the gueuesender, Session, and Connection objects to release system resources.
Listing 30-1 shows a code fragment that sends a message to a queue called TestgQueue. Note that the

method createQueue () just creates an instance of the Queue object locally — the actual destination
with the name TestQueue has to exist in MOM.

‘) LISTING 30-1: Sending a message

?m?mimr Session session=null;
ownload on :
Wrox.com ConnectionFactory factory;

QueueConnection connection=null;

try{
//The next two lines are specific to Open MQ. Another MOM
// provider will have their own version of creating connection
factory = new com.sun.messaging.ConnectionFactory();
factory.setProperty (ConnectionConfiguration.imgAddressList,
"mqg://localhost:7677,mqg://localhost:7677");

connection = factory.createQueueConnection("admin", "admin") ;
connection.start();
session = connection.createQueueSession (
false, Session.AUTO_ACKNOWLEDGE) ;
Queue 1oQueue = session.createQueue ("TestQueue");

MessageProducer queueSender = session.createProducer (ioQueue) ;

// Buy 200 shares of IBM at market price
TextMessage outMsg = session.createTextMessage("IBM 200 Mkt");

queueSender.send (outMsg) ;
queueSender.close() ;

System.out.println(
"Successfully placed an order to purchase 200 shares of IBM");

}
catch (JMSException e) {
System.out.println("Error: " + e.getMessage());
}
finally{

try{
session.close();
connection.close() ;
} catch (Exception e) {
System.out.println("Can't close JMS connection/session " +
e.getMessage()) ;



340 | LESSON 30 INTRODUCING JMS AND MOM

The code in Listing 30-1 uses an Open MQ-specific implementation of JMS’s ConnectionFactory.
After you read the section “Administering Objects in Open MQ” later in this lesson, you’ll under-
stand why these lines refer to localhost and port 7677.

HOW TO RECEIVE A MESSAGE

The program that receives messages is called a message consumer. It can be a standalone Java pro-
gram or a special type of enterprise Java bean called a message-driven bean (MDB). You can receive
messages either synchronously, using the receive () method, or asynchronously by implementing
the MessageListener interface and programming a callback onMessage ().

Under the hood, the receive () method uses a polling mechanism that constantly asks for a mes-
sage. It blocks program execution until the message is received or the specified time has expired:

QueueReceiver queueReceiver= Session.createReceiver (ioQueue) ;
Message myMessage = queueReceiver.receive();
The next line shows how to set a timeout interval of 500 milliseconds:

Message myMessage=queueReceiver.receive (500);

Using an asynchronous callback onMessage () is the best way to receive messages because the

message consumer is not sending multiple requests to MOM just to see if the message is in the
queue. The callback method onMessage () will be called immediately when a message is put in
the queue. The listener class must perform the following steps to receive messages:

1. Create (or get from some naming server) the QueueConnectionFactory object.
Create a Connection object and call its start () method.
Create a Session object.

2.

3.

4. Create a Queue object.

5. Create a QueueReceiver Object.
6.

If your class implements MessageListener (see Listing 30-2) write implementation for the
callback method onMessage (). If you want to get messages synchronously, just call the
QueueReceiver.receive () method. In this case implementation of the MessagelListener
interface is not needed.

7. Close the session and Connection objects to release the system resources.
The sample class MyReceiver in Listing 30-2 shows how to consume messages from the TestQueue

asynchronously. Its constructor creates JMS objects and registers itself as a message listener. The
callback onMessage () has code for processing the received messages.



How to Receive a Message | 341

J LISTING 30-2: Receiving a message

Available for
download on
Wrox.com

package com.practicaljava.lesson30;

import javax.jms.*;
import com.sun.messaging.ConnectionFactory;
import com.sun.messaging.ConnectionConfiguration;

public class MessageReceiver implements MessageListener({
Session session=null;
ConnectionFactory factory;
QueueConnection connection=null;

MessageConsumer consumer=null;

MessageReceiver () {

try({
factory = new com.sun.messaging.ConnectionFactory();
factory.setProperty (ConnectionConfiguration. imgAddressList,

"mqg://localhost:7677,mg://localhost:7677");

connection = factory.createQueueConnection("admin", "admin") ;
connection.start () ;
Session session = connection.createQueueSession (
false, Session.AUTO_ACKNOWLEDGE) ;
Queue i1oQueue = session.createQueue( "TestQueue" );

consumer = session.createConsumer (ioQueue) ;
consumer .setMessageListener (this) ;

System.out.println("Listening to the TestQueue...");

// Don't finish - wait for messages
Thread.sleep(100000) ;

} catch (InterruptedException e) {

System.out.println("Error: " + e.getMessage());

catch (JMSException e){
System.out.println("Error: " + e.getMessage());

finally{
try{

connection.close();

} catch (Exception e) {

System.out.println("Can't close JMS connection/session "

+ e.getMessage());

continues



342 | LESSON 30 INTRODUCING JMS AND MOM

LISTING 30-2 (continued)

public static void main(String[] args) {
new MessageReceiver () ;

public void onMessage (Message msg) {
String msgText;

try{
if (msg instanceof TextMessage) {
msgText = ((TextMessage) msg) .getText () ;
System.out.println("Got from the queue: " + msgText);
telse({

System.out.println("Got a non-text message");
}
}
catch (JMSException e) {
System.out.println("Error while consuming a message: " +
e.getMessage()) ;

In this code sample the onMessage () method checks to ensure that the arrived message is of the
TextMessage type. All other types of messages can be ignored.

The message acknowledgment mode is defined when the session object is created. The
createSession () method has two arguments. If the first argument is true, the session

is transacted, the value of the second argument is irrelevant, and the message can be either
committed or rolled back by the consumer.

If the commit () method has been called, the message is removed from the queue. The rollback ()
method leaves the message in the queue. If the session is non-transacted, as in our earlier example,
the second argument defines the acknowledgement mode.

>  AUTO_ACKNOWLEDGE mode sends the acknowledgment back as soon as the method
onMessage () is successfully finished.

>  CLIENT_ACKNOWLEDGE mode requires explicit acknowledgment, such as msg.acknowledge ().
(This grants permission to delete the message from the queue.)

>  DUP_OK_ACKNOWLEDGE mode is used in case the server fails; the same message may be deliv-
ered more than once. In some use cases it’s acceptable — for example, receiving a price quote
twice won’t hurt.



How to Subscribe for a Topic | 343

If more than one message is processed by the same session object, acknowledgement of one mes-
sage affects all messages from the same session.

HOW TO PUBLISH A MESSAGE

Programs publish messages to topics, which should be created in advance by the MOM system
administrator. Multiple subscribers can get messages published to the same topic (this is also known
as one-to-many mode).

Message publishing is very similar to message sending, but the program should create a Topic
instead of a Queue and a Publisher instead of a Sender, and the publish () method should be
called instead of send ()as in Listing 30-3:

‘) LISTING 30-3: Publishing a message to a topic

Available for
download on

Wrox.com TopicConnection connection = connectionFactory.createTopicConnection();

TopicSession pubSession = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

Topic myTopic = pubSession.createTopic ("Price_Drop_Alerts");
TopicPublisher publisher= pubSession.createPublisher (myTopic) ;
connection.start();

TextMessage message = pubSession.createTextMessage () ;
message.setText ("Sale in Apple starts tomorrow");
publisher.publish (message) ;

HOW TO SUBSCRIBE FOR A TOPIC

Subscribers can be durable or non-durable. Durable subscribers are guaranteed to receive their
messages; they do not have to be active at the time a message arrives. Non-durable subscribers will
receive only those messages that come when they are active. This is similar to the way chat rooms
operate — you must be online to get messages.

The code snippet in Listing 30-4 creates a non-durable subscriber. Two modifications have to be
made to this code to create a durable subscriber: The client ID has to be assigned to the connec-
tion — connection.setClientID (username) — and the createbDurableSubscriber (topic)
method should be used instead of createsubscriber (topic).



344 | LESSON 30 INTRODUCING JMS AND MOM

‘) LISTING 30-4: Subscribing to a topic

Availablefor ~ TopicSession subSession =

daﬂgtz&:" connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE) ;

subSession.createTopic ("Price_Drop_Alerts");

TopicSubscriber subscriber = subSession.createSubscriber (topic);
connection.start();

subscriber.setMessageListener (this);

public void onMessage (Message message) {

String msgText;

try{
if (msg instanceof TextMessage) {
msgText = ((TextMessage) msg) .getText () ;
System.out.println("Got " + msgText);
telse{

System.out.println("Got a non-text message");

}
catch (JMSException e) {
System.out.println("Error: " + e.getMessage());

MESSAGE SELECTORS

If you have to share a queue with some other applications or developers from your team, use
message selectors (also known as filters) to avoid “stealing” somebody else’s messages. For
example:

String selector = "StoreName=Apple";
session.createReceiver (queue, selector);

In this case the queue listener will de-queue only those messages that have the string property
StoreName with the value apple. Message producers have to set this property:

TextMessage outMsg = session.createTextMessage() ;
outMsg.setText ("Super sale starts tomorrow") ;
outMsg.setStringProperty ("StoreName", "Apple");

Remember that message selectors slow down the process of retrieval. The messages stay in a queue
until the listener with the matching selector picks them up. Selectors really help if your team has a
limited number of queues and everyone needs to receive messages without interfering with others.

But if someone starts the queue listener without selectors, it just drains the queue.



Administering Objects in Open MQ | 345

ADMINISTERING OBJECTS IN OPEN MQ

To test all code samples from this lesson you need a MOM provider that will transport your mes-
sages. I’ll be using the open-source MOM provider Open MQ. It’s well-known commercial-grade
software. As a bonus, it comes with GlassFish. You already have it installed under your glass-
fishv3/mg directory. If you decide to use Open MQ with any other application server you can
download it separately from https://mg.dev.java.net/.

As I stated earlier in this lesson, ’'m not going to use Java EE server — the goal is to test standalone
Java clients communicating with Open MQ directly, without the middlemen.

First, open a command (or Terminal) window to the glassfishv3/mg/bin directory, and start
the Open MQ broker. In Mac OS I enter the following command (in Windows you’ll need to run
imgbrokerd.exe):

. /imgbrokerd -port 7677

You’ll see a prompt informing you that the broker is ready on port 7677. Now open another com-
mand window, change to the glassfishv3/mg/bin directory again, and start the admin GUI tool
imgadmin to create the required messaging destinations:

. /imgadmin

The window of the Open MQ administration console will open. Add a new broker and name it
StockBroker, change the port to 7677, enter the password admin, and click OK. Figure 30-2 shows a
snapshot of my screen after these steps.

Open Message Queue Administration Console

Console Edit  Actions  View 'H'é'l'p
Blu/B [ig/te BN @E @
(1 Object Stores : Broker Label Broker Host Primary Port Connection Status
o B
|
200 Add Broker

Broker Label: StockBroker

Host: localhost
Primary Port: 7677
Username:  admin

Warning: Authentication information you supply with
this dialog is not secure. You will be prompted tor
this information later if you do not enter it now.

( ok \_: [ Reset To Defaults \_ ( Cancel) ¢ Help \,
v

Open Message Queue Administration Console

FIGURE 30-2


https://mq.dev.java.net/

346 | LESSON 30 INTRODUCING JMS AND MOM

Now connect to StockBroker (using the right-click menu) and create a new destination named
TestQueue to match the queue name in the code sample from Listing 30-1. I didn’t change any set-
tings in the pop-up window shown in Figure 30-3. Note the radio button on top that enables you to
specify whether you need a queue or a topic.

)L Add Broker D

Dastination Name: 1 TestQueue

|
i  Destination Type: ® Queue
|
| O Topic
Max Number of Messagas:
@ Unlimited
0 o
Max Total Message Bytes;
@ Unlimited
O o hytes

Max Bytes per Message:
& Unlimited

O o bytes v
Max Number of Producers:

(O Unlimited

® 100
Max Number of Active Consumers:

(O Unlimited

® 1
Max Number of Backup Consumers:

G Unlimited

@ o

\f oK ) ( ResetToDefaults ) ( Cancel “- 'C Help )

FIGURE 30-3

The creation of administrated MOM objects (the TestQueue) is complete; now you’re ready to write
and test the message sender and receiver.

TRY IT

The goal is to write two Java programs — one to send messages to the TestQueue and the other to
receive them from the TestQueue.
Lesson Requirements

You should have Java and Open MQ installed. You’ll also need the JMS classes and their implemen-
tation by Open MQ — jms.jar and img. jar.



Trylt | 347

You can download the code and resources for this “Try It” section from the
book’s web page at www .wrox.com. You can find them in the Lesson30 folder in
the download.

Hints

Open two console views by clicking the little icon with the plus sign in the lower right of Eclipse

to see output of the sender and receiver in different console views. You can also use the pin feature
(click the icon with the pin image) to pin each console to a specific application. You can also detach
the Eclipse console to display it as a separate window.

Step-by-Step

1.  In Eclipse, go to Java perspective and select File &> New = Create a New Java Project. Name it
Lesson30 and click Next. Select the tab Libraries and click Add External JARs. Find jms. jar
and img.jar in glassfishv3/mq/1ib and add them to the project. Click Finish. You’ve
created a regular Java SE project with two extra jar files in its CLASSPATH. jms . jar contains
the standard JMS classes and interfaces, and img.jar has the Open MQ implementation of
the JMS APL.

2. Create a new class called MessageSender with a main () method, and add the import state-
ments for all JMS classes and the Open MQ implementation of ConnectionFactory:
import javax.jms.*;

import com.sun.messaging.ConnectionFactory;
import com.sun.messaging.ConnectionConfiguration;

3.  Enter the code from Listing 30-1 into the method main ().

4. Compile and run the program. You should see the message “Successfully placed an order to
purchase 200 shares of IBM.” At this point the message is located in the TestQueue config-
ured under the Open MQ server. It’ll stay there until some program de-queues it from there.

5.  Create another Java class called MessageReceiver to look like what is created by the code in
Listing 30-2.

6. RunMessageReceiver. It'll print on the console the message “Listening to the TestQueue”
and will be retrieving all the messages from the queue. Thread.sleep () will keep this pro-
gram running.

7.  Observe that one console displays the messages of the producer application, and that the con-
sumer properly receives the messages and printing confirmations in another console view.

Please select Lesson 30 on the DVD with the print book, or watch online at
www . wrox . com/go/ fainjava to view the video that accompanies this lesson.



http://www.wrox.com
http://www.wrox.com/go/fainjava




Introducing JNDI

Instead of having distributed Java programs instantiate lots of reusable objects over and over
again, it’s better if these objects are pre-created and published at a known server, where they can
be easily and quickly found. The role of the Java Naming and Directory Interface (JNDI) is to
make it easier to find objects in distributed applications. It plays a role similar to that of a com-
pany telephone directory assistance service. Various software vendors offer specialized directory
assistance software, and JNDI provides a standard API to read from and write to such directories.

In this lesson you’ll be introduced to the JNDI concepts and will see how to use JNDI for pub-
lishing (and looking up) administered JMS objects.

JAVA NAMING AND DIRECTORY INTERFACE

A naming service enables you to add, change, or delete names of objects that exist in some
naming hierarchy so other Java classes can look them up to find their location. One more anal-
ogy: In a library, you find the name of the physical location of the book in a directory, and
then go to the shelf to pick up the book. A naming service provides a unique name for every
entry that is registered (bound to) with the service. Every naming service will have one or more
contexts — think of directories and subdirectories in a file system, where any directory tree
with children is a context. The naming tree originates from a root node, which is also known
as an initial context (like a root directory on the disk).

A directory service enables you to search the naming tree by object attributes rather than
object names. One example is that of the domain name system, which is a distributed nam-
ing system that takes the domain name of a networked computer or service and returns the IP
address and port number of the resource.

To allow clients to do lookups, there has to be a process that initially binds the objects to

a naming tree. This can be handled by an independent program that (for example) binds
employee names to a directory server of some organization. Java EE servers do a similar job
(during start-up) by binding such objects as EJB, Servlets, JMS, and database connection pools
to either their internal or external naming servers.



350 | LESSON 31 INTRODUCING JNDI

ADMINISTERING JNDI OBJECTS IN GLASSFISH

Each Java EE application server offers a tool that allows administration of its service modules —
we are interested in binding objects to their directory names. When you start GlassFish there is

a message on the console: “Waiting for DAS to start...” DAS stands for Domain Administration
Server, which authenticates the user with administrative privileges and responds to requests from a
graphical web browser-based Admin Console. To use the console enter the following URL in your
browser: http://localhost:4848/. Youll be prompted for the user ID (admin) and password,
which you selected when you installed GlassFish in Lesson 26.

After a successful log-on you’ll see the console, as in Figure 31-1, which enables you to administer
various Java objects, but ’ll continue using the example of JMS-related ones. There are two JMS
nodes in the directory tree on the left. One is called JMS Resources, and the other Java Message
Service. The latter shows the physical queue named TestQueue that I created using the Open MQ
administrative utility in Lesson 30.

The only reason GlassFish automatically knows about the destinations in this MOM is that this
application server is integrated with Open MQ. To configure another MOM server you’d need to
create a new JMS host by filling out the form shown in Figure 31-2.

| hirpef /localhost 4848 fcommon findex. jsf

Home | About..
User: admin  Domain: domain1 Barver: localhost

GlassFish™ Server Open Source Edition

JMS Physical Destinations

£ common Tasks Java Message Service (JMS) physical destination objects are maintained by Message Queue broke

D Registration measages are redirected. Click New to create a new physical destination.
#s GlassFish News
[ Enterprise Server Destinations (2)
» [5 Aoplications New..
5 Lifecycle Modules | Naia % | Type
Y lﬁ'?“"‘"”m 1 masys.dma queue
> @ J0Be O TestQueue quoue

* [y Connectors
ﬁ Resource Adapter Configs
* gt JMS Resources
(5 Javamail Sessions
* 5 JNDI
¥ B Configuration
& JVM Settings
@ Logger Settings
= Web Conlainer
% EJB Container
@ Ruby Container P
v g% Java Message Service
» [ JMS Hosts

FIGURE 31-1




Administering JNDI Objects in GlassFish | 351

Tree
Commaon Tasks
[@ Registration
s ClasaFish News
E Enterprise Sarver
> Applications
Lifecycle Modules
¥ | Resources
* |3 JDBC
* {4 Connectors
Resource Adapter Configs
> g JMS Resources
ﬁ JavaMail Sessions
® g JNDI
¥ [B5 Configuration
& JVM Settings
@ Logger Sattings
= Web Container
@ E.JB Container
¥ Ruby Conlainer
v gt Java Message Service
» (3 JMS Hosts

FIE

FIGURE 31-2

£ Physical Dastinations.

*| Edit JMS Host

Load Defaults

Name:
Host:

Port:
Admin Username: *
Admin Password: *

Canfirm New Password "

The Java Message Service (JMS) host specifies the system where the JM

default JMS_host

Incalhost

Nama or IP address; if nama, must contain
7676 |

Listener port for servicing JMS requests
admin

User name for maintaining the JMS service

Password for JMS administralcr.

Now you need to create a GlassFish JMS entry to map to the physical MOM queue. Add
the new destination resource to JMS Resources (see Figure 31-3). I called this JMS resource
MyJMSTestQueue and mapped it to TestQueue, created in the previous lesson.

Now create another administered resource, a connection factory. Because the creation and closing of
connections and senders are slow operations, you may want to consider writing code for JMS con-
nection pools. Java EE servers enable you to configure such pools. In Figure 31-4 you can see that
the size of the connection pool is configurable. By default, eight JMS connections will be created
and, as the number of users increases, up to 32 connections will be created by GlassFish.

Common Tasks

[@ Registration

& GlassFish News

E Enterprizse Server
» Applications

Lifecycle Modules
¥ | Resources

* @ JoBC

* g Connectors

) Resource Adapter Configs
v 3 JMS Resources
£ connaction Factories

L[

B2 JavaMail Sessions
¥ L.l JNDI

FIGURE 31-3

JNDI Name: *

Resource Type: *
Description:
Status:

New JMS Destination Resource

The creation of a new Java Message Service (JMS) destination resource also creates an admin object

MyJMSTestQueue
Aunique name; can be up to 256 characlers. must contain only alph

Physical Destination Name * [TastQueue

Destination name in the Message Queue broker. If the destination d«
[favaxjms.Quoue =]

Test queue from Lesson 30

# Enabled

Additional Properties (0)
Delte Propories.

| i Name

| Value



352 | LESSON 31 INTRODUCING JND

New JMS Connection Factory

™
[ Common Tasks The creation of a new Java Message Service (JMS) connection factory also creates a connector conne
ﬂ Registration
8 GlassFish News Genaral Settings
E Enterprise Server Baailh . ————
- D Aopicaons i —
3 Lifecycle Modules Resource Type: * | javax jms.QueueConnectionFactory -]
v g9 Resources Description: Test connection factory
> BB Status:  Enabled
* 1 Connectors
3 Resource Adapter Configs Pool Settings
v i JMS Resources . )
S e ) Initial and Minimum Pool Size: g Caonnactions
- h inimum and initial number of connections maintained in the pool
> Deslinalion Resources o el B )
2 JavaMail Sessions m > 32 Connections
» 3 JNDI Maximum number of connections thal can be crealed (o salisfy clis
kd ) . i ) )
+ [§ Configuration Pool Resize Quantity: 2 Connections
um | 1] l i
& JVM Settings " r\-JfJI'""\-DEf of connections to be removed when pool idle timeout expi

Idle Timeout: ann | Seconds

i Logger Settings
Maximum time that connection can remain idle in the pool

@] Webh Containar
{@ EJB Container W Wit Time: 60000 Milliseconds
' Ruby Container Amount of time caller wails before connection timeout is sent

gt Java Message Service
FIGURE 31-4

On Any Failure: ("] Close All Connections

To have JMS implementation as part of a Java EE server you need to download the full profile
version (see Lesson 26).

ACCESSING THE GLASSFISH NAMING SERVICE WITH JNDI

To start searching for an object in the JNDI tree a Java program needs to get a hold of its initial
node. There are two use cases to consider here:

> An external Java client needs to find the server that runs the naming service.

> A Java client is running inside the Java EE server that runs the naming service.

In the first case you need to prepare an instance of the Java Hashtable or Properties object and
give it as a parameter to the constructor of the javax.naming.InitialContext class. The values to
put in such Properties objects vary — consult the documentation for your application server. The
following code is an example:

Properties props = new Properties();

props.setProperty ("java.naming. factory.initial",
"com.sun.enterprise.naming.SerialInitContextFactory") ;
props.setProperty ("java.naming. factory.url.pkgs", "com.sun.enterprise.naming") ;
props.setProperty ("java.naming.factory.state",
"com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl") ;

props.setProperty ("org.omg.CORBA.ORBInitialHost", "localhost");
props.setProperty ("org.omg.CORBA.ORBInitialPort", "8080");

InitialContext ic = new InitialContext (props) ;



Accessing the GlassFish Naming Service with JNDI | 353

In the second case the Java client can just create an instance of InitialContext with no argument
constructor — the Java EE server knows where to find its naming service:

InitialContext ic = new InitialContext();

Now you can either perform a lookup starting from the initial context node, or ask the container to
inject the reference to the required resource using the syntax of Java annotations.

Revisit the code in Listing 30-1. It creates a ConnectionFactory object connecting to a MOM
server using classes specific to Open MQ. Now, because TestQueue is known to GlassFish, a Java
client wouldn’t even need to know what MOM server is in use, but would just look up a standard
JMS connectionFactory in the instance via the JNDI API.

The statement that a Java client is running inside the server may not sound right to you, but any
program that’s trying to find another object can be considered a client. For example, imagine a web
application in which the web browser invokes a Servlet that needs to place an order into a message
queue or invoke an EJB. In Listing 31-1 you can see a Servlet that plays the role of a Java client oper-
ating inside a Java EE container.

‘) LISTING 31-1: Servlet as Java client

Available for import java.io.IOException;
download on . . . . ) .
Wrox.com import java.l1o.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet (description = "The servlet that Sends a message to a queue",
urlPatterns = { "/quote" }, name="QuoteService")
public class QuoteService extends HttpServlet {

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.println("<html><body bgcolor=yellow>") ;
out.println("<h2>Hello from QuoteService</h2>");

out.println("Sending a message to the TestQueue");

MessageSender mySender=new MessageSender () ;
mySender.sendMessage ("IBM 200 Buy");

The Servlet receives a request from the client and instantiates the Java class MessageSender shown
in Listing 31-2. Compare the code of this class with the sender from Listing 30-1. Now this code
from Listing 31-1 doesn’t contain anything specific to the MOM provider.



354 | LESSON 31 INTRODUCING JND

If, say, you decide to change the MOM provider to the one that performs better, just re-create the
administered JMS objects using the administration console of GlassFish and there is no need to
change anything in the code of MessageSender. If you decide to switch from GlassFish to another
server, just redeploy this Servlet and MessageSender in another Java EE application server.

‘) LISTING 31-2: Looking up JNDI object and sending message

Available for ~ package com.practicaljava.lesson31;
download on
Wrox.com . . )

import javax.jms.*;

import javax.naming.*;
public class MessageSender {

void sendMessage (String messageToSend) {
Session session=null;
ConnectionFactory factory=null;
Connection connection=null;

try{
// Find the JNDI context
Context jndiContext = new InitialContext();

// Look up the factory and the queue
factory = (ConnectionFactory) jndiContext.lookup ("MyTestConnectionFactory");
Queue ioQueue = (Queue) jndiContext.lookup ("MyJMSTestQueue") ;

connection = factory.createConnection() ;
connection.start () ;

session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
MessageProducer queueSender = session.createProducer (ioQueue) ;

// Buy 200 shares of IBM in this example
TextMessage outMsg = session.createTextMessage (messageToSend) ;

queueSender.send (outMsg) ;
queueSender.close() ;

System.out.println("Successfully placed an order to purchase 200 shares of
IBM") ;

}catch (JMSException e) {
System.out.println("Error: " + e.getMessage());
}catch (NamingException e) {

e.printStackTrace() ;
}finally({
try{
session.close();
connection.close();
} catch (Exception e) {



DataSource and JNDI | 355

System.out.println("Can't close JMS connection/session " + e.getMessage());
}
}
}

Run the quote Servlet in Eclipse or direct your web browser to http://localhost:8080/
Lesson31/quote and the message to purchase 200 shares of IBM will be placed in the physical
queue TestQueue in the Open MQ server. If you are not sure if this application is working the way
you expect it to, see if there are error messages in the domain’s log file in the directory glassfish/
domains/domainl/logs/server.log. If this program has executed properly, at the end of the log
file you’ll see the following message: “Successfully placed an order to purchase 200 shares of IBM.”

INJECTION OF JNDI RESOURCES

Even though looking up the JNDI object doesn’t look too difficult, there is even a cleaner and sim-
pler way of providing these resources to your Java EE components: using the annotation @Resource.
The application server can inject the resource so you don’t need to do a JNDI lookup. For example,
injection of ConnectionFactory and Queue can look like this:

import javax.annotation.Resource;

@Resource (name="MyTestConnectionFactory")
private ConnectionFactory factory;

@Resource (name="MyJMSTestQueue")
private Queue ioQueue;

Resources can be injected into variables, as in the preceding example, or you can put the @Resource
annotation above the method or a class definition. Depending on its location, the time of injection
varies. If you put this annotation at the class level, the resource will be injected during run time
when the application looks it up. If you put this annotation above the field or setter method declara-
tion, the resource will be injected in the component when the application is initialized.

If you need to override resources specified in annotations, you can do it in XML configuration files.
You’ll see more examples of using resource injection with EJB in Lesson 32.

DATASOURCE AND JNDI

In Lesson 22, while learning JDBC, you were creating database connections before executing any
database queries. Imagine that multiple clients send requests to your application server, which has to
execute database queries. Creating and closing connections are slow operations, and you want to do
them as infrequently as possible.

Typically the administrator of the Java EE server pre-creates the pools of database connections,
and configures the minimum and maximum number of connections and some other parameters.



356 | LESSON 31 INTRODUCING JNDI

Figure 31-5 shows a snapshot of the GlassFish administration console, where the JNDI entry named
DerbyPool represents a pool of JDBC connections. The object javax.sqgl .DataSource is a factory
of database connections. The administrator configures this factory as a JNDI resource, specifying
what JDBC driver to use, how many connections to create initially, and the maximum number of
connections allowed.

GlassFish™ Server Open Source Edition

J General | Advanced | Additional Properties.

1 Common Tasks
[ Registraton Edit JOBC Connection Pool
&q ClassFish News Meodify an existing JOBC connection pocl, A JOBC connection pool is a group of reusable connections for a particular database
B Entorprise Server _.oad Defaults
L Applications
{5 Lifacycle Modules General Settings
v | Resources Pool Name: DerbyPool
v @ Jo8C Resource Type: [javax sqlD |

* [ INAC Resources

Mus! be gpecified if the datasource class implemants more than 1 of the interface.
= ﬁ Connection Pools

Datasource Classname: | org.apache.derby.jdbe.ClientDataSource

= __TimerPonl
II. - I Vendor-apecific classname that impl ts the DalaS and/or XAD APls
Driver Classname:
* 3 Connectors o S~
bl Vendor-specific classname that implaments the java sgl Driver interface
Resource Adapter Configs
* g¥ JMS Resources Ping: =] E“.hlnfi o . . o
: ; ‘When enabled, the pool is pinged during creation or reconfiguration to identify and wam of any er
JavaMail Sessions 1 e i
» [ INDI cription:
v 84 Confliguration Pool Settings
cttings
& JVM Setti
i Logger Sedtings Initial and Minimum Pool Size: g Connections.
{2 Web Container Minimum and inftial number of connections maintained in the poal
{#) EJB Container Maximum Poal Size: ET] Connections.
¥ Ruby Container L Maximum number of connections that can be created to satisly cliont requests
» gf Java Message Service “1__Pool Resize Quantitv: 2 [ ti

FIGURE 31-5

The user’s request will communicate with a Java class deployed on the server, which will find the
connection pool by its JNDI name (DerbyPool in this case) and make a getConnection () call on
this resource. If there are available free connections, the Java class will immediately get an instance
of the PooledConnection object (which works the same way as connection). If many users are
making concurrent requests, all connections may be taken, and there will be a slight delay until one
of the busy connections is returned to the pool. Connections returned to the pool are not destroyed;
they are preserved by the application server for future requests.

You can do either a JNDI lookup of the batasource object or inject it to your Java code. If the
name of the configured Datasource object is DerbyPool, the sample code to obtain a pooled data-
base connection may look as follows:

InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup ("DerbyPool");

Connection myConnection = ds.getConnection();
//The rest of the JDBC processing goes here as in Lesson 22

// Closing the connection just returnes it back to the pool



Lightweight Directory Access Protocol | 357

// and makes it available for other Java clients
myConnection.close();

Injecting a DataSource using the @Resource syntax will look as follows:

@Resource (name="java:global/DerbyPool")
DataSource ds;

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL

LDAP servers are specialized software products that store directory entries in hierarchical trees
and are highly optimized for reading. This makes them a good choice for such directory services as
employee lists or phone directories in an organization. Directories are mainly read, not changed,
and this is where LDAP servers shine.

From the enterprise Java perspective you should keep LDAP solutions in mind when a really fast
lookup of some Java objects is needed, such as with JMS connection factories, queues, or topics.
Java developers use the JNDI API to look up and update the entries in LDAP. To use the same anal-
ogy as in the previous lesson, JNDI is to LDAP servers as JDBC is to DBMSes.

These are some popular LDAP servers:
> Oracle Directory Server (Oracle)
> Microsoft Active Directory (Microsoft)
> OpenLDAP (open-source, community developed)
> ApacheDS (open-source, Apache)
> OpenDS (open-source, Oracle)

The LDAP directory tree has a root entry, which consists of one or more distinguished names
(unique identifiers). Typically the top of the hierarchy is an object with the prefix o for organization.
One level below has the prefix ou for organizational unit, cn stands for common name, and so on.
Unlike with other naming services, the search string starts from the very lowest hierarchical entry
and the root entry has to be specified last. Here’s an example of a distinguished name that can be
used in a search:

cn=jsmith, ou=accounting, o=oracle.com

This example corresponds to the following hierarchy in an LDAP tree:

o = oracle.com
ou = accounting
cn = jsmith

The following code snippet prepares the JNDI properties, connects to the LDAP server, and finds
the object called customerHome.

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_ FACTORY,



358 | LESSON 31 INTRODUCING JND

"com.sun.jndi.ldap.LdapCtxFactory") ;
Context.PROVIDER_URL, "ldap://localhost:389");
Context.SECURITY_AUTHENTICATION, "simple") ;
Context.SECURITY_PRINCIPAL, "cn=Directory Manager");
Context.SECURITY_CREDENTIALS, "myPassword") ;

env.put
env.put
env.put
env.put

DirContext ctx = new InitialDirContext (env) ;

CustomerHome custHome = (CustomerHome) ctx.lookup ("cn=CusomerHome,
ou=RealBigProject, o=trump.com");

To study distributed applications you can run all the examples from this book (clients and servers)
on a single computer, but real-world distributed applications can be constructed in various ways, for

example:

> Computer #1 runs the LDAP server.

> Computer #2 runs an application server that has registered (published) some objects with the
LDAP server on Computer #1.

> Computer #3 has a client program that finds object references on Computer #1 and invokes
their methods on Computer #2.

> Computer #4 has a database management system that is being used by the application server
running on Computer #2.

> Computer #5 publishes financial market data, and Computer #2 subscribes to this service.

...and so on, and so on.

In this lesson you’ve seen how to use JNDI, and some example of why you may want to use it.
Comparing the code in Listing 30-1 with the one in Listing 31-1 is just one example that shows that
naming and binding specific physical objects under a generic JNDI name enables you to remove these
physical locations from your program code. You’ll see more examples of using JNDI in Lesson 32.

TRYIT

Create a class called MessageReceiver to consume messages. It has to perform a JNDI lookup and

start

listening to TestQueue. When the message arrives MessageReceiver should display it. Making

a request to the Servlet from Listing 31-1 has to send a message to the queue, and MessageReceiver
receives it and prints its content.

Lesson Requirements
You should have Java and GlassFish v3 installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson31 folder in the download.



http://www.wrox.com

Trylt | 359

Step-by-Step

1. Create a new class called MessageReceiver that implements MessageListener with the
code similar to the one shown in Listing 30-2, but this time performing a JNDI lookup of
MyTestConnectionFactory and MyJMSTestQueue.

2. Find out how to configure the GlassFish start-up class, and implement it to have
MessageReceiver instantiated whenever the server starts.

3. Test a send/receive cycle by using the Servlet from Listing 31-1.

www.wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 31 on the DVD with the print book, or watch online at



http://www.wrox.com/go/fainjava




Introduction to Enterprise
JavaBeans

This lesson introduces you to one of the Java EE technologies, Enterprise JavaBeans, which can
be used for implementing the business tier in a distributed application (refer to Figure 26-1).
Lessons 27 and 28 were about various ways of programming the presentation tier on the Web;
in Lessons 30 and 31 you learned how to organize communication between the different tiers of
the application using messaging. You programmed the application business logic in POJOs.

Now you’ll see how to program the business tier in EJBs, which are also POJOs, but man-
aged by an EJB container. With the release of Java EE 6, EJB 3.1 and the Java Persistence
API (JPA) 2.0 do offer you a clean and simple way to implement solutions for business logic
and data persistence. The features covered in this lesson will work in application servers
that support EJB 3.1. Such servers include GlassFish v3, JBoss 6, and WebSphere 8, and
more vendors are working on making their application servers Java EE 6—certified. There is
also the Apache TomTom bundle, which includes the open-source Apache OpenE]B project;
at the time of this writing this bundle partially supports EJB 3.1.

In this lesson Ill introduce you to various types of E]Bs, and the next lesson is about persisting
data with JPA.

WHO NEEDS EJB CONTAINERS?

What’s wrong with POJOs? Why not just implement business logic there? You certainly can,
but most likely you’d need to spend additional time manually programming a multi-threaded
environment for them. The chances are that your application needs transactional support — if
the business logic is located in POJO 1 and POJO 2, and the second one fails, you want to roll
back whatever has been completed by the first one.

It’s great that you know how to program message receivers using JMS, but how can you make
this solution scalable? What if you need a couple of dozen message listeners that concurrently



362

| LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

de-queue the messages? Don’t forget about the tasks of integrating your POJOs with other tiers to
perform authentication and J]DBC operations.

EJB containers take care of all these infrastructure-related concerns without requiring manual pro-
gramming on your side. You’ll simply configure pools of message-driven beans (MDBs) if you need
multiple message listeners. You’ll turn on transactional support if need be. You don’t need to worry
about multi-threading problems if your beans operate in an EJB container. The configuration pro-
cess is as simple as adding Java annotations in the E]B classes. Intercommunication among beans is
done via dependency injection or singleton beans.

If you need to scale a distributed application, EJB containers offer clustering and failover support.
Security authorization is also the container’s responsibility. Without the need to manually code all
these infrastructural functionalities, the code of your EJBs becomes really light.

The other interesting service offered by EJB containers is asynchronous method invocation, which
enables asynchronous processing without the need for JMS or MOM.

EJB 3.1 supports embeddable containers: You can run EJB applications in a Java SE environment.
This is a great idea for tasks such as testing because there’s no need to depend on the readiness of
a Java EE server — just test your EJBs locally. Creating an embeddable container is as simple as
executing one line of code:

EJBContainer myContainer = EJBContainer.createEJBContainer () ;

If the originally selected application server doesn’t deliver the performance or reliability you expected,
deploy your EJBs in a different Java EE 6—compliant server without changing a line of code.

TYPES OF EJBS

There are two major types of EJB: session beans and message-driven beans. MDBs specialize in
retrieving messages from JMS queues or topics — this is all they can do. But session beans are where
your application business logic will reside. There are three types of session beans:

> A stateless session bean is one that contains business logic but doesn’t support state. In other
words, it doesn’t “remember” any data specific to the client. If the same client invokes two
methods in a row on the stateless bean FindBooks, the container may use two separate instances
of the FindBooks bean, as it doesn’t store any intermediate data specific to the client.

> A stateful session bean is one that contains business logic and state. The EJB container allo-
cates a specific instance of the session bean to the client and can store results between subse-
quent method invocations.

> A singleton session bean is one guaranteed to be the only instance of its kind in the container.
Think of a singleton bean as a global repository, in which one bean can put some data to be
used by another bean. Singleton session beans not only provide easy access to common data
but also ensure that there are no race conditions in cases of concurrent access.

Older EJB specifications defined entity beans for data persistence. Formally they still exist in the
EJB 3.1 specification, but they are being pruned, and most likely will disappear from future versions
of Java EE releases.



Stateless Session Beans | 363

An EJB container creates and maintains pools of session beans. The instances of the stateless beans are
allocated to clients for much less time than stateful ones. Therefore, if you are working on a multiuser
application with hundreds or thousands of concurrent requests to the EJB container, stateless beans
offer a much more scalable solution, because a smaller pool can serve more users’ requests.

But even with stateful session beans the EJB container is playing smart, and those instances sitting
in memory without active interaction with the client are being passivated — removed from memory
and stored on the disk. When the client issues another request to a stateful bean that has been pas-
sivated, the container will activate it again.

STATELESS SESSION BEANS

I’ll introduce you to stateless session beans by creating a simple example featuring an EJB that con-
tains the business logic to return the message “Hello World.”

The Bean

Having a class that just returns “Hello World” is an obvious case for using a stateless session bean:
It’ll have only one method and there is no state to remember. Listing 32-1 shows you how to pro-
gram such a bean.

‘) LISTING 32-1: HelloWorld session bean, take 1

Available for @Stateless

dmgtggnoln public class HelloWorldBean {

public String sayHello() {
return "Hello World!";

}

Basically, you create a POJO and annotate it with one or more Java annotations. There are no
special interfaces to be implemented to turn a POJO into an EJB. Accordingly there are estateful,
@MessageDriven, and @Singleton annotations to mark other types of session beans. You may use
the optional configuration file ejb-jar.xml in the application server’s directory META-TNF. This file
also enables you to specify metadata for the EJB, and if you need to change the metadata on a pro-
duction system without recompiling the code, make the changes in ejb-jar.xml — they will over-
ride the values specified via annotations.

The Client’s View

The bean shown in Listing 32-1 will run on the server, but the client that will invoke the sayHello()
method can run either in the same JVM (e.g., a servlet or another bean) or in another one (e.g., a
standalone Java SE application or Java EE class deployed in another container). Beans may or may not
implement interfaces. If HelloworldBean will be used only by clients running in the same JVM, you
can mark it with a @LocalBean annotation to show that it’s a no-interface bean.



364 | LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

If you’d like to expose certain business methods to local clients, you can create an interface and
mark it with a @Local annotation. Your bean class has to implement this interface. If you'd like to
expose your bean to remote clients, create an interface and mark it as @Remote. The bean has to
implement this interface.

Local No-Interface Beans

I am planning to use HelloWorldBean from the servlet running in the same JVM, so the final ver-
sion of the code will look like Listing 32-2. Any EJB can use regular Java classes to implement busi-
ness logic: For example, the sayHello () method can create instances of other Java classes with the
new operator and invoke their business methods if need be.

‘) LISTING 32-2: HelloWorld session bean, take 2

Available for import javax.ejb.LocalBean;

dm:!ﬁgg"ﬁ" import javax.ejb.Stateless;
@LocalBean
@Stateless

public class HelloWorldBean {

public String sayHello() {
return "Hello World!";

}

Now let’s do it hands-on. Create a new Dynamic Web Project in Eclipse as you did in previous les-
sons. Name it Lesson32. Then create a new servlet class, HelloWorldServlet, in the package com
.practicaljava.lesson32.client (select the menu File & New = Servlet). This servlet will
become our client, communicating with the EJB.

Next create a Java class called HelloworldBean in the package com.practicaljava.lesson32.ejb
by selecting File &> New > Other &> EJB > Session Bean (EJB 3.x). Do not select any local or remote
business interfaces, and uncheck (when possible) the objects related to EJB 2.x. Eclipse will create

a class with a default constructor. Add to this class the method sayHello () shown in Listing 32-2,
and the EJB is finished.

The next step is to inject the HelloWorldBean into the servlet code with the @EJB annotation:

@EJB HelloWorldBean myBean;

Eclipse will mark this line with a red error bullet. Right-click it and select Quick Fix to automatically
insert two import statements — one for the @EJB annotation and the other for HelloWorldBean.

Using JNDI remains an alternative to injecting the bean into the client. Java EE 6 supports portable
JNDI names that don’t depend on the application server’s implementation. Instead of the eEJB
annotation you could use the following code:

Context ctx = new InitialContext();
HelloWorldBean myBean = (HelloWorldBean)
ctx.lookup("java:global/Lesson32/HelloWorldBean") ;



Stateless Session Beans | 365

Now add the following two lines in the doGet () method of the servlet to make it invoke the method
sayHello () on the EJB:
PrintWriter out = response.getWriter();

out.println(myBean.sayHello());

That’s all there is to it. The complete code of the servlet is shown in Listing 32-3.

J LISTING 32-3: Servlet client for HelloWorldBean

Available for import java.io.IOException;

dow\m;uggl:n import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.practicaljava.lesson32.ejb.HelloWorldBean;

@WebServlet ("/HelloWorldServlet")
public class HelloWorldServlet extends HttpServlet {

@EJB HelloWorldBean myBean;

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.println(myBean.sayHello());

Local Beans

If you’d like to expose the business method to local clients, you can declare the interface marked
with the @Local annotation and the bean will implement it, as in Listing 32-4.

‘) LISTING 32-4: Local interface and bean

Available for @Local
dmgtggmon public interface Greeting {
public String sayHello();

@Stateless

continues



366 | LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

LISTING 32-4 (continued)
public class HelloWorldBeanL implements Greeting{

public String sayHello() {
return "Hello World!";

}

Remote Beans
For clients that may access the bean remotely, declare an interface marked with @rRemote and have
your bean class implement it. An EJB can implement both remote and local interfaces, and you can
expose different methods for remote and local clients too.

‘) LISTING 32-5: The Greeting interface

Available for @Remote

dmg;oggrgn public interface Greeting { public String sayHello();

@Stateless
public class HelloWorldBeanL implements Greeting{

public String sayHello () {
return "Hello World!";

}

The clients find remote beans by performing JNDI lookups. Because the client and the server may be
running in different JVMs, all arguments of the remote methods must be serializable.

The Server

Right-click the GlassFish server in the Servers view and add the project Lesson32 to deploy this
Web application. You may also want to turn on automatic redeployments in GlassFish. To do this,
double-click the GlassFish server in the Servers view and change the Publishing preferences to
Automatically publish when resources change, as in Figure 32-1. This will eliminate the need for
manual redeployment of the application every time the code changes.

Start GlassFish if it’s not running and run Helloworldservlet. You'll see the output produced by the
EJB, as in Figure 32-2; you can get the same output by entering http://localhost:8080/Lesson32/
HelloWorldServlet in your web browser. Even though this is a tiny application, nevertheless it dem-
onstrates communication between objects from the presentation and business tiers. Real-world appli-
cations have more business logic, but from an architectural perspective they are the same.



Stateless Session Beans | 367

A overview

GCeneral Information = Publishing
Specify the host name and other common settings. Modify settings for publishing.
SErver name: ClassFish Server Open Saurce Fditinn 3 (Java FF ) at Incalhost ) Never publish autnmatically
Huosl name. localhost @ Automatically publish when resources change
Runtime Environment; | GlassFish Server Open Source Edition 3 (Java EE 6) s O Automatically publish after a build event
Open launch configuration Publishing interval (in seconds): (1] r?
= Application Server b Timeouts

You can edit some runtime properties for the Application Server (ClassFish or Sun)

Domain Name domainl
Damain Directary JUsers/yfain11 fglassfishvd/glassfish /damains Rrowse. .
Admin Name admin

Admin Fassword

Dverview |

¥ %4 ClassFish Server Open Source Edition 3 (Java EE 6) at localhost [Stopped]
FIGURE 32-1

<& hitp:/ /localhost:8080/Lesson32 [HelloWorldServiet

Hello World!

FIGURE 32-2

Asynchronous Methods

There is one more feature in stateless beans that I'd like you to be aware of: asynchronous methods.
Imagine that sayHello() is a long-running method performing some lengthy calculations and you’d
like to call it and continue with other operations without waiting for it to complete. In a Core Java
application you would start a thread that would eventually return the Future object, as explained in
Lesson 21.

In the EJB container, however, you shouldn’t create and start threads from the application code,
because EJB container takes care of all multi-threading issues for you. The good news is that asyn-
chronous methods offer a solution when you need to introduce parallel processing from EJBs.

Just mark the method with the @asynchronous annotation and have it return an object of type
javax.ejb.AsyncResult, which is an implementation of the Future interface:

@Asynchronous
public <Future>String sayHello () {

// Some lengthy calculations go here



368 | LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

/..

return new AsyncResult<String>("Hello World!");

The client would make a call to sayHello (), then execute some other code without waiting for
sayHello () to complete, and at some point would request Future by making a blocking call,
get (), as in the following code snippet:

//Asynchronous call

Future<String> myFutureGreeting = myBean.sayHello();

// Some other code that is executed immediately after the above line goes here

/...
}

// Sometime later you can make a blocking call and start
// waiting for the result of sayHello()
String myGreeting = myFutureGreeting.get();

You can also use asynchronous methods if a client needs to start more than one method on the EJB
to run in parallel threads. The methods don’t even need to return values; say one is generating large
PDF files and the other prepares shipments based on today’s orders. In this case you don’t even need
to process returned values; just declare the methods as asynchronous and invoke them from the cli-
ent. They’ll start immediately and will run in parallel.

STATEFUL SESSION BEANS

Although stateless session beans are given to the client just for the time one method execution takes,
stateful beans are allocated to the client for longer. They remember the results of the execution of
previous method(s). For example, you can use a stateful bean to implement shopping cart function-
ality, enabling the user to add more than one item to the cart while browsing the company’s catalog.
When the client ends the session the stateful bean can be allocated to another client.

Suppose you have a stateful EJB called myshoppingcart. The client looks up this bean using
JNDI and makes the first call to the method addTtem (). Then the client continues browsing and
adds another item to the shopping cart. Then the client decides to check out and calls the method
placeorder (). All these method invocations are done on the same instance of the stateful bean
MyShoppingCart.

MyShoppingCart myCart = (MyShoppingCart)
ctx.lookup ("java:global/OnlineStore/MyShoppingCart") ;

// The client is browsing the catalog and finds the first item to buy
myCart.addItem(myFirstItem) ;

// The client continue browsing the catalog and finds the second item to buy



Singleton Beans | 369

myCart.addItem(mySecondItem) ;

// The client is ready to check out

myCart.placeOrder () ;

To complete the shopping process and release the stateful bean for other clients you need to call

one of the bean’s MyShoppingCart methods marked with the @Remove annotation. In the preceding
example the method placeorder () should be marked with this annotation. You should also provide
another @Remove method on the bean to allow the client to cancel the order and release the bean.

There is one more way to release a stateful bean, by using the estatefulTimeout annotation, which
enables you to specify how long a bean can stay allocated to the client without any activity. When
this time expires the session times out and the bean is released.

SINGLETON BEANS

Pretty often an application needs a place to keep data that is accessible to and shared by all the
beans. Another use case for a singleton is to control access to some external resources. For example,
if a limited number of connections are available to some external web service, you can create a
singleton that will implement throttling for EJBs that need these connections. A singleton bean can
be used as global storage (or a cache) for the application — the state of this bean is shared among
clients.

Only one singleton bean with any given name can exist per JVM per application. If you need several
singletons in an application, give them different names. An EJB container doesn’t create pools of
singleton beans. To create a singleton E]JB just mark it with the @singleton annotation:

@Singleton
public class MyGlobalStorage {

}

When is the singleton bean created? It’s up to the EJB container to decide, unless you specifically
want to request that this bean be created on application startup. This is called eager initialization
and there is a special annotation, estartup, for it:

@Startup
@Singleton
public class MyGlobalStorage {
private Map<String, Object> = new HashMap<String, Object>();

addToStorage (String key, Object objToStore){...}

removeFromStorage (String key) {...}



370 | LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

Let’s say that you’d like to create a program that at certain times sends some messages into a queue.
Write a singleton bean, request that the EJB container instantiate it on application start-up, and
start pushing the messages immediately after the singleton has been constructed. There is another
handy annotation, @PostConstruct, that will cause the container to invoke a method immediately
after the bean’s constructor is finished:

@Startup
@Singleton
public class MyStockQuoteServer {

@PostConstruct

void sendPriceQuotes () {
// The code connecting to the stock prices feed and
// sending messages to a queue goes here

To get access to the business methods of a singleton, the client Java classes will need to call the pub-
lic static method getInstance () on the specific singleton, as shown in the following code snippet.
If you’ll be implementing the singleton design pattern manually you need to declare a private con-
structor and a public static getInstance () in the class, but otherwise the EJB container will take
care of this.

MyGlobalStorage.getInstance () .addToStorage ("emplOfTheMonth", bestEmployee) ;

The E]B container allows concurrent access to singleton beans, and by default it applies the
container-managed concurrency policy, sparing the developer worry about race conditions and
such. You just need to use the @Lock annotation, specifying whether you want a resource to be
locked during the read or write operation. If you prefer to write thread-synchronization code by
yourself, switch to bean-managed concurrency. You set the type of concurrency using the
@ConcurrencyManagement annotaﬁon,asshownlhera

@Singleton

@ConcurrencyManagement (ConcurrencyManagementType . BEAN)
public class MyGlobalStorage {

}

DEPLOYING EJB

Before deployment to any application server, EJBs are usually packaged into one archive file, which
could be a jar, an Enterprise Archive (ear), which is a jar with a . ear file name extension, or a war.
Even such a simple two-class web application as our current example should be compressed and
deployed as one file. If your client is a web application it’s convenient to keep the EJB inside a war
file. Let’s create one.

Right-click the Deployment Descriptor section in the Eclipse project Lesson32 and select Export
WAR file. In a second you’ll get the file Lesson32.war that contains both the servlet and the EJB.



Message-Driven Beans | 371

This file can be deployed in any Java EE 6—compliant application server. This war is really small:
under 4 KB! Java EE 6 makes EJB components really lightweight. If you have multiple EJB classes,
put them in one or more jars in the WEB-TNF/11b directory.

If your client is not a small web application, or you want to keep EJBs deployed separately, you
can package them inside a separate jar or ear file. The root directory that you’ll be using to create
ears has to have all compiled Java classes and, if applicable, the optional ejb-jar.xm1 file in the
META-INF directory. As a matter of fact, you can create an ear file that will contain not only your
EJBs, but also the war file.

MESSAGE-DRIVEN BEANS

MDBs (message-driven beans) perform only one function: They retrieve messages from queues and
topics via the JMS API. The clients never need to look them up or invoke their methods. The client
just needs to drop a message in a queue or publish it to a topic, and the MDBs that were listening to
the messages at these destinations will get invoked automatically.

MDBs must implement the MessageListener interface. All configuration parameters can be speci-
fied in the parameters of the @MessageDriven annotation, as shown in Listing 32-6.

‘) LISTING 32-6: MDB MyMessageBean

Available for ~ @MessageDriven (mappedName="jms/testQueue", activationConfig = {
dwmrggg" @ActivationConfigProperty (propertyName = "acknowledgeMode",
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty (propertyName = "destinationType",
propertyValue = "javax.Jjms.Queue")

}
public class MyMessageBean implements MessageListener {

MessageDrivenContext ctx;

// A no-argument constructor is required
public MyListener() {}

public void onMessage (Message message) {
// The business logic is implemented here.

}

When a message appears in the queue named testQueue the EJB container picks one of the MDBs
from the pool and invokes its method onMessage (), passing the message from the queue as an
argument. Unlike with the stand-alone message receivers described in Lesson 30, with MDBs the
container gives you excellent freebies: distributed transaction processing, automatic pooling, co-
location of receivers and other beans, and simple assignment of queues or topics to the receivers in
deployment descriptors. In addition, you can easily configure the number of receivers by specifying
the pool size in the deployment descriptor.

You can use any client to send a message in a queue. It can be a stand-alone client, as shown in
Listing 31-2, a servlet, an EJB, etc.



372

| LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

TIMER SERVICE

Many enterprise applications require the use of schedulers to perform certain repetitive tasks at
certain times. Cron is a widely used scheduler for Unix-based applications. Windows also has a task
scheduler (Control Panel = Scheduled Tasks). The open-source Quartz Scheduler is also popular
among Java developers.

EJB 3.1 includes the @schedule annotation, which takes a calendar-based expression so you can
schedule the execution of required functionality in your beans. For example, you can create expres-
sions that will invoke some business method every second, minute, hour, Monday, weekday mid-
night, etc.

The next code snippet shows how you can create a timer that will invoke the method
getPriceQuotes () every second during weekdays from 9:30 A.M. to 4 P.M.:

@Stateless
public class MyStockQuoteFeed ({

@Schedule (second="*", minute="*", hour="9:30-16:00", dayOfWeek="Mon-Fri")
public List getPriceQuotes() {
// The code to connect to price quote feed goes here

You can also create timers programmatically using the Timeservice class and its methods
createTimer (), createSingleActionTimer (), createIntervalTimer (), and
createCalendarTimer ().

In addition to using @Schedule and programmatic timers, you can configure timers in the deploy-
ment descriptor ejb-jar.xml.

SUMMARY

EJB 3.1 is a powerful solution for creating a scalable, easy-to-develop and -deploy, and lightweight
solution for enterprise applications. Even a small-scale application can benefit from EJB 3.1. If your
application doesn’t need all the features mandated by the EJB specification, consider using EJB 3.1
Lite, which is a subset of the full specification.

It’s not possible to cover all the features offered by EJB containers in one short lesson. I’ve intro-
duced you to the main EJB concepts, but if you’d like more in-depth coverage, read Andrew Lee
Rubinger and Bill Burke’s Enterprise Java Beans 3.1, O’Reilly, 2010, ISBN: 0-596-15802-5.

TRYIT

The assignment for this lesson is to implement the stockserver class as an E]JB and to use the timer
to automatically generate and print stock price quotes every second. The new quotes should be sent

to testQueue via the JMS API and consumed by a message-driven bean. Reuse the code of the sam-
ple stock server application of the StockServerImpl from Listing 25-2 to generate the price quotes.



Trylt | 373

Lesson Requirements
You should have Java and GlassFish v3 installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson32 folder in the download.

Hint

If you want to push the stock prices to the end users, consider creating a JMS topic (e.g., PriceQuotes)
to which the method getguote () will publish the latest prices. The Java client should subscribe to this
topic to get the fresh quotes every second.

Step-by-Step

1. In Eclipse project Lesson32 create a new stateless session bean, StockServerBean, that
includes the method getguote (). The initial version of the bean may look as follows:

@Stateless
public class StockServerBean {
private String price=null;
private ArrayList<String> nasdagSymbols = new ArrayList<String>();

public StockServerBean () {

// Define some hard-coded NASDAQ symbols

nasdagSymbols.add ("AAPL") ;

nasdagSymbols.add ( )

nasdaqgSymbols.add ("YHOO") ;

nasdagSymbols.add ( )

nasdagSymbols.add ("MOT") ;
}

public void getQuote(String symbol) {
if (nasdagSymbols. indexOf (symbol.toUpperCase()) != -1) {

// Generate a random price for valid symbols
price = (new Double (Math.random()*100)) .toString() ;

}

System.out.println("The price of "+ symbol + " is " + price);

}

2.  Use the @schedule annotation to have the getQuote () method invoked every second.

3. Replace the println() statement in the method getQuote () with the code sending a text mes-
sage with the generated price quote to the queue MydMSTestQueue configured in Lesson 31.


http://www.wrox.com

374 | LESSON 32 INTRODUCTION TO ENTERPRISE JAVABEANS

4.

Create an MDB called MyPriceConsumer to retrieve and print messages from the queue
MyJMSTestQueue.

5. Deploy this application in GlassFish and test it.

Please select Lesson 32 on the DVD with the print book, or watch online at

www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava

Introduction to the Java
Persistence API

In the previous lesson you learned about various types of Enterprise Java Beans in which you
could program the business logic of your application. Now it’s time to talk about persist-

ing data. If an online store allows users to place orders with session beans, there should be a
mechanism for saving the data too. Typically, the data is persisted in DBMS.

The Java Persistence API (JPA) defines a standard way of mapping the Java classes to their rela-

tional database peers. This process is also known as object-relational mapping (ORM). One of

the popular third-party ORM frameworks, Hibernate, will be introduced in Lesson 36, but this
lesson is a brief introduction to the standard JPA 2.0 implemented by any Java EE 6—compliant

server.

THE BIG PICTURE

In the past, J2EE specifications recommend using Entity E]JB to provide all interactions with
databases. Currently, entity beans are undergoing a pruning process, and you should use
JPA instead to deal with your application’s data querying and persistence. As a matter of
fact, JPA 2.0 can be used from Java SE applications too.

JPA enables you to specify and run queries and update data without needing to write SQL
statements as you did in Lesson 22 while studying JDBC.

The Java Persistence API enables you to map Java classes to database tables using metadata
and perform create, retrieve, update, and delete (CRUD) operations using Java Persistence
Query Language (JPQL), the Persistence Criteria API, and native database queries in SQL lan-
guage. The idea is to create an application-specific domain model as a set of interrelated Java
classes and map it to the corresponding data storage (the DBMS).



376 | LESSON 33 INTRODUCTION TO THE JAVA PERSISTENCE API

If a Java class marked with the @Entity annotation has no argument constructor you can call it an
entity. Each entity instance corresponds to a row in a database table, as shown here:

@Entity
public class Employee(

}

If you start with an empty database, JPA tools enable you to create database tables based on Java
entities. You can also map Java entities to the existing database tables. Just like database tables,
Java entities can have one-to-one relationships (such as an Employee entity with one correspond-
ing Of ficeAddress entity), one-to-many relationships (such as one customer with many orders),
many-to-one relationships (the opposite of one-to-many relationships), and many-to-many relation-
ships (for example, a UniversityClass has many enrolled students, but each student can enroll
into multiple classes).

Every entity class must define a field containing a unique value, which is the equivalent of a primary
key in a database table.

The EntityManager class will deal with objects. Before persisting data you can validate the values
using the Bean Validation API.

While JPQL provides string-based SQL-like syntax for working with entities, the newer Criteria API
enables you to dynamically construct queries from strongly typed objects.

MAPPING OBJECTS TO DATABASE TABLES

You can map Java classes to database tables via annotations, XML configuration files, or both. For
example, common fields can be mapped with annotations, and DBMS-specific mapping can be done
in XML files. It does not have to be one-to-one mapping; one Java entity can be mapped to a set of
columns from more than one database table.

Besides having fields mapped to table columns, Java entities can have embeddable classes, like
Address in the Employee entity.

Typically a database table has a primary key — one or more columns that uniquely identify each

row. Java entities must have one or more fields making each instance unique. Such an entity ID can
be marked with the @1d annotation, and you can request your JPA provider to auto-generate the ID
by adding the annotation @GeneratedValue. Listing 33-1 shows an example of an Employee entity.

‘) LISTING 33-1: Employee entity

Available for @Entity

dmgtggr:" public class Employee({

@Id
@GeneratedvValue (strategy=GenerationType.IDENTITY)

@NotNull
@Size (max=10)



Mapping Objects to Database Tables | 377

public String firstName;

@NotNull
@Size (min=2, max=20)
public String lastName;

@Column (name="boss_name")
public String managerName;

@OneToMany (mappedBy = "employee")
public List<Address> addresses = new ArrayList<Address>();

If you don’t specify the table name as a parameter of the annotation, JPA assumes that there is a corre-
sponding database table with the same name as the entity class, which in our example is Employee. The
specified strategy GenerationType.IDENTITY means that DBMS has an auto-generated primary key
with auto-increment. Many database management systems support either identity columns or sequence
objects with similar functionality.

The fields that must have values are marked as eNotNu11. If an instance of the preceding Employee
entity won’t have values in the firstName or lastName fields, Bean Validation can catch this and
generate an error. The entity fields that don’t have to be persisted should be marked with the
@Transient annotation.

If a table column name is not the same as the name of the entity field, you can specify the column
name using @Column. According to Listing 33-1, the database column name boss_name corresponds
tOtheﬁekimanagerNameoftheenﬁtyEmployee

Not every Java class that corresponds to some data in the database has to be an entity. You can have
embeddable classes that define a group of properties that belong to an entity. Let’s say a company
gives to each employee a smartphone identified by a phone number and model number. You can cre-
ate a Java class to represent such a device and mark it with @Embeddable:

@Embeddable
public class SmartPhone implements Serializablef{

@Size (max=10)
public String phoneNumber;

public String model;

Now the Employee entity can embed the property of the smartpPhone type along with other fields:

@Entity
public class Employee({

@Id
@GeneratedvValue (strategy=GenerationType.IDENTITY)

@NotNull



378 | LESSON 33 INTRODUCTION TO THE JAVA PERSISTENCE API

public String firstName;

@Embedded
public SmartPhone companyPhone;

The code in Listing 33-1 illustrates the mapping of one-to-many relations between the entities
Employee and Address (not shown). One employee can have multiple addresses, so Employee refer-
ences a collection of the address entities.

JPQL

JPQL is a SQL-like query language. The main difference is that SQL operates with the DBMS sche-
mas, tables, and stored procedures, but JPQL manipulates with Java objects and their attributes
from the domain model. You don’t need to know details of the underlying data storage objects to
perform JPQL queries.

If you know the queries in advance they can be precompiled; otherwise you can build them dynami-
cally during the run time. Similarly, in JDBC you can use either PreparedStatement or Statement.

JPQL includes pretty easy-to-remember (and case-insensitive) keywords: SELECT, FROM, WHERE,
ORDER BY, GROUP BY, and so on. Here’s how you would write a JPQL query to find all managers
who have subordinates with the last name Smith:

SELECT e.managerName,

FROM Employee AS e
WHERE e.lastName='Smith'

The next query finds all employees who were given iPhones by the firm. Note the dot notation to
find the phone model from the embedded class.
SELECT e.firstName, e.lastName

FROM Employee AS e
WHERE e.companyPhone.model="iPhone'

To select all fields of certain entities (the equivalent of select * in SQL) just specify the alias name
of the entity right after the SELECT clause:

SELECT e FROM Employee AS e

The Employee and Address entities have a one-to-many relationship. If you’d like to find all employ-
ees who live in New York, this is the join written in JPQL:
SELECT DISTINCT e

FROM Employee AS e JOIN e.addresses as a
WHERE a.cityl='New York'



EntityManager | 379

ENTITYMANAGER

EntityManager is the centerpiece of persistence — it will execute all your JPA requests to read
from or write into a database. Each instance of EntityManager is associated with a set of entities.
Such a set is called a persistence unit. In Java EE containers the EntityManager can be injected as a
resource, for example:

@PersistenceContext
EntityManager em;

In Java SE applications you need to instantiate EntityManager programmatically using
EntityManagerFactory:

private EntityManagerFactory factory;
private static final String PERSISTENCE_CONTEXT NAME = "employees";

factory = Persistence.createEntityManagerFactory (PERSISTENCE_CONTEXT_NAME) ;
EntityManager em = factory.createEntityManager () ;

The entity manager can create, update, remove, and find entities by IDs or using a query. The code
to find an Employee entity with the ID 1234 can look like this:

Employee employee = em.find(Employee.class, 1234);

To create a new row in the Employee database table, create an instance of the entity Employee and
invoke the method persist () on the EntityManager. To delete a row, call remove (). Your applica-
tion can explicitly begin and commit transactions when the persistence is successfully completed.

@PersistenceContext
EntityManagerFactory factory;
EntityManager em;

@Resource
UserTransaction userTransaction;

em=factory.createEntityManager () ;

Employee newEmployee = new Employee() ;
newEmployee. firstName="Mary";
newEmployee. lastName="Thompson";
try{

userTransaction.begin() ;

em.persist (newEmployee) ;
em.remove (0ldEmployee) ;

userTransaction.commit () ;

}

catch (SystemException e){ //several other exceptions can be thrown here
e.printStackTrace() ;
try{
userTransaction.rollback();



380 | LESSON 33 INTRODUCTION TO THE JAVA PERSISTENCE AP

} catch(SystemException el) {el.printStackTrace()}

To select the manager name of the employee with the firstName Mary and the 1astName
Thompson, ask the EntityManager to run the following JPQL query:

EntityManager em;

List employees;

...employees = em.createQuery(

"SELECT e.managerName FROM Employee AS e WHERE e.firstName='Mary' "
+ " AND e.lastName='Thompson'").getResultList();

This static query works only for employees whose names are Mary Thompson. Note that the
method getResultList () is invoked on the created query object. If you expect just one entity as a
result, call the method getsingleResult () instead. To specify the first and last names dynamically,
you should use parameters, for example:

EntityManager em;
List employees;

String firstName = "Mary";

String lastName = "Thompson";

...employees = em.createQuery (

"SELECT e.managerName FROM Employee AS e WHERE " +

"e.firstName= :fname AND lastName= :lname")

.setParameter ("lname", lastName)
.setParameter ("fname", firstName)
.getResultList();

One instance of EntityManager manages a persistence unit — a set of classes specified in the con-
figuration file persistence.xml, which is located in the META-INF directory of the deployed EJB
jar. If you package the application in the war file, this file has to be located either in the directory
WEB-INF/classes/META-INF or in a jar under WEB-INF/1ib.

The file persistence.xml specifies the name of the jar file that contains managed persistence
classes and their names. It also contains the name of the JDBC data source (not the specific JDBC
driver) used for communication with DBMS.

<persistence>
<persistence-unit name="EmployeeManagement">
<description>This unit manages Acme Employees </description>
<jta-data-source>jdbc/HRDatabase</jta-data-source>
<jar-file>MyEmployeeApp.jar</jar-file>
<class>com. lesson33.Employee</class>
<class> com.lesson33.Address</class>
</persistence-unit>
</persistence>

A BRIEF INTRODUCTION TO THE CRITERIA API

JPQL is a string-based query language, but the Criteria API allows the creation of strongly typed
object-based queries. On one hand it’s more verbose than JPQL, but on the other there is no need to
do data-type conversion when processing query results.



A Brief Introduction to the Criteria API

381

These are some core interfaces in the Criteria API:

>  CriteriaBuilder: A utility class that can create criteria queries.

>  criteriaQuery: This is an object that will contain all parts of the query, such as SELECT,
FROM, and WHERE. It’s like a memory graph, in which each node represents some clause of

the query.
Root: Represents the root of the query.
TypedQuery: A query prepared for execution.

> Join: An object that represents a JOIN clause.

The next code fragment shows an equivalent of the JPQL query SELECT e FROM Employee AS e

written using the Criteria API:

EntityManager em;

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Employee> crQuery = cb.createQuery (Employee.class);
Root<Employee> employee = crQuery.from(Employee.class);
crQuery.select (employee) ;

TypedQuery<Employee> tQuery= em.createQuery (crQuery) ;
List<Employee> employeess = tQuery.getResultList( );

Start with asking EntityManager to create CriteriaBuilder, which in turn creates the instance
of criteriaQuery. Note that via generics, the CriteriaQuery is typed based on the expected

results. After that you add instances of required objects (SELECT, FROM, WHERE, and so on) to
CriteriaQuery.

Finally, the EntityManager prepares the executable Typedguery that produces strongly typed results

by executing getResultList (). If you expect just one record back, use the getSinglerResult ()
method. Adding several clauses to the query could look like this:

crQuery.select (employee) .where(...).orderBy(...);

Because we are building the object graph, the order of the query classes in the preceding line is not

important. The Root object can serve as a starting point for joining entities:

Root<Employee> employee = crQuery.from(Employee.class);
Join<Employee, Address> empJoin = employee.join(...);

The next example shows how to add the LIKE clause to get all employees with the last name
Thompson:

Root<Employee> employee = crQuery.from(Employee.class);

crQuery.select (employee) .where (
cb.like(employee.<String>)get ("lastName"),
cb.parameter (String.class, "lname"));

TypedQuery<Employee> tQuery= em.createQuery (crQuery) ;
tQuery.setParameter ("lname", "%Thompson%");
List<Employee> employeess = tQuery.getResultList( );



382 | LESSON 33 INTRODUCTION TO THE JAVA PERSISTENCE AP

BEAN VALIDATION

The Bean Validation framework (JSR-303) is a Java API for ensuring that the values in entities are
correct. Validation can be performed at different stages of the entity life cycle. Define the constraints
on your entities and the validation can be automatically initiated when you are about to create,
update, or remove an entity.

Listing 33-1 includes the @NotNul1l and @size constraints defined in the package javax.validation
.constraints, but you can create your own validation rules as well.

The life-cycle callback methods marked with the annotations @PrePersist and @PreRemove
are invoked on the entity before the EntityManager persists or removes this entity. Accordingly,
another pair of annotations, @PostPersist and @PostRemove, are invoked after these operations.

For example, you can put the validation code in the method transferEmployee () to ensure that
the transfer has been approved by the employee’s manager. Throwing an exception invalidates the
operation.

@PrePersist
public void validateTransfer () {
if (!transferApproved()) {
throw new TransferException("Manager didn't approve transfer");

TRY IT

The GlassFish v3 server includes the binaries of the JPA provider EclipseLink (see www.eclipse
.org/eclipselink). In this exercise you’ll be using EclipseLink to auto-generate Java entities
based on the existing database. This will serve as an example of object-relational mapping.

Lesson Requirements
You should have Java, the Eclipse Java EE IDE, and GlassFish v3 installed.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson33 folder in the download.

Step-by-Step

1. Create a new JPA project in Eclipse by selecting File &> New = Other &> JPA =& JPA project.
Name it Lesson33 and keep the default settings of GlassFish Server Open Source Edition 3 as
a target and Minimal JPA 2.0 Configuration as the configuration, as in Figure 33-1.


http://www.eclipse.org/eclipselink
http://www.wrox.com
http://www.eclipse.org/eclipselink

Trylt | 383

A pop-up suggesting the name of the default output folder displays. Don’t change anything
there; click Next.

The JPA Facet window (see Figure 33-2) will enable you to select the JPA provider — the
libraries that implement JPA specification.

JPA Project
Configure JPA project settings.

Project name: | Lessun33 ]

Project location
™ Use default location

S
Locaton:  Users/yfainll/practicaljava/workspace/Lesson33 | Browse.. |

Target runtime

| GlassFish Server Open Svurce Edition 3 (Java EE 6) W (Onew Y

l'""__

| Minimal JPA 2.0 Configuration ] ( Modify.. ) .

EAR membership
] Add project to an EAR

EAR project name: EAR = [ New Project.. )

FIGURE 33-1

IPA Facet p }.l'-
Configure JPA settings. \
Platform
[ Generic 2.0 H‘
JPA
Type: | User Library B
'™ mi Friipselink GlassFish =
¥
# Include libraries with this application
Ci
[ <Nonex> hﬁ
Add connection ...
Connect

FIGURE 33-2



384 | LESSON 33 INTRODUCTION TO THE JAVA PERSISTENCE API

The User Library box will initially be empty. Press the little preferences icon next to it and
then click New in the Preferences window. You’ll need to add the following six jars from the
folder glassfishv3/glassfish/modules to your new user library:

org.eclipse.persistence.antlr.jar
org.eclipse.persistence. jpa.jar
org.eclipse.persistence.asm.jar
org.eclipse.persistence. jpa.modelgen. jar
org.eclipse.persistence.core.jar

javax.persistence. jar

Start your Derby database server using the startNetworkServer command, as explained in

Lesson 22.

In the connection drop-down (refer to Figure 33-2) select Sample JavaDB Database and click
the Connect link. You’ll see that Eclipse has opened the Data Source Explorer view show-

ing the sample database that comes with Derby.

Right-click Sample JavaDB Database in the Database Connection view. Configure your new
connection in the popup window (see Figure 33-3) to the database Lesson22 that you created
in Lesson 22. Click Test Connection to ensure you did it right.

L TaNs) ‘New Derby Connection Profile.

Specify a Driver and Connection Details —

Select a driver fram the drop-down and provide login details for the
connection.

Drivers: | DerbyForSampleDB W # A

Propertics

~| General | Optional - 'r
Database: lLesmn.ZZ ]

Host: Incalhost

Port number: 15,7

User name: | yger

Password:

¥ Create database (if required)

("] upgrade database to current version

[ Save password

URL: jdbederby { flocalhosr- 1527 fLesson?2 create =true

2 T est Connection )
™ Connect when the wizard completes |_Test Connection )

"] Connect every time the warkhench ic started

(?) (_ < Back )( Next > ) ( Cancel J {' 'M“h—'j

FIGURE 33-3



Trylt | 385

7. TFigure 33-4 is a snapshot of Eclipse view Data Source Explorer, which shows you the table
Employee from Lesson 22. It’s located in the APP schema.

¥ > Database Connections
¥ Lesson22 (Apache Derby v. 10.5.3.0 - (802917))
v [:] Lesson22
¥ [ Authorization IDs

¥ [ Schemas
v B arp
¥ | Dependencies
b [ Stored Procedures
» [ Synonym
¥ [ Tables
v [ EMPLOYEE
¥ [ Columns
b B EMPNO [INTEGER)
b B EMAME [VARCHAR(S0))
» [ JOB_TITLE [VARCHAR{150)]
» [ Constraints
» [ Dependencies
b [ Indexes
b | ) Triggers
B | | User-Defined Functions
b [ Views

FIGURE 33-4

8. JPA requires database tables to have primary keys, but our table Employee didn’t define one.
You’ll need to fix this by making the column empno a primary key. You can do it from the
command line via the ij utility (see Lesson 22) by issuing the following command:

alter table APP.Employee add primary key (empno) ;

9. Right-click the name of project Lesson33 and select JPA Tools > Generate Entities from
Tables. In the pop-up window select the table Employee and click Finish.

10.  Open the folder src in your Eclipse project and you’ll find there a freshly generated class
called Employee that will look as follows:

import java.io.Serializable;
import javax.persistence.*;
/'k‘k

* The persistent class for the EMPLOYEE database table.

*
*/
@Entity
public class Employee implements Serializable {

private static final long serialVersionUID = 1L;

@Id
private int empno;

private String ename;

@Column (name="JOB_TITLE")



386 | LESSON 33 INTRODUCTION TO THE JAVA PERSISTENCE AP

private String jobTitle;
public Employee() {}

public int getEmpno () {
return this.empno;

}

public void setEmpno (int empno) {
this.empno = empno;

public String getEname () {
return this.ename;

}

public void setEname (String ename) {
this.ename = ename;

public String getJobTitle() {
return this.jobTitle;

public void setJobTitle(String jobTitle) {
this.jobTitle = jobTitle;

}

}

11.  Finally, open the folder META-1NF and you’ll find generated there the file persistence. xml:

<?xml version="1.0" encoding="UTF-8"7?>

<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi=http://www.w3.0org/2001/XMLSchema-instance
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="Lesson33">
<class>Employee</class>

</persistence-unit>

</persistence>

Please select Lesson 33 on the DVD with the print book, or watch online at
www.wrox.com/go/fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava

34

Working with RESTful
Web Services

In the nineties the Web became widely used, and newly created web applications were con-
sumed by millions of people around the world. At the same time lots of legacy applications
were available for use only within corporate walls. They were written in a variety of program-
ming languages and deployed on a plethora of types of hardware. There was a need to expose
corporate data to wider audiences, which resulted in the creation of the standard interface for
consuming data over the Web.

THE SOAP WEB SERVICES

The first standard for publishing and consuming web services was the XML-based Simple Object
Access Protocol (SOAP). Web clients would form HTTP requests and receive responses using the
SOAP syntax.

The difference between traditional JSP/Servlet/JSF web applications and web services is that
the latter offer just the data and have no interest in what the client’s UI will look like. For
example, an insurance company could offer information about its products, or a mutual
fund could expose its data as a web service returning XML documents. Clients didn’t need
to know that this insurance company was running its applications using a server from Sun
Microsystems or that the mutual fund was running its on mainframe computers from IBM.
The clients needed to know the directory of services available from this particular organiza-
tion and the address of the endpoint to connect to in order to consume this service.

The directory of services could be published with the XML-based Web Services Description
Language (WSDL), which is pretty verbose. In the Java world, SOAP messages could be pro-
cessed by means of JAX-WS without the need for a directory of services.

Even though SOAP web services are verbose, they are still widely used as a simple means of inte-
gration with the software produced by third parties. Some SOAP services are publicly available.
For example, the web page www.webservicex.net offers descriptions and WSDL locations of
such information and services as weather forecasts, US address verification, currency converters,
and stock quotes. You can integrate these into your application, but providing a user interface for
them remains your responsibility.


http://www.webservicex.net

388 | LESSON 34 WORKING WITH RESTFUL WEB SERVICES

THE RESTFUL WEB SERVICES

As opposed to SOAP, REST is not a protocol, but a lighter-than-SOAP means of building web ser-
vices, or, to be precise, REST is an architectural style Dr. Roy Fielding identified the REST princi-
ples in his PhD dissertation. A web service built on REST principles is called a RESTful web service.

Java EE 6 specification includes the JAX-RS API for creating RESTful web services. Several Java
application servers already implement JAX-RS. I’ll continue using GlassFish v3, which comes with
the JAX-RS implementation known as Jersey, and you won’t need to download any additional
libraries to run the sample code from this lesson. Other popular open-source JAX-RS implementa-
tions are Apache Wink and JBoss RESTEasy.

REST stands for representational state of transfer. REST defines a set of constraints that an applica-
tion must comply to, and web resources that the user may need to work with.

A resource is anything that you can access with a hyperlink. Each resource has a uniform resource iden-
tifier (URI), such as http://localhost:8080/StockServer or www.dice.com/yakovsresume.pdf.
These URISs represent the state of a stock server and Yakov’s résumé, respectively.

REST resources have to support standard stateless requests. But if a typical web application uses only
the HTTP methods GET for reading the resource and PosT for updating it, in the RESTful world you
can also use PUT for resource creation or updates and DELETE for resource removal. Web application
developers often freely use both GET and PosT for reading data, but REST is stricter about this.

THE RESTFUL STOCK SERVER

In this section I’ll redesign the familiar stock server example using REST. The representation of the
resources (in this case stocks) can vary and is determined by media type.

With Java EE 6, creating a RESTful application is pretty straightforward — create a POJO and anno-
tate it. For example, annotating a Java bean with @xm1RootElement can bring into action the JAXB
framework for processing XML, which will turn the bean into an XML document before sending it to
the web client. Listing 34-1 shows a Java bean called stock annotated with @xm1RootElement.

‘) LISTING 34-1: Root class Stock

Available for  import javax.xml.bind.annotation.XmlRootElement;
download on
Wrox.com

@XmlRootElement

public class Stock {
private String symbol;
private Double price;
private String currency;
private String country;

public Stock() {
}

public Stock(String symbol,Double price, String currency, String country) {


http://localhost:8080/StockServer
http://www.dice.com/yakovsresume.pdf

The RESTful Stock Server | 389

this.symbol = symbol;
this.price = price;
this.currency = currency;
this.country = country;

}

public String getSymbol() {
return symbol;
}

public void setSymbol (String symbol) {
this.symbol = symbol;
}

public Double getPrice() {
return price;

}

public void setPrice(Double price) {
this.price = price;
}

public String getCurrency () {
return currency;

}

public void setCurrency (String currency)
this.currency = currency;

}

public String getCountry () {
return country;

}

public void setCountry(String country) {

this.country = country;

}

<stock>

<country>US</country>
<currency>USD</currency>
<price>43.12</price>
<symbol>IBM</symbol>

</stock>

Here’s an example of how a RESTful service (Listing 34-2) may return the representation of a particu-
lar stock that’s identified by the URI http://localhost:8080/Lesson34/resources/stock/IBM:

From the standpoint of RESTful Web service, the preceding XML code fragment is more important
than the Java code in Listing 34-1. The latter is an implementation detail. It’s the actual representa-
tion expressed here in XML that really matters.



390

| LESSON 34 WORKING WITH RESTFUL WEB SERVICES

Just to reiterate the concept of resources and URIs, the stock MSFT is considered another resource
and can be represented by the URI http://localhost:8080/Lesson34/resources/stock/MSFT.
The class stockResource is a POJO, but if you’d like to turn it into an EJB, just annotate it with the
@Stateless annotation.

The class stockResource is heavily sprinkled with annotations. First comes the annotation @Path,
which can be used with either a class or a method. JAX-RS maps client’s requests to class methods.
If more than one annotation $Path are used in a class, their values are going to be concatenated for
finding the matching method.

In our example in Listing 34-2, during the client’s request the class-level @Path("/stock") results
in the routing of each request containing /stock in its URI to the class StockResource. Then the
matching process continues, and if there is a stock symbol after the word stock, (e.g., /stock/
MSFT), the method-level @Path (" {symbol} ") will map the getStock () method for processing. The
@PathParam("symbol") will inject the stock symbol included in the URI into the symb argument of
the method getStock().

The addstock () method in Listing 34-2 is annotated to consume the form data and is called
when the Add button in the web client (see Figure 34-1) is clicked. The @FormpParam annotation
injects the values entered in the HTML form into the method addstock (). If the web client isn’t
using a form but instead is using an HTTP GET request with parameters, you have to use the
annotation @QQueryParam instead of @FormParam.

‘) LISTING 34-2: REST resource StockResource

Available for import javax.ws.rs.Consumes;
dmgtgg"ﬁn import javax.ws.rs.FormParam;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Response;

@Path("/stock")
public class StockResource {

@Produces ({"application/xml", "application/json"})
@Path (" {symbol}")
QGET

public Stock getStock(@PathParam("symbol") String symb) {
Stock stock = StockService.getStock (symb) ;
if (stock == null) {
return new Stock("NOT FOUND", 0.0, "--", "—-=");

return stock;

@POST



The RESTful Stock Server | 391

@Consumes ("application/x-www-form-urlencoded")

public Response addStock (@FormParam("symbol") String symb,
@FormParam("currency") String currency,
@FormParam("price") String price,
@FormParam ("country") String country) {

if (StockService.getStock(symb) != null)
return Response.status (Response.Status.BAD_REQUEST) .
entity("Stock " + symb +
" already exists").type("text/plain").build();

double priceToUse;
try {
priceToUse = new Double (price);
}
catch (NumberFormatException e) {
priceToUse = 0.0;

}

StockService.addStock (new Stock(symb, priceToUse,
currency, country));

return Response.ok().build();

hitp://localhost:B080/Lesson34/

Find Stock

|' | Fna |
Add new Stock

Symbol
Currency

gle]

Country

FIGURE 34-1

One of the methods in stockResource is marked with a @GET annotation and the other one with
@POST. You've guessed it right — they will automatically be invoked to process the corresponding



392 | LESSON 34 WORKING WITH RESTFUL WEB SERVICES

HTTP requests. The MIME types specified in the annotation @Produces mean that the method

getStock () can produce the data in either XML format or JSON format. In REST terminology,
you can say that the StockResource resource supports two representations — JSON and XML.
JSON stands for JavaScript Object Notation; it can be used as a lighter alternative to XML.

JSON is popular with web clients written in JavaScript (see Listing 34-5 for the sample code). There
are JSON parsers for programming languages other than JavaScript languages, including Java.
Here’s an example of the data in JSON format, which clearly requires less overhead to represent the
object stock than XML does:

"stock": {
"country": "US",
"currency": "USD",
"price": 43.12,
"symbol": "IBM"

The public community domain wuw.geonames . org enables you to search for
geographical and statistical information about countries, cities, et cetera. This
website uses RESTful web services for the most part. To compare how the same
data is represented in XML and in [SON, visit this web page: www . geonames
.org/export/ws-overview.html.

The class stockResource is using the helper class stockService, shown in Listing 34-3. For sim-
plicity, this class has two hard-coded stocks, but in the real world it would be connected to one of
the financial data feeds. This class uses static initializer, which calls the method generatestocks ()
on the first reference to Stockservice.

\) LISTING 34-3: StockService class

Available for import java.util.HashMap;
download on : \ ) .
Wrox.com import java.util.Map;
public class StockService {
public static void addStock(Stock stock) {
stocks.put (stock.getSymbol (), stock);
}

public static void removeStock (String symbol) {
stocks.remove (symbol) ;

}

public static Stock getStock(String symbol) {
return stocks.get (symbol) ;

}

private static Map<String, Stock> stocks = new HashMap<String, Stock>();

static {


http://www.geonames.org
http://www.geonames.org/export/ws-overview.html
http://www.geonames.org/export/ws-overview.html

The RESTful Stock Server | 393

generateStocks () ;

private static void generateStocks () {
addStock (new Stock("IBM", 43.12, "USD", "US"));
addStock (new Stock("APPL", 320.0, "USD", "US"));

7

The web.xml file from Listing 34-4 is configured to redirect all HTTP requests that contain the

pattern /resource to com.sun.jersey.spi.container.servlet.ServletContainer, the Jersey
implementation class.

‘) LISTING 34-4: web.xml

Available for ~ <?xml version="1.0" encoding="UTF-8"?>

dwmr:&g" <web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<servlet>
<gservlet-name>Rest</servlet-name>
<servlet-class>

com.sun.jersey.spi.container.servlet.ServletContainer

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Rest</servlet-name>
<url-pattern>/resources/*</url-pattern>

</servlet-mapping>

</web-app>

Next comes the thin web client written in HTML and JavaScript, which is not covered in this book.
I’ll just highlight the relevant code fragments to explain the client/server communication in the stock
server example. Listing 34-5 shows the index.html file, which includes the popular JavaScript
library JQuery (see the reference in the <head> section).

‘) LISTING 34-5: Thin web client index.html

uAva"?hI?ifor <!DOCTYPE html>
ownload on
Wrox.com  <html>

<head>
<title>Rest + JSON</title>
<link rel="stylesheet" type="text/css" href="css/main.css"/>

<script src="http://code.jquery.com/jquery-1.4.4.js">
</script>

continues



394 | LESSON 34 WORKING WITH RESTFUL WEB SERVICES

LISTING 34-5 (continued)
</head>

<body>

<p class="title">Find Stock</p>

<form id="get-stock" action="javascript:alert('submit')">
<input id="get-stock-symbol" type="text"/>
<input class="button" type="submit" value="Find"/>

</form>

<div class="result">

<table>
<tr>
<td>Symbol</td>
<td id="symbol"></td>
</tr>
<tr>
<td>Price</td>
<td id="price"></td>
</tr>
<tr>
<td>Currency</td>
<td id="currency"></td>
</tr>
<tr>
<td>Country</td>
<td id="country"></td>
</tr>
</table>
</div>

<p class="title">Add new Stock</p>

<div id="add-stock-flash-message" class="flash-message">

</div>

<form id="add-stock" action="javascript:alert('submit')">

<fieldset>
<ol>

<li>
<label
<input

</1li>

<li>
<label
<input

</1li>

<li>
<label
<input

</1li>

for="add-stock-symbol">Symbol</label>
id="add-stock-symbol" name="symbol" type="text"/>

for="add-stock-currency">Currency</label>
id="add-stock-currency" name="currency" type="text"/>

for="add-stock-price">Price</label>
id="add-stock-price" name="price" type="text"/>



The RESTful Stock Server | 395

<li>
<label for="add-stock-country">Country</label>
<input id="add-stock-country" name="country" type="text"/>

</1li>

<1li>
<input class="button" type="submit" value="Add"/>

</1li>

</o0l>
</fieldset>
</form>

<script>
S('.result') .hide();
S ('#add-stock-flash-message') .hide() ;

$("#get-stock") .submit (function() {

$.getJSON('resources/stock/' + $("#get-stock-symbol").val(),
function(data) {

S('.result').fadeOut (500, function() {
S ('#symbol') .html (data.symbol) ;

S('#price') .html (data.price);
S ('#currency') .html (data.currency) ;
S ('#country') .html (data.country) ;

$('.result').fadeIn(500)
1)
)

return false;

)
S ("#add-stock") .submit (function() {

$.ajax({
type: "POST",
url: 'resources/stock',
data: $("#add-stock").serialize(),

success: function() {
S ("#add-stock-flash-message") .show() .html (
"Stock was added") .fadeOut (5000) ;
I

error: function(request, textStatus, errorThrown) {
if (textStatus == 'error') {
S ("#add-stock-flash-message")
.show () .html (request.responseText) .fadeOut (5000) ;
}
else {
$ ("#add-stock-flash-message")
.show() .html ("Server error").fadeOut (5000) ;

continues



396 | LESSON 34 WORKING WITH RESTFUL WEB SERVICES

LISTING 34-5 (continued)

1)

return false;

1)

</script>

</body>
</html>

This HTML/JavaScript client can be invoked in such a way as to request a resource represented
either as JSON or as XML. To get the data in JSON format, simply direct your web browser to
http://localhost:8080/Lesson34/index.html. When you press the Find button on the form
shown in Figure 34-1, the code in index.html calls the function getJson (), which creates the
pattern resources/stock , concatenates the entered stock symbol, and sends the request to the
server. In the following JQuery code fragment get-stock is the ID of the top HTML form being
submitted to the server:

S ("#get-stock") .submit (function() {
$.getJSON('resources/stock/' + $("#get-stock-symbol").val(),
function(data) {

3
The function getJsoN () has requested the resource stock in JSON format. Even though the Java

bean stock has been annotated with @xm1RootElement, JAXB can represent it not only as XML,
but also as JSON.

To test the XML branch, enter a URL containing the pattern /resources that was used in the
web.xml file from Listing 34-4. For example, the URL http://localhost:8080/Lesson34/
resources/stock/IBM will return this REST resource as XML, as shown in Figure 34-2.

In this use case the code from the file index.html is not being used, and the request is redirected to
the function getStock () of StockResource. The function getStock () is capable of producing both
JSON and XML, but this time it produces plain web browser’s code that knows how to consume
XML only, and so JAX-RS picked up the XML format as a common denominator.

8ane

@"’ @ (_ﬁ_) ( # ) ( http:/ (localhost:8080/Lesson34 /resources/stock/1BM
3 ==

This XML file does not appear to have any style information associated with it. The docun

- <stnek>
<country>US</country>
<currency>USD</currency>
<price>43.12</price:>
<symhonl>IBM</symhal>

</stock>

FIGURE 34-2



Trylt | 397

TRY IT

Your assignment is to make the code shown in the listings work. You’ll need to create an Eclipse
project and copy to the proper places the code samples from the accompanying DVD (Listings 34-1
to 34-5). Then you’ll need to deploy this project in GlassFish and run it.

Lesson Requirements

You should have Java and GlassFish v3 server installed.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson34 folder in the
download.

Hints

Eclipse IDE for Java EE Developers has a template for the creation of REST resources. Right-click
the project name, select New, and then select RESTful Web Service From Pattern (Java EE 6).
Eclipse will create for you an annotated class similar to the one from Listing 34-2, which you can
edit to meet your application’s requirements.

Step-by-Step

1.

Create a dynamic web project called Lesson34 in Eclipse. Then create a package called
com.practicaljava.lesson34.

Copy the classes stock, StockResource, and StockService from the DVD into this
package.

Copy the file web.xm1 shown in Listing 34-4 to the directory webContent /WEB-INF.

Create the folder webContent/css and copy to it the file main.css from the DVD — this
will add some colors to the client’s UL

Deploy the project Lesson34 under GlassFish — right-click the server name, select Add and
Remove, and in the pop-up window move Lesson34 from the left box to the right one by

clicking Add. Then click Finish.

Open a web browser and go to http://localhost:8080/Lesson34/, which will open the
file index.html from Listing 34-5. You’ll see something similar to Figure 34-1.

Enter 1BM in the search field and click Find. The pricing information (hard-coded) about this
stock will be displayed as in Figure 34-3.

Test the Add New Stock functionality by filling out the form shown in Figure 34-3 and click-
ing Add. This will make a PosT request to the RESTful service, which will be mapped to the
method addstock () of StockResource from Listing 34-2. After the new stock has been
added you can search for it by entering its name in the search field and clicking Find.


http://www.wrox.com

398 | LESSON 34 WORKING WITH RESTFUL WEB SERVICES

()2 12 (N A (L I hitp:/ flocalhost:8080/Lesson34/

Find Stock

[IBM ||Find]

EICE

Add new Stock

Symbaol
Currency

Price

Country

FIGURE 34-3

9 Please select Lesson 34 on the DV D with the print book, or watch online at

www . wrox.com/go/fainjava fo view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava

35

Introduction to Spring MVC
Framework

At the beginning of the century Java EE was called J2EE, and it was a heavy and over-
engineered standard. Programming EJBs was difficult and required writing a lot of boiler-
plate code. Java annotations had not been invented yet. Having a Java container that would
take care of multi-threading, transactions, persistence, and security was nice, but developers
needed a lighter container and a simpler programming model.

Rod Johnson, a talented software engineer, wrote a book titled Expert One-on-One J2EE
Design and Development, which was published by Wrox at the end of 2002. A year later the
book’s code samples and development recommendations were released as the Spring Framework.

The Spring Framework is a Java container that provides a living space for an application’s
objects, wired to each other in a loosely coupled way in XML configuration. This loose cou-
pling comes at a price, though — configuration files are quite large in size.

Spring Framework was built based on the inversion of control (1oC) principle: The container
is responsible for the instantiation and location of the objects. IoC is also known as the
Hollywood principle: “Don’t call us, we’ll call you.”

Instead of having a class called customer reach out to some container’s registry trying to

find an order, under the Spring Framework the container would use a system of callbacks to
instantiate the order and inject it into the instance of the customer object. This is an example
of the dependency injection pattern — the Customer gets an injection of required resources.
You saw resource injection in action in the Java EE lessons.

Don’t forget that even five years ago the injection of resources was not implemented in Java EE
application servers. Today not only is resource injection implemented, but Java EE 6 has yet
another injection mechanism known as contexts and dependency injection (not covered in this
book), which will make future Java EE applications even lighter. But don’t forget that some
ideas implemented in the current Java EE specification were originally introduced by the Spring
Framework.



400

| LESSON 35 INTRODUCTION TO SPRING MVC FRAMEWORK

Over the last several years the Spring Framework has served as an alternative solution for develop-
ing enterprise Java applications. It has provided an infrastructure that allows you to easily plug in
third-party frameworks and components. For example, the combination of Spring and the persis-
tence framework Hibernate (see Lesson 36) is a popular architecture for lots of production-grade
applications.

Serious improvements in the Java EE 6 specification may reduce the number of applications devel-
oped with Spring/Hibernate, but as of today this duo certainly remains a nice infrastructure for
developing enterprise Java applications.

BEAN WIRING

In the Spring Framework, beans are configured in XML files, and if a class called customer needs
an order bean you can either look for this bean by issuing getBean (“order”) on an instance of
the main Spring factory, ApplicationContext, or, better yet, configure injection of the order into
Customer, as in the following code:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns=http://www.springframework.org/schema/beans
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="customerBean" class="com.practicaljava.lesson35.Customer">
<property name="order" ref="ord" />
</bean>

<bean id="ord" class="com.practicaljava.lesson35.0rder"/>
</beans>

This is an example of configuring injection of one object into the field of another one in a loosely
coupled way. The class customer knows that someone will provide an order when the time is right.
This makes it easy to test the Customer’s functionality alone by wiring orders with hard-coded
values — just change the value in the preceding XML from com.practicaljava.lesson35.0rder
to com.practicaljava.lesson35.FakeOrder. When the real data is available, change it back.

In simple cases you can inject simpler values into Spring bean properties via setters or construc-

tor arguments. You can provide the name of the file with configured beans to the constructor of
ApplicationContext during instantiation.

OVERVIEW OF SPRING MVC

The Spring Framework consists of a number of modules that can be categorized as web, core,
and data access. And the good part is that they can be used a la carte as you need them. The web
module simplifies development of web applications. The core module provides the infrastructure
and wiring for Java components living in the Spring container. Data access enables you to create



Overview of Spring MVC | 401

an abstraction layer for data access so that no Java code needs to be changed if you decide to use a
different JDBC driver or DBMS.

In this lesson you’ll get familiar with the Spring MVC module that was created for the development
of web applications. Like Java application servers, Spring manages your Java classes, so I’ll be using
the term Spring container. The classes that are going to be managed by the Spring container can be
referred to as Spring beans.

The Spring Framework offers a solution for building web applications. It includes a number of mod-
ules: Spring Faces, Spring Web Flow, Spring JavaScript, Spring Security, and Spring BlaseDS. And
you don’t have to use all these modules to build a web application — just use what you need.

There are two main models for building web applications with HTML clients:

> The client connects to a server-side presentation object (such as JSP) that is responsible for
further routing and processing the request and for forming the next view to be returned to
the client.

> The client connects to a server-side controller object (has no Ul code) that performs the rout-
ing and processing of the request and for selection of the proper view to be returned to the
client.

Building a web application in the Spring Framework represents the second model, where
DispatcherServlet intercepts client requests and passes them to the appropriate Java controller

to handle the request. The controller creates a ModelAndview object and gives it to a view resolver,
which finds the view component to return to the client. The entire dataflow is shown in Figure 35-1.

Servlet Container with Spring Web MVC

Request

Y

DispatcherServiet Controller

_ Response
- —

ModelAndView

ViewResolver

FIGURE 35-1

This architecture is supported by the easily extendable Spring MVC layer. Other frameworks can
be plugged into the Spring infrastructure. It’s popular to integrate Spring and Hibernate for data
persistence, but there are other examples of framework integration. For example, Adobe’s BlaseDS
framework or the Apache Struts legacy framework can be plugged into Spring.

HTML forms with data validation and error processing are also supported, and you’ll see how to
develop such applications in the next section.



402 | LESSON 35 INTRODUCTION TO SPRING MVC FRAMEWORK

PROCESSING HTML WITH SPRING

In this section I’ll show you a simple web application using the Spring Web MVC framework. You’ll
see how to do the following:

> Configure the controller servletDispatcher.
> Configure the UrlBasedviewResolver bean.

> Create a simple controller called Helloworldcontroller to produce data for presentation
by a JSP.

> Handle the request of a “contact us” HTML form with the Spring JSP tag library.

Understanding the Spring Web MVC Workflow

To start, create an Eclipse Dynamic Web Project named Lesson35. Now you’ll need to download
several jar files from the Spring framework and copy them to the webContent /WEB-INF/11ib folder.
ngﬁtmfattheSpﬂngSOurce\Nebﬁtewww.springsource.com/download/community’and
download the latest zip file of the Spring Framework. At the time of this writing it’s
spring-framework-3.0.5.RELEASE. zip.

Unzip the archive and add the following jars to the build path of your Eclipse project. Also copy
these jars to the webContent/1ib directory so they are visible at the deployment time.

> org.springframework.asm-3.0.5.RELEASE. jar
org.springframework.beans-3.0.5.RELEASE. jar
org.springframework.context-3.0.5.RELEASE. jar
org.springframework.core-3.0.5.RELEASE. jar
org.springframework.expression-3.0.5.RELEASE. jar

org.springframework.web.servlet-3.0.5.RELEASE. jar

Y YV Y VY Y Y

org.springframework.web-3.0.5.RELEASE. jar

For logging support you’ll also need to download and add to the 1ib folder the Commons Logging
API commons-logging-api-1.1.1.Jar, which you can download from the same website — it’s in
org.apache.commons in the archive with dependencies.

Now you need to deploy the Spring Framework as a web application under GlassFish. Create the file
web.xml with the content shown in Listing 35-1 and add it to the weB-1NF folder. This file instructs
GlassFish to load the Spring’s Dispatcherserviet on startup and to redirect any *.html requests to it.

‘) LISTING 35-1: web.xml with DispatcherServlet

Available for <?xml version="1.0" encoding="UTF-8"?>
d\lm:!ggglgn <web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns=http://java.sun.com/xml/ns/javaee
xmlns:web=http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
xsi:schemalocation=


http://www.springsource.com/download/community

Processing HTML with Spring | 403

"http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
id="WebApp_ID" version="2.5">

<display-name>Lesson35 Sample</display-name>
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

<servlet>
<servlet-name>springServletDispatcher</servlet-name>
<gservlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>springServletDispatcher</servlet-name>
<url-pattern>*.html</url-pattern>
</servlet-mapping>
</web-app>

In our example the MVC pattern will be represented by the following: for the model a Java class
called contactUs; for the view two JSP pages, hello and contactUs; and for the classes two Java
controller classes, HelloWorldController and ContactUsController. Figure 35-2 shows a snap-
shot of my Eclipse project to give you an idea of where the files are located.

HelloWorldController is shown in Listing 35-2. It includes the @RequestMapping annotation that
instructs the controller to call the method sayHello () for any requests with the /hello pattern.

¥ &3 Lesson35
¥ A0 JAX-WS Web Services
» ‘g3 Ueployment Descriptor: Lesson3ds
¥ 2% Java Resources: src
¥ £ com.practicaljava.lesson35.controller
[ ContactUsController java
» [J] HelloworldLentraller.ava
T com.practicaljava.lesson35.model
b 1] Cantacils java
b @ Libraries
B JavaScript Resources
¥ (= build
¥ = WehContenr
* = META-INF
¥ % WEB-INF
¥ & lib
& commons-logging-api-1.1.1 jar
2 org.springframework.asm-3.0.5.RELEASE.jar
& org.springframework.brans-3.0.5.RELEASE jar
& org springframework contexi-3.0.5 RFLFASF jar
& org.springframework core-3.0.5 RELEASE jar
= org.springframework.expression-3.0.5.RELEASE jar
& org.springframework.web.serviet-1.0.5.RELEASE jar
& org.springframework web-3.0.5.RELEASE jar
¥ [ Sviews
=) contactUs.jsp
1) hellojsp
1 springServietDispatcher-servierxml
¥ sun-web.xml
(X web.xml
[E) inedex jug

FIGURE 35-2



404 | LESSON 35 INTRODUCTION TO SPRING MVC FRAMEWORK

J LISTING 35-2: HelloWorldController

Available for import org.springframework.stereotype.Controller;
daﬂgrz&:" import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.servlet.ModelAndView;

@Controller
public class HelloWorldController {

@RequestMapping ("/hello")
public ModelAndView sayHello () {

String greetings = "Hello people";
return new ModelAndView("hello", "greetings", greetings);

The view resolver of our application is an XML configuration file named
springServletDispatcher-servlet.xml, shown in Listing 35-3. Note that the preﬁx of this
file name matches the value in the tag <servlet-name> in Listing 35-1. This application uses one
of the view resolvers provided by Spring, Ur1BasedviewResolver, which creates the appropriate
view based on the URL.

‘) LISTING 35-3: springServletDispatcher-serviet.xml

Available for <?xml version="1.0" encoding="UTF-8"?>
d&ﬂ:?g&gn <beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context :component-scan
base-package="com.practicaljava.lesson35.controller" />

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.UrlBasedViewResolver">
<property name="viewClass"
value="org.springframework.web.servlet.view.JstlView" />
<property name="prefix" value="/WEB-INF/views/" />
<property name="suffix" value=".jsp" />
</bean>
</beans>

The preceding file is configured to add the prefix WEB-INF/views and the suffix .jsp to the value
specified in the @RequestMapping of the controller. As an example, for HelloworldController the
URL of the view given to the response object becomes WEB-INF/views/hello.jsp. The source code
for hello. jsp is shown in Listing 35-4.



Processing HTML with Spring | 405

J LISTING 35-4: hello.jsp

Available for <%@ page language="java" contentType="text/html; charset=IS0-8859-1"
dmg;‘?ggl:" pageEncoding="I1S0-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/htmld/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">
<title>Insert title here</title>
</head>
<body>
S{greetings}
</body>
</html>

What does ${greetings} mean? Look at the code of Helloworldcontroller in Listing 35-2. It

contains the following lines:

String greetings = "Hello people";
return new ModelAndView("hello", "greetings", greetings);

This is how the Spring controller tells the view resolver what to do with the view before it is returned to
the client. The first argument of the Modelandview constructor contains the name of the view, and the
second one contains the name of the JSP element to be replaced with the content of the third argument.
Basically, the name of the class reflects the fact that it contains elements of both the model and the view.

The class Modelandview has a number of overloaded constructors (see Figure 35-3) that enable you
to pass multiple values to the view object. You can also populate Modelandview with data by using

the method addobject ().

Model AndView()
Default constructor for hean-style usage: populating bean properties instead of passing in constructor arguments.

ModelhndView(String viewName)

Convenient constructor when there is no madel data tn expose.
ModelAndView(String viewName, Map<String,?> model)

Creates new ModelAndView given a view name and a model.
ModelAndView(String viewName, String model¥ame, Objoct modelObject)

Convenient constructor to take a single model object.
ModelAndView(View view)

Convenient constructor when there is no medel data to expose.
ModelAndView(View view, Map<String,?> model)

Creates new ModelAndView given a View object and a model.
modelandview(view view, String modelname, Ubject modelUbject)

Convenient constructor to take a single model object.

Meathod Summary

ModelAndView addAllobjects(Map<String,?> modelMap)

Add all attributes contained in the provided Map to the model.
MudelAndvView addobject(Object attributeValue)

Add an attribute to the model using parameter name generation.
Mmodelandview addubject(String attributename, Object attributevalue)

Add an attribute to the model.

FIGURE 35-3



406 | LESSON 35 INTRODUCTION TO SPRING MVC FRAMEWORK

Add the project Lesson335 to GlassFish in the Eclipse Servers view and start the server. Direct your
web browser to http://localhost:8080/Lesson35/hello.html and you’ll see something like
what’s shown in Figure 35-4. Just to recap, because of the *.html mapping in web.xml, Spring’s
ServletDispatcher was invoked. The .html part was stripped off, the word hello was identified,
and the HelloWorldController was instantiated and its method sayHello ()invoked. The view
resolver found hello.jsp, and its variable greetings was replaced with the text “Hello People” as
per the content of the Modelandview instance.

eno
GE' @ @ L nnn:!.rlocalhoscausmLesson35a’nello,n(m|_

Hello people

FIGURE 35-4

Processing HTML Forms

Processing HTML forms with Spring is just a little bit more complex than the “Hello People”
example. The Spring Framework comes with integrated tag libraries with a tag corresponding
to each HTML element. In particular, there is the form tag library for processing HTML forms.
Listing 35-5 shows contactUs. isp, which includes the appropriate <¢taglib> directive.

J LISTING 35-5: ContactUs.jsp

Available for <%@ page language="java" contentType="text/html; charset=UTF-8"
dmg;‘?zg"‘:" pageEncoding="UTF-8"%>
<%@taglib uri="http://www.springframework.org/tags/form" prefix="form"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">
<title>Insert title here</title>
</head>
<body>
<h2>Contact Manager</h2>

<form: form method="post" action="addQuestion.html">

<table>

<tr>
<td><form:label path="author">Who are you?</form:label></td>
<td><form:input path="author" /></td>

</tr>

<tr>
<td><form:label path="subject">Subject</form:label></td>
<td><form:input path="subject" /></td>

</tr>

<tr>



Processing HTML with Spring

| 407

<td><form:label path="message">You Question</form:label></td>
<td><form:textarea path="message" /></td>

</tr>
<tr>
<td colspan="2">
<input type="submit" value="Submit your question"/>
</td>
</tr>
</table>

</form: form>
</body>
</html>

When the user clicks Submit, the request is posted to the server with addguestion.html in the
URL. Then DispatcherServlet maps addQuestion with the method adduserQuestion () in the
controller shown in Listing 35-6.

\) LISTING 35-6: ContactUsController.java

Available for
download on
Wrox.com

package com.practicaljava.lesson35.controller;

import org.springframework.stereotype.Controller;

import org.springframework.validation.BindingResult;

import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.servlet.ModelAndView;

import com.practicaljava.lesson35.model.ContactUs;

@Controller
@SessionAttributes
public class ContactUsController ({

@RequestMapping (value="/addQuestion", method=RequestMethod.POST)
public String addUserQuestion (@ModelAttribute("contactUs") ContactUs
contactUs, BindingResult result) {

System.out.println("New message:\nSubject:"
+contactUs.getSubject());

System.out.println("Author " + contactUs.getAuthor());

System.out.println("Message "+ contactUs.getMessage());

return "redirect:contactUs.html";
@RequestMapping ("/contactUs")

public ModelAndView contactUs () {
return new ModelAndView("contactUs", "command", new ContactUs());



408 | LESSON 35 INTRODUCTION TO SPRING MVC FRAMEWORK

@ModelAttribute binds the method parameter to the named model attribute (see the model class
in Listing 35-7). The Spring Framework maps the attributes from the model to corresponding attri-
butes in ContactUs. jsp, shown in Listing 35-5.

\) LISTING 35-7: ContactUs.java

Availablefor  public class ContactUs {

download on . : . 3

Wrox.com private String subject;
private String message;

private String author;

public String getSubject () {
return subject;
}
public void setSubject (String subject) {
this.subject = subject;
}
public String getMessage () {
return message;
}
public void setMessage (String message) {
this.message = message;
}
public String getAuthor() {
return author;
}
public void setAuthor (String author) {
this.author = author;
}

Open your web browser and enter the following URL: http://localhost:8080/Lesson35/
contactUs.html. The @RequestMapping ("/contactUs") annotation in Listing 35-6
responds to the client with contactUs. jsp, which looks as in Figure 35-5.

Enter some values in the form and click Submit. This time the /addQuestion action will be matched
with the method adduserQuestion () of ContactUsController. Received values from the client will
be printed in the log file of GlassFish Server, located in 1ogs/server.log under your domain directory.

[ http:/ /localhost:8080/Lesson35 fcontactUs, htm|

Contact Manager

Who are you?
Subject

You Question

e L
| Submit your questinn |

FIGURE 35-5



Trylt | 409

TRY IT

Modify the code of hello.jsp to accept more than one variable. Change the code of Modelandview
so that it carries a Map of values.

Lesson Requirements
You should have Java and GlassFish v3 installed.

You can download the code and resources for this Try It from the book’s web page
at www .wrox . com. You can find them in the Lesson3S5 folder in the download.

Step-by-Step
1. Modify hello.jsp to add one more variable in addition to $greetings:
2. Modify HelloworldController to create a Map with two Strings:

Map helloModel = new HashMap() ;
helloModel .put ("Hello Mary");
helloModel.put ("My name is John");

3. Use the two-argument constructor of Modelandview and pass the Map as the second
argument.

4. Direct your web browser to http://localhost:8080/Lesson35/hello.html and observe
that hello.jsp shows the values from the Map.

www . wrox.com/go/fainjava to view the video that accompanies this lesson.

? Please select Lesson 35 on the DVD with the print book, or watch online at



http://www.wrox.com
http://www.wrox.com/go/fainjava




36

Introduction to Hibernate
Framework

In Lesson 33 you got familiar with the Java Persistence API, which is part of Java EE 6. But
JPA wasn’t created from scratch. It took many ideas from Hibernate — an open-source object-
relational framework started by Gavin King in 2001. Hibernate version 3.5 and above support
the JPA 2.0 specification.

The official website of Hibernate is www.hibernate.org, where you can find documentation,
code samples, and tools. Plenty of books and online articles are published about this popu-
lar framework. I prefer using SQL and JDBC for all data-related processing, but these days
knowledge of Hibernate is required in many job postings. That’s why I decided to include this
brief overview of Hibernate even though it’s not a part of the Java specification but a third-
party framework.

If you are going to use Hibernate for work, consider using the Eclipse plug-ins available at
www.hibernate.org/subprojects/tools.html.

THE BIG PICTURE

The main idea behind any ORM framework is to replace writing SQL with manipulating the
objects. In the Java world, this means putting a layer on top of JDBC that will enable you to

simply create a POJO, assign values to its fields, and tell it “Persist yourself in the database.”

This is what Hibernate is for.

Proponents of this approach argue that removing the dependency on vendor-specific SQL syn-
tax provides easy switching from one DBMS to another without the need to modify the Java
code responsible for querying and persisting data. To me this doesn’t sound like a compelling
reason to move away from SQL, because it’s very seldom that you need to switch from one


http://www.hibernate.org
http://www.hibernate.org/subprojects/tools.html

412 | LESSON 36 INTRODUCTION TO HIBERNATE FRAMEWORK

DBMS to another in real-world projects. Besides, if you’ll be working on projects that require swift
query execution, the ability to tune SQL manually and use tricks specific to DBMSes can be helpful.

On the other hand, Hibernate offers such goodies as lazy loading and the ability to easily
configure the in-memory cache to greatly minimize disk access, which is a lot slower than
memory access.

Lazy loading is easy to explain with an example. Suppose the user is presented with a list of custom-
ers, each of which may have multiple orders. With lazy loading only the list of customers is initially
loaded, and only when the user selects a customer will the query to retrieve the corresponding orders
be sent to data storage.

The process of retrieving data with Hibernate is very similar to what you saw in Lesson 33. You
create the mapping of entities to database tables, then instantiate the Configuration object needed
to create a SessionFactory and Session. After this is done you execute queries on these entities
using Hibernate Query Language (HQL), Criteria queries, or native SQL.

The rest of this lesson is a step-by-step walkthrough that demonstrates how to write a simple appli-
cation that will get the data from a DBMS using Hibernate.

INSTALLING AND CONFIGURING HIBERNATE

In this section you’ll download required jars and create the configuration file hibernate.cfg.xml.
I’ll continue using Derby, which is included with GlassFish, as our sample DBMS, but the applica-
tion server GlassFish is not needed here. The idea is to look at Hibernate as an alternative persis-
tence solution that doesn’t require the Java EE application server.

Hibernate is an open-source framework hosted on the web at SourceForge (nhttp://sourceforge.net/
projects/hibernate/files/hibernate3/). At the time of this writing, the latest release of Hibernate
is 3.6; you need to download the file hibernate-distribution-3.6.0.Final-dist.zip. This distri-
bution includes required jar files, a well-written reference manual, and a folder with libraries that might
be used to support memory caching.

Adding Hibernate Jars to an Eclipse Project

Now create a new Eclipse project called Lesson36 by selecting File & New > Other = Java Project.
Note that this is a Java SE project — I’'m not going to use any Java EE application server here. Make
sure your Eclipse Java project includes hibernate3.jar, all the jars from the required folder, and
the jar from the jpa folder. There is one more logging-related file, s1£4j-1.6.1.zip, that for some
licensing reason has to be downloaded from www.s1f45.org/download.html. You need to add to
the build path just one file from there: s1f4j-simple-1.6.1.7ar.

You can add these external jars in the tab Libraries of the Java Setting window while you’re cre-
ating the project, or you can add them after the project is created via Properties = Java Build
Path = Libraries &> Add External Jars. Figure 36-1 shows which libraries are included in the build
path of my Eclipse project.


http://sourceforge.net/projects/hibernate/files/hibernate3/
http://sourceforge.net/projects/hibernate/files/hibernate3/
http://www.slf4j.org/download.html

Installing and Configuring Hibernate | 413

Properties for L n36
Java Build Path . . -

| [(®Source | Projects | milibraries | v, Order and Export |

JARs and class foldars on the build path:

P e antlr-2.7.6.Jar - /Users/yfainll/hibernate-distributior Add JARs... 3
wi commons-collections-3.1.jar - [Users/yfainll/hibern;
i derbyclient.jar - (Users/yfainll/ ishv3/j fhik ¢ Add External JARs... 5
domdj-1.6.1jar - fUsers/yfainll/hib distributi

[#4 hibernate- jpa-2.0-api- 1.0.0.Final jar fu!trﬂl"{fﬂif’ll ( ‘Add Variable...

hibernate3.jar - /Uscrs/yfain11/hibernate- distri

ks .avﬂss-:-.t 3.12.0.5#.]?!'. .u‘Us-:.r:n"vfamll{fhli'jlcrnatl: dis ,W
B [ jta- L.1jar - fUsersfyfainll/hibernate-distribution-34 Y—————~
If4]-api- 1.6.1.jar - /Users fyfainll/hibernate-distrib. -

.- sif4j-simple-1.6.1.jar - fUsers fyfain11/hiber di
» @ JRE System Library [JavaSE-1.6]

Add Class Folder... )

( Add External Class Folder... )

Edit

Remuve

Migrare JAR File.

Cancel | (o)

FIGURE 36-1

Testing the Database Connection

In this lesson ’ll keep working with the database that was initially created in Lesson 22 and then
reused in Lesson 33. It contains a table called Employee and the connection is already configured
(see Figure 33-4). This connection uses the Derby JDBC driver located in derbyclient.jar. Add
this jar, located in glassfish/javadb/1ib, to the build path of the new Eclipse project.

Now right-click the database connection Lesson22 in Eclipse and select Properties = JDBC
Connection Properties. Keep the user ID as user and change the password to passwordi23. Now
copy the connection URL (refer to Figure 33-3) to a text editor — you’ll need the connection param-
eters in the next section. You can also check the properties of the selected DerbyDB driver by click-
ing the small button with an asterisk on it — copy the name of the JDBC driver class too.

Configuring Hibernate with a DBMS

Now it’s time to add the DBMS-related entries to the file hibernate.cfg.xml. You don’t need to
create this file from scratch; copy to the src folder of your Eclipse project one of the files that come
with Hibernate, such as the one located in the folder documentation/quickstart/tutorials/
basic/src/test/resources. Modify the driver class and connection URL with the values from the
previous section. Make sure that this file doesn’t have a setting to drop and re-create the database
schema on startup. You won’t need any mapping files because our entity will use annotations.

Every DBMS implements standard SQL plus some additional features meant to give it a competitive
edge. To deal with these extras Hibernate includes configurable dialects that hide the differences



414 | LESSON 36 INTRODUCTION TO HIBERNATE FRAMEWORK

from the application developer. That’s why the configuration file has to specify the dialect that the
current application has to support. Each dialect is a class located in the package org.hibernate
.dialect inside hibernate3.jar, and you can find the name of the dialect that matches our data-
base, which is DerbyDialect

You might remember that the table Employee was originally created in the database schema APP.
Because I specified that the connection ID is user, by default the queries will try to find the refer-
enced database objects in the schema USER, which doesn’t exist. To fix this situation let’s specify in
the configuration file that the default schema is APP.

Finally, we want Hibernate to print in the Eclipse console the underlying SQL statements that it’ll
use in communication with the database.

After you make all these changes your hibernate.cfg.xml file should look like Listing 36-1.

‘) LISTING 36-1: Hibernate.cfg.xml

Available for <?xml version='1.0' ?>

dm:;“ggnﬂ" <!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- Database connection settings -->
<property name="connection.driver_class">

org.apache.derby.jdbc.ClientDriver
</property>

<property name="connection.url">
jdbc:derby://localhost:1527/Lesson22;create=true
</property>

<property name="connection.username">user</property>
<property name="connection.password">passwordl23</property>

<!-- Set the default schema to be APP, where table Employee was
created-->
<property name="hibernate.default_schema">APP</property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1l</property>

<!-- SQL dialect -->
<property name="dialect">org.hibernate.dialect.DerbyDialect</property>

<!-- Enable Hibernate's current session context -->
<property name="current_session_context_class">thread</property>

<!-- Disable the second-level cache -->
<property name="cache.provider_class">



Retrieving Data with Hibernate | 415

org.hibernate.cache.NoCacheProvider
</property>

<!-- Echo all executed SQL to stdout -->
<property name="show_sqgl">true</property>

</session-factory>

</hibernate-configuration>

RETRIEVING DATA WITH HIBERNATE

Now we need to create a Java Employee entity, which in this simple example corresponds to the
database table Employee. The good news is that because Hibernate supports JPA 2, we can simply
reuse the Employee entity from Lesson 33. Listing 36-2 shows this entity after we copy it into the
package com.practicaljava.lesson3é6.

\) LISTING 36-3: Employee entity

Available for  package com.practicaljava.lesson36;
download on
Wrox.com ) ) ) Lo

import java.io.Serializable;

import javax.persistence.*;

@Entity
public class Employee implements Serializable {

private static final long serialVersionUID = 1L;

@Id
private int empno;

private String ename;

@Column (name="JOB_TITLE")
private String jobTitle;

public Employee() {}
public int getEmpno() {

return this.empno;

public void setEmpno (int empno) {
this.empno = empno;

}

public String getEname () {
return this.ename;

continues



416 |

LESSON 36 INTRODUCTION TO HIBERNATE FRAMEWORK

LISTING 36-2 (continued)

}

public void setEname (String ename) {
this.ename = ename;

}

public String getJobTitle() {
return this.jobTitle;
}

public void setJobTitle(String jobTitle) {
this.jobTitle = jobTitle;
}

The code to retrieve employees comes next. The program HRManager shown in Listing 36-3 will do
this job. It starts by loading the configuration file hibernate.cfg.xml and creating a Hibernate
session. We didn’t provide any arguments to the method configure () — by default this method
assumes that the configuration file is called hibernate.cfg.xml.

Then sessionFactory creates an instance of the Session. The transaction is opened, and
createQuery ("from Employee") means that we’re interested in Employee entities. In this sample,
the name of the entity and the name of the database table are the same. If this weren’t the case we’d

have had to specify the table name in the @Entity annotation in Listing 36-2.

‘) LISTING 36-3: Retrieving Employee entities
Available for import java.util.List;
download on . . %
Wrox.com import org.hibernate.*;
import org.hibernate.cfg.Configuration;
import com.practicaljava.lesson36.Employee;
public class HRManager {

public static void main(Stringl[] args) {

Configuration config = new Configuration().configure();
config.addAnnotatedClass (Employee.class) ;

SessionFactory sf = config.buildSessionFactory();
Session session = sf.getCurrentSession();

session.beginTransaction() ;
List<Employee> employee = session.createQuery("from Employee").list();
session.getTransaction() .commit () ;

for (Employee emp: employee) {



Trylt | 417

System.out.println("Got " + emp.getEmpno() + ", "
+ emp.getEname() + ", "+ emp.getdJobTitle());

The method addannotatedClass (Employee.class) tells Hibernate that there is an entity called
Employee configured using annotations. After running, HRManager prints the following in Eclipse’s
Console view:

Hibernate: select employeeO_.empno as empnoO_, employeeO_.ename as ename(_,
employeeO_.JOB_TITLE as JOB3_0_ from APP.Employee employee(_

Got 7369, John Smith, Clerk
Got 7499, Joe Allen, Salesman
Got 7521, Mary Lou, Director

Retrieving data with Hibernate is pretty trivial. Persisting the data in the database is not rocket
science either. You’ll have a chance to see such persisting for yourself when you work on the assign-
ment in the “Try It” section.

TRY IT

This lesson shows you how Hibernate creates database objects from Java entities. You will have to
declare the Java entity address and have Hibernate create and populate the corresponding table in
the database.

Lesson Requirements
You should have Java and GlassFish v3 installed.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can find them in the Lesson36 folder in the
download.

Hints

In the toolbar of the Data Source Explorer view is an icon that opens SQL Scrapbook. It enables you
to select the DBMS and the database and to execute SQL statements. For example, enter Select *
from APP.Employee, then right-click and select Execute All. The SQL statement will be executed
and you’ll see the content of the table Employee.


http://www.wrox.com

418 | LESSON 36 INTRODUCTION TO HIBERNATE FRAMEWORK

Step-by-Step
1. Create the following Java entity, address:

package com.practicaljava.lesson36;
import javax.persistence.*;

@Entity
public class Address {

private long addressID;
private String streetAddress;
private String city;

private String zip;

@Id
public long getAddressID() {
return addressID;

}

public void setAddressID(long addressID) {
this.addressID = addressID;
}

public String getStreetAddress() {
return streetAddress;

}

public void setStreetAddress(String streetAddress)
this.streetAddress = streetAddress;

}

public String getCity () {
return city;

}

public void setCity(String city) {
this.city = city;
}

public String getZip() {
return zip;

}
public void setZip(String zip) {

this.zip = zip;
}

2. Create a class called addresscreator. It should look like this:

import java.util.List;

import org.hibernate.*;



Try It

| 419

3.

4.

import org.hibernate.cfg.Configuration;
import org.hibernate.tool.hbm2ddl.SchemaExport;

import com.practicaljava.lesson36.Address;
public class AddressCreator ({

public static void main(String[] args) {
Configuration config = new Configuration().configure();
config.addAnnotatedClass (Address.class) ;

//Create the Address table
new SchemaExport (config).create(true, true);

SessionFactory sf = config.buildSessionFactory();
Session session = sf.getCurrentSession();

session.beginTransaction() ;

// Instantiate and Populate the entity Address
Address addrl = new Address();
addrl.setStreetAddress("123 Main St.");
addrl.setAddressID(1) ;

addrl.setCity("New York");
addrl.setzZip("10001");

session.save (addrl) ;

// Save the new entity in the database
session.getTransaction() .commit () ;

Run the program AddressCreator. Observe the output in the Eclipse console. You should see

the following SQL statements generated by Hibernate:

drop table APP.Address

create table APP.Address (addressID bigint not null, city varchar (255),
streetAddress varchar (255),

zip varchar (255), primary key (addressID))

Hibernate: insert into APP.Address (city, streetAddress, zip, addressID)
values (?, ?, ?, ?)

Go to the Data Source Explorer view, reconnect to the Lesson22 database, and observe the

table Address in the schema APP. Right-click the Address table and select Data = Sample
Contents — you’ll see one row with the New York address specified in AddressCreator.

?

Please select Lesson 36 on the DVD with the print book, or watch online at
www . wrox . com/go/ fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava




Bringing JavaFX to the Mix

JavaFX was designed to serve as a tool for creating rich Internet applications (RIAs). It is meant
to compete with such RIA tools as Adobe Flex and Microsoft Silverlight. The competing technol-
ogies use two languages for creating RIAs — one for declarative definition of the Ul components,
and another for the coding of processing logic. Adobe Flex uses MXML for Ul components and
ActionScript for processing logic. Microsoft Silverlight uses XAML for Ul components and one of
the .NET languages (such as C#) for processing.

JavaFX was originally designed to use JavaFX Script for Ul components and Java for process-
ing logic. But recently things changed, and up to the last minute I wasn’t sure if this lesson
should be included in the book. Oracle has announced that JavaFX will be undergoing a major
redesign in 2011. JavaFX 1.3 includes the JavaFX Script language, but JavaFX 2.0 will be
completely Java-based.

Currently, no pre-release version of JavaFX 2.0 is available, and there is a chance that what-
ever you read about the client portion of this lesson’s application will be outdated. But no mat-
ter what changes in JavaFX 2.0, the deployed application will run in JVM with the installed
JavaFX run time. There is also hope that the Java community will continue supporting the
open-source version of JavaFX Script.

This lesson is not an introduction to JavaFX programming, but rather an overview of an appli-
cation that uses multiple technologies you are already familiar with, plus a client created with
JavaFX 1.3.

CONSUMING STOCK QUOTES WITH JAVAFX

In this lesson you’ll see how a web client written in JavaFX can subscribe to price quotes
published from the server side via messaging. Multiple technologies used in this version of the
Stock Server example are depicted in Figure 37-1.



422

| LESSO

N 37 BRINGING JAVAFX TO THE MIX

Web
Browse
with
JavaFX
runtime

Web

Browser

with
HTML
Form

MOM Provider Java EE Application Server

subscribe | Physical JMS Topic MessageService
r push ~1 Topic objects StockPrices Session EJB
< Prices mapped to

Prices via
JNDI

Send a feed
message

Singleton

Request to send a msg Servlet

SendMessage

Y

bean
PriceProvider

FIGURE 37-1

These are the players that provide the generation and processing of the price quote feed:

1.

The singleton session bean priceProvider (see the source code in Listing 37-1) knows
how to generate random price quotes. It gets instantiated on startup of the GlassFish
application server.

A stateless session bean called MessageService (Listing 37-2) gets the references to JMS-
administered objects via resource injection and publishes the price quote to the JMS topic
known as jms/StockPrices, which is mapped to the physical topic Prices in the Open MQ
messaging server.

The Java client subscribes to the topic Prices. Listing 37-3 shows the Java classes Messages
and JMSListener, and the interface MessageHandler. These client classes do not have any
presentation logic.

The presentation client Main. fx (Listing 37-4) is written in JavaFX Script. It wraps the Java
client messaging classes and gets the price quotes from them. As soon as the new quote comes
in, the old one is pushed up and off the screen with a special animation effect.

To illustrate another way of sending the message, this application has a simple HTTP cli-
ent (Listing 37-5) that allows the user to enter any text, which is then routed via the servlet
SendMessage (Listing 37-6) to the MessageService EJB. The rest of the data flow is as
described in Steps 2 through 4.

CODE WALKTHROUGH

By now

you should be familiar with each of the Java technologies used in this application, except

JavaFX, so I’ll provide only very short explanations for the code listings.

The PriceProvider singleton bean shown in Listing 37-1 serves as an emulator of the data
feed with stock quotes. Replace the random-number generator with a real-time Wall Street

stock m

arket feed, and this sample application will show the real data. I’d like to point out two



Code Walkthrough | 423

annotations: @Startup and @Schedule. The first ensures that the Java EE application server
automatically instantiates the PriceProvider bean whenever the server starts. The second is a
calendar-based timer that will call the method getPricegQuote () every five seconds.

\) LISTING 37-1: PriceProvider singleton bean

Available for @Singleton
download on
Wrox.com  €Startup _
public class PriceProvider {

@EJB
private MessageService messageService;

// In this example the method getQuotes() simply generates
// prices, but in the real world it will get the quote
// from some external data feed

@Schedule(second = "*/5", minute="*", hour="*")
public void getPriceQuote() {

String price = Double.toString(generator.nextDouble() * 100.0);
String symbol = symbols|[generator.nextInt (symbols.length)];

messageService.sendMessage (symbol + " " + price);

private static final Random generator = new Random() ;

private static final String[] symbols =
{ I|AAPL|| , I|MSFT n , n YHOO n , IIAMZNII , IIMOT " } ;

The stateless session bean MessageService publishes the text message given as an argument to
sendMessage () to the JMS topic that has been bound to the JNDI tree of GlassFish under the name
jms/StockPrices. Both the topic connection factory and the topic objects are injected into the bean
by the EJB container. The JMS topic will be mapped to the physical topic Prices of the MOM pro-
vider Open MQ.

‘) LISTING 37-2: Stateless bean MessageService

Available for @Stateless

dowwrgl("ggl:n public class MessageService {

@Resource (mappedName = "jms/StockPrices")
private Topic topic;

@Resource (mappedName = "TopicConnectionFactory")
private TopicConnectionFactory topicConnectionFactory;

public void sendMessage (String text) {
continues



424 | LESSON 37 BRINGING JAVAFX TO THE MIX

LISTING 37-2 (continued)

try {
Connection connection = topicConnectionFactory.createConnection();
Session session = connection.createSession(true, 0);
MessageProducer producer = session.createProducer (topic);

TextMessage textMessage = session.createTextMessage (text);
producer.send (textMessage) ;

connection.close();

}
catch (JMSException e) {
throw new RuntimeException(e);

The web clients of this application are written in Java, JavaFX Script, and HTML. The Java class
Messages is a part of the JavaFX applet that directly subscribes to the Open MQ topic Prices.
Originally, I wanted the applet to use a JNDI call to GlassFish to get the topic jms/StockPrices
from there. This would be a cleaner way of subscribing to the topic — no dependency on the par-
ticular MOM provider, and no client code changes needed should we decide to change the MOM
provider or the application server.

Unfortunately GlassFish v3 doesn’t offer a lightweight means of adding JNDI-related classes to the
applet. It comes with the utility appclient, which simply packages 40 MB worth of Java classes
into the one jar. Sending such a heavy extra weight over the network with the applet is not right,
and that’s why I decided to use a lighter solution: the applet’s class Messages (Listing 37-3) doesn’t
perform JNDI lookup but directly connects to Open MQ. The Java class Messages uses an inner
class called gMsListener and the interface MessageHandler.

‘) LISTING 37-3: The Java client subscriber

Availablefor  public class Messages {
download on
Wrox.com . ) . . .
public static void startListening (MessageHandler messageHandler)

throws Exception {
JMSListener jmsListener = new JMSListener (messageHandler) ;

ConnectionFactory connectionFactory = new ConnectionFactory();
connectionFactory.setProperty (ConnectionConfiguration.imgAddressList,
"mg://localhost:7676");

connection = connectionFactory.createQueueConnection("admin", "admin") ;

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;

Topic topic = session.createTopic("Prices");



Code Walkthrough | 425

MessageConsumer consumer = session.createConsumer (topic);

consumer.setMessageListener (jmsListener) ;
connection.start();

public static void stopListening() {
try {
connection.stop () ;
}
catch (JMSException e) {
throw new RuntimeException(e);

private static Connection connection;

private static class JMSListener implements MessageListener ({
private MessageHandler messageHandler;

private JMSListener (MessageHandler messageHandler) {
this.messageHandler = messageHandler;

@Override
public void onMessage (Message message) {

TextMessage textMessage = (TextMessage) message;
try {
System.out.println("Got message: " + textMessage.getText());

messageHandler.handle (textMessage.getText () ) ;
}
catch (JMSException e) {

throw new RuntimeException(e);

public interface MessageHandler {
void handle(String message) ;

Reading JavaFX Code

The JavaFX client shown in Listing 37-4 is responsible for the UL It’s deployed as an applet and is
played in the client by the Java plug-in. Starting from Java 6 Update 10, this plug-in runs not as a
part of the web browser, but as an independent JVM.



426 | LESSON 37 BRINGING JAVAFX TO THE MIX

This applet is deployed on the server and is described in a special text file with the extension . jnlp
(see Listing 37-7). The client’s machine has to have the JavaFX run time installed to play this applet.
Because you have the latest Java SE installed on your computer, you won’t have any problem play-
ing JavaFX applets. But users with older versions of Java are not guaranteed to have the same
results. This is one of the reasons JavaFX has difficulties competing with Adobe Flex or Microsoft
Silverlight in a non-corporate uncontrolled environment.

JavaFX Script can access the Java API and in this sample the JavaFX code communicates with the
preceding Java message listener. JavaFX Script files are compiled into Java classes and then run on
JVM. JavaFX developers need to have JavaFX SDK installed in addition to the run time.

The code in Listing 37-4 shows you the syntax of JavaFX Script. Variable declarations start with
the keyword var, and specifying the data type is optional — the compiler will try to figure out what
type to use based on assigned values.

The keyword bind represents binding — the value of the variable on the right is assigned to the variable
on the left, and all the changes to the right-side values will be immediately reflected in the variable on
the left.

Functions in JavaFX are similar to methods in Java, but they don’t have to be defined inside a class
and can just appear anywhere in the script. Functions can be defined dynamically, which makes
them much like Java anonymous inner classes, but simpler. To call a function asynchronously, much
as you would call Java’s invokeLater (), just give this function Fx.deferAction () as an argument,
where Fx is a class with system utilities. This is done at the beginning of Listing 37-4.

The instance of JavaFxMessageHandler is given to the class Messages (Listing 37-3), and every
time the new message is published to the topic the addNewText () method is invoked.

‘) LISTING 37-4: The JavaFX client Main.fx

Available for class JavaFXMessageHandler extends MessageHandler ({
daﬂ:?g&gn override public function handle (message:String) :Void {
FX.deferAction( function() { addNewText (message) } );
}
}

Messages.startListening (new JavaFXMessageHandler());

var oldText = "";
var newText = "";

var oldTextOpacity = 0.0;
var oldTextYShift = -40.0;

var font = Font {

name: "Verdana"
size: 16

var oldTextLabel:Label = Label {



Code Walkthrough | 427

var
var

var

var

var

font: font

text: bind oldText

textFill: Color.web("#808020")
translateY: bind oldTextYShift
opacity: bind oldTextOpacity

newTextOpacity = 0.0;
newTextYShift = 40.0;

newTextLabel:Label = Label {
textAlignment: TextAlignment.CENTER
font: font

textFill: Color.web ("#808020")
text: bind newText

translateY: bind newTextYShift
opacity: bind newTextOpacity;

oldTextAnimation = Timeline {
repeatCount: 1
keyFrames: [
at (0s) {
oldTextOpacity => 1.0 tween Interpolator.LINEAR;
0ldTextYShift => 0.0 tween Interpolator.LINEAR;

at (1s) {
oldTextOpacity => 0.0 tween Interpolator.LINEAR;
0ldTextYShift => -40.0 tween Interpolator.LINEAR;

1;

newTextAnimation = Timeline {
repeatCount: 1
keyFrames: [
at (0s) {
newTextOpacity => 0.0 tween Interpolator.LINEAR;
newTextYShift => 40.0 tween Interpolator.LINEAR;

at (.5s) {
newTextOpacity => 1.0 tween Interpolator.LINEAR;
newTextYShift => 0.0 tween Interpolator.LINEAR;

1;

function addNewText (text: String): Void {

oldText = newText;
newText = text;

oldTextAnimation.playFromStart () ;

continues



428 | LESSON 37 BRINGING JAVAFX TO THE MIX

LISTING 37-4 (continued)

newTextAnimation.playFromStart () ;

Stage {
title: "Application title"

scene: Scene {
width: 600
height: 100

content: VBox {

content: [
Stack {
nodeHPos: HPos.CENTER
content: [
Rectangle {
width: 600
height: 80
opacity: 0.3
fill: LinearGradient ({
startX: 0, starty¥Y: 0.0, endX: 0, endY: 80.0
proportional: false
stops: [
Stop { offset: 0.0 color:
Color.web ("#303030") }
Stop { offset: 1.0 color:
Color.web ("#FFFFFF") }
]
}
}
oldTextLabel,
newTextLabel ]
}]
}
}
onClose : function() { Messages.stopListening(); }

The price quotes are displayed on a gray gradient background (see Figure 37-2) and each new price
quote pushes the previous one from the screen. Both old and new message texts have animation
effects (o1dTextAnimation and newTextAnimation) that make the view more engaging.

The JavaFX Ul components are not created to live inside a specific top-level container. You add a
group of components to a scene, which is added to the stage. At run time the stage will be linked
to a top-level container according to the platform on which the application has to work. A mobile
device and a desktop computer will use different top-level containers to display your stage. Each of
the components that you add to the scene is an instance of a Node class.



Code Walkthrough | 429

The content of a Scene is listed in its content property. The code in Listing 37-4 creates the Stage
object and adds an instance of a Scene, which contains a VBox — a container with a vertical layout.
Inside the VBox are three nodes: Rectangle with LinearGradient (a color effect changing from
dark to light gray) and two Label nodes: oldTextLabel and newTextLabel.

Another interesting JavaFX component is Timeline — think of a reel of film in a projector.
Spooling through frames rapidly produces the illusion of movement. If you need to repeat some
actions in JavaFX you can create a Timeline with keyFrames that will occur at specific intervals.

The last line in the code of the stage instance handles the onClose event. This event instructs the
Messages class to stop listening to the price quotes.

Real time price updates

AAPL 6.455082732372253

FIGURE 37-2

The HTML Client

To provide another door to the messaging system you can use an HTML client that can send any
text you want. This may be useful for managing the application. For example, an administrator may
want to arrange it so that as soon as the client application receives the word STOP as a text message,
it will stop listening to price quotes.

The simple HTML form in Listing 37-5 has just one input field, and when the user presses the Enter
key the text is posted to the server by the action send.

‘) LISTING 37-5: Index.html — the HTML client

Available for <html>

download on
Wroxgom  <head>
<title>JMS Demo</title>
</head>
<body>

Click this link to open <a href="prices.html">
JavaFX client consuming price quotes</a>
<p>Enter any text in the input field below and watch how JavaFx
client will receive it</p>
<form action="send" method="POST">
<label title="Text to send">
<input value="" name="text"/>
</label>
</form>
</body>
</html>



430 | LESSON 37 BRINGING JAVAFX TO THE MIX

The Java EE application server will route all HTTP requests with the URL pattern send to the
servlet SendMessage from Listing 37-6, which will get the text entered by the user and invoke
sendMessage () on the session bean MessageService. This text will be published to the topic
jms/StockPrices as will any other messages that originate from the singleton PriceProvider.

‘) LISTING 37-6: SendMessage servlet

Available for @WebServlet ("/send")

daﬂ:ks&g" public class SendMessage extends HttpServlet ({

QEJB
private MessageService messageService;

protected void doPost (HttpServletRequest request,

HttpServletResponse response) throws IOException, ServletException {
String text = request.getParameter ("text");
messageService.sendMessage (text) ;

response.sendRedirect ("index.html") ;
}
}

When this JavaFX applet is ready for deployment on the server, you need to add resources that are
needed on the user’s machine. Our Main. £x client from Listing 37-4 uses the JMS API to subscribe
to the messages from the Open MQ MOM provider. Therefore the classes implementing the JMS
API have to be downloaded to the user’s computer along with Main. fx.

The JNLP file shown in Listing 37-7 has to be deployed on the server. It includes the resources section
that lists what has to be downloaded to the client: the run time for JavaFX and the javafx-ui.jar file
that includes our sample code and all related JMS supporting classes. The <applet-desc> tag includes

the main-class parameter with a fully qualified name of the JavaFX applet itself with the name of the

main class.

\) LISTING 37-7: JNLP deployment file

Available for <?xml version="1.0" encoding="UTF-8"7?>
d\lmg!(oggmun <jnlp spec="1.0+">
’ <information>
<title>jms-send-receive</title>
<vendor>practicaljava</vendor>
<homepage href=""/>
<description>jms send and receive</description>
<offline-allowed/>
</information>
<resources>
<j2se version="1.5+"/>
<extension name="JavaFX Runtime"
href="http://dl.javafx.com/1.3.1/javafx-rt.jnlp"/>

<jar href="javafx-ui.jar" main="true"/>



Trylt | 431

</resources>
<applet-desc name="javafx-ui"
main-class="com.sun.javafx.runtime.adapter.Applet"
width="200" height="80">
<param name="MainJavaFXScript" value="com.practicaljava.lesson37.ui.Main"/>
</applet-desc>
<update check="always"/>
</jnlp>

The hyperlink in the main HTML page (Listing 37-5) downloads the HTML file Prices.html
(Listing 37-8), which includes a special JavaScript function called javafx (its source code is avail-
able at http://dl.javafx.com/1.3/dtfx.Js). This function is a part of the JavaFX deployment
toolkit. It ensures that the client’s computer has the right version of JRE and automatically generates
the reference to the JNLP file shown in Listing 37-7.

‘) LISTING 37-8: Prices.html

Available for <html xmlns="http://www.w3.0rg/1999/xhtml" lang="en">

download on
Wrox.com <head> .
<title>Prices</title>
</head>
<body>

<p>Real time price updates</p>

<script src="http://dl.javafx.com/1.3/dtfx.js"
type="text/javascript" language="JavaScript"></script>
<script type="text/javascript" language="JavaScript">
Javafx(
{
archive: "javafx/javafx-ui.jar",
draggable: true,
width: 600,
height: 80,
code: "com.practicaljava.lesson37.ui.Main",
name: "Messages"
}
)
A </script>
</body>
</html>

TRY IT

This is the final hands-on exercise in this tutorial. The goal is to build the application and make it
work on your computer. This time you’ll be building and deploying the application and starting the
servers from the command window without any help from Eclipse IDE.


http://dl.javafx.com/1.3/dtfx.js

432 | LESSON 37 BRINGING JAVAFX TO THE MIX

Lesson Requirements

You should have Java and GlassFish v3 installed. You’ll need to install Mercurial version control
software to get the code for this example from the Google source control repository where all code
samples used in this book are stored. You’ll also need to install the build tool Maven.

You can download the code and resources for this Try It from the book’s web page
at www . wrox . com. You can find them in the Lesson37 folder in the download.

Hint

After this application is deployed from the command line, download the JavaFX plug-in for Eclipse
IDE from http://download.oracle.com/javafx/1.2/gettingstarted/eclipse-plugin and try
to create, deploy, and test this project inside Eclipse.

Step-by-Step

1.

Download and install the distributed source control management tool Mercurial from
http://mercurial.selenic.com. In the Terminal window enter hg -version and you
should see the version of Mercurial installed.

Check out the code samples for the book into a folder called java24hourtrainer from
http://code.google.com/p/practicaljava. You can do this by entering the following
command in the Terminal (command) window:

hg clone https://practicaljava.googlecode.com/hg/ java24hourtrainier

Download and install JavaFX 1.3 SDK, available at http: //javafx.com/downloads/all
.jsp?bundle=javafx_sdk. In Windows, JavaFX SDK will be installed in the default location
c:\Program Files\JavaFX, and in Mac OS in /Library/Frameworks/JavaFX . framework.

Check to see if you have the Maven build tool already installed on your computer by entering
mvn -v at the command prompt. If you don’t have it, download and install it from http://
maven.apache.org/download.html. All you have to do is unzip the downloaded file into

a directory and add Maven’s bin directory to the system PATH variable. In Windows you do
this via Control Panel, and on Mac OS by entering the following command in the Terminal
window (enter the exact name of your maven directory):

export PATH=~/development/apache-maven-3.0/bin/:$PATH

You’ll be using the Maven build scripts that were created specifically for this lesson. Maven
is out of the scope of this tutorial, but if you are curious to see where all the build logic is
located, open up the three files called pom.xm1 in subdirectories 1esson37, webdemo, and
javafx-ui under java24hourtrainer.


http://www.wrox.com
http://download.oracle.com/javafx/1.2/gettingstarted/eclipse-plugin
http://mercurial.selenic.com
http://code.google.com/p/practicaljava
http://javafx.com/downloads/all.jsp?bundle=javafx_sdk
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://javafx.com/downloads/all.jsp?bundle=javafx_sdk

Trylt | 433

10.

1.

12.

To build the project for this lesson, in the Terminal or command window go to
java24hourtrainer/java-ee/lesson37 and run mvn install.

As a part of Maven’s install, it’ll create a directory called.m2. Create a plain text file in this
directory, named settings.xml, with the following content:
<settings>
<pluginGroups>
<pluginGroup>com.practicaljava.maven.plugin</pluginGroup>
</pluginGroups>
</settings>

Changetothedhﬁcumyjava24hourtrainer/maven—pluginsandrunnwn install.

In several seconds Maven will have built two plug-ins — one for GlassFish and another for
JavaFX.

Now go to the /java-ee/lesson37/web-demo directory and run the script to create a new
domain in GlassFish; start it and deploy the web application there. In this example you are
not going to run the instance of GlassFish that you’ve been using in previous lessons.

mvn gf:create-domain

mvn gf:start-domain
mvn gf:deploy

After the instance of GlassFish is running start Open MQ on port 7676 and its admin con-
sole, as described in the section “Administering Objects of Open MQ” in Lesson 30. You
need to create a topic called Prices there.

Now start the admin console of GlassFish by entering the following URL in your web
browser: http://localhost:5000/. Create there a TopicConnectionFactory and a topic
jms/StockPrices mapped to Prices. This process was described in Lesson 31.

Finally, test this application from end to end. Make sure that the Open MQ and GlassFish
servers are up and running, and point your web browser to http://localhost:8080/
javafx-web-demo/. First you’ll see a scary-looking message that an applet from d1.javafx
.com is requesting access to your computer. Accept it and you’ll see a simple web page with a
hyperlink and an input field, as per Listing 37-5. Click the hyperlink and you should see price
quotes being pushed to your JavaFX client every five seconds, as shown in Figure 37-2.

Test the second way of publishing messages through the HTTP request to the servlet. To do
this, open another web browser page and direct it to the same URL: http://localhost:8080/
javafx-web-demo/. Arrange both browsers on your computer monitor so you can see them

at the same time. This time do not click the link, but type any text in the input field and hit

the Enter key on the keyboard. The text you entered should be received and displayed by the
JavaFX client in the second web browser.

?

Please select Lesson 37 on the DVD with the print book, or watch online at
www . wrox . com/go/ fainjava to view the video that accompanies this lesson.



http://www.wrox.com/go/fainjava




38

Java Technical Interviews

Technical job interviewing is a game with well-defined rules. I’ve worn the hats of both inter-
viewer and interviewee many times over the last 12 years of my Java career. In this lesson T’ll
share with you my views on hiring Java developers and on preparing for technical interviews.

Regardless of whether the IT job market is hot or not, there are some rules and techniques
that can increase your interview success rate. The process of getting a job consists of three
separate tiers:

1. Getting the interview

2. Interviewing successfully

3. Considering the offer
I can’t stress enough how important it is to work on achieving each of these goals separately,
one step at a time! Your résumé is the most important thing in the first step. Adjust it for each

position you are applying for (no, I’'m not asking you to lie). Make sure it’s short and to the
point (not more than two pages long).

GETTING THE INTERVIEW

If you are applying for a Java developer’s position, nobody needs to know the details of that
Visual Basic project from 10 years ago. Always update your résumé based on the feedback you
receive from recruiters or more experienced programmers.

There is a summary section on each résumé and many people just waste this space with some
junk like “I’m looking for a challenging position that will let me improve my talents.” What a
waste! Use this summary line to show your relevant skills.

Say you’ve been specializing in Java messaging during the last two years, but this job posting
requires web developers. Chances are that you’ve developed web applications before; high-
light your web experience in the summary section of your résumé. The same day you may be



436 | LESSON 38 JAVA TECHNICAL INTERVIEWS

responding to another ad, this one for people who know Java messaging. Modify your summary section
accordingly and send a version of your résumé that emphasizes your experience with messaging.

Job requirements are more involved these days, and recruiting companies don’t even want to submit
your résumé to the client if you have “only” 8 out of 10 required skills. Read the requirements and
highlight all the relevant skills you have. Do not be lazy; work with your résumé.

Networking is another great way to get an interview. This time I’'m not talking about Java network-
ing — I’m talking about meeting other I'T people who may be hiring or know people who are hiring.
Attend your local Java Users Group meeting, follow Java developers on Twitter, go to professional
conferences and seminars.

DOING WELL AT THE INTERVIEW

OK. The interview is scheduled, and now your main goal is to ace it. Remember, your interviewer
has a difficult task: He needs to assess your technical skills within 30 to 60 minutes, so help him!
Try to get as many technical details about the job as possible from your recruiter. If the position you
are applying for requires knowledge of Java sockets, research working with non-blocking sockets. If
they’re building Java EE applications, find out which application server they use and read up on it.

Do your homework and prepare a short talk about some interesting and challenging technical prob-
lems you might have experienced in one of your college or real-world projects. If you didn’t have any
super-complex projects, just pick up a topic from one of the multiple online programmers’ forums
and research it. Another great source of Java tips and tricks is Josh Bloch’s book Effective Java,
Second Edition, Addison Wesley, ISBN: 0-321-35668-3.

For example, if you have prepared a talk on concurrent collections, you’re not allowed to leave the
interview without talking about this. But what if the interviewer won’t ask you about Java concur-
rency? It doesn’t really matter. Find a way to switch the conversation to the prepared topic and do
your best. The interviewer will be happy because he doesn’t need to think about what to ask next,
and you’re happy because you’ve had a chance to talk about a well-prepared subject.

Will this technique work all the time? No. But it’ll work most of the time. Obviously you need to
research the selected subject well, or you’ll get fried. You must talk about technical challenges you’ve
resolved. You need to remember that your interviewers have a difficult time trying to figure out your
technical abilities in just 30 minutes. So, you need to help them out. Be in charge.

If you’re a junior developer, spend some time answering the multiple-choice computer tests that are
usually required for certification exams. You don’t need to get certified, but all these books and
online mock tests will help you pass similar tests offered by some job agencies. Find some sample
interview questions online.

A technical interview is a game with known rules, but in many cases the interviewers are not prepared
to run the interviews. Sometimes they just go by a prepared list of questions. Some interviewees take
advantage of this and just spend some time studying introductory courses, and then memorize questions
and answers for technical interviews. Believe it or not, in many cases this works.



Considering the Offer | 437

What does a good enterprise Java developer have to know in addition to understanding the
difference between abstract classes and interfaces? Usually employers are looking for people

with knowledge of the following: Java Servlets, JSP, Spring framework, EJB, JMS, any commercial
message-oriented middleware, JDBC, JNDI, HTML, XML, Hibernate, Ant or Maven build tools,
SQL, one of the major application servers, and a couple of relational database management systems.

Understanding why a particular Java EE component is being used in your current project is equally
important. If the interviewer asks you, “Why did you use EJB in this project?” please do not answer,
“That decision was made before I joined the project.” Have your own opinion and explain why you
think it was a good or bad choice for this particular project.

Here’s another tip: Don’t critique the application architecture of your potential employer. You’ll
have plenty of chances to provide technical advice if you're hired, so just focus on getting an offer.

Be energetic during the interview and show your interest in the job. Even if you are a technical
guru, don’t behave as if you’re doing the interviewer a favor just by showing up. Personality matters.
People don’t like prima donnas.

Be prepared to write code on a whiteboard and practice that skill. The interviewer may not ask you
to do this, but it may be a good idea to start illustrating your thoughts on the board if there is one
in the room. If there is no board, use your own notepad. Often interviewers are trying to judge how
well you think and approach a problem more than how effectively you’ve memorized an algorithm,
class name, or method arguments.

No need to rush. If you start writing a code fragment on a board, don’t be afraid of making mis-
takes. Think aloud. It may be even beneficial for the interviewer to see how you can identify the
wrong approach and then pick the right one. Practice explaining little code fragments to your
friends or relatives; they don’t need to know Java to participate in these role-playing games.

After the interview, as soon as you leave the building, take notes about what just happened. Don’t
postpone it until you get home; you may forget important details. Make a note to work on the ques-
tions you might have not answered correctly. These questions require your attention and research.
Improve your technical skills after each interview.

CONSIDERING THE OFFER

You’ve got an offer! Now think hard about whether you want to accept it. Have I mentioned that
you should look for a new job not when your employer decides to let you go or your contract ends,
but when you have a stable job, the sky is blue, and the grass is green? This gives you a tremendous
advantage: You can consider the offer without being under pressure from unpaid bills.

Don’t accept an offer just because the new job pays an extra $5,000 a year, which comes to less than
$300 a month after taxes. But do accept the offer that will give you a chance to work with interest-
ing technologies or business applications even if it won’t pay you an extra dime.

Other nonmonetary factors of an offer are health benefits, flexible work hours, ease of commute, or
simply a kinship that you feel with the people working for the potential employer. Believe it or not,



438 | LESSON 38 JAVA TECHNICAL INTERVIEWS

some people won’t accept offers from employers who require you to wear suit and tie. Just make a
decision about what’s more important for you — having an interesting job or being able to show off
your latest tattoos.

No matter what your preferences are, take charge of your career and actively build it the way you want.

INTERVIEWING ENTERPRISE DEVELOPERS

When the job market is healthy, major online job search engines show thousands of openings, and
people are competing for these jobs. These days a seasoned developer has to know about 10 differ-
ent tools or technologies to find a good job and feel relatively secure for a couple of years. Over the
last several years I’ve interviewed lots of Java developers, and this is what I’ve noticed:

> People do not call themselves Java developers or programmer-analysts anymore — most of
them prefer the title Java architect. Unfortunately, only some of them really understand how
Java EE components operate and can suggest design solutions. Of course, knowledge of Java
EE is not all that a Java architect should know.

> Job applicants are more senior, and I barely see any college graduates or junior programmers.
Many of the junior positions are being outsourced and the number of graduates with com-
puter science degrees has declined over the past several years.

> Having software certification does not make a résumé stand out. Actually, if a résumé starts
with a list of certifications, most likely it’s a beginner’s. I’'m not against certifications, as they
help you learn a language or a tool, and show that you are willing to and can study. But a
certificate doesn’t make someone a skilled professional.

> With the introduction of middle-tier object-relational mapping frameworks such as Hibernate,
many people don’t even bother learning how database management systems work or how to
write a SQL query that performs well — they just map Java classes to database tables.

> In a slow economy, be prepared to pass at least four interviews to get hired. Back in 1999
two good interviews would be enough; in 2001 it was very difficult to even get an interview,
let alone a job!

> In 2010 a large portion of the development is done in India. Even though the total cost of devel-
opment is not low despite the lower hourly rates of offshore developers, Western hiring manag-
ers unfortunately have an impression that local candidates must be flexible in their rates, too.
Being a native English speaker is not enough for you to charge top dollar. Always be technically
current, otherwise the more motivated guys from overseas will leave you in the dust.

Good knowledge of the business terminology of your potential employer is also important. I’'m not
sure about the Silicon Valley or Europe, but here in New York just being a techie may not be good
enough to get you a senior job. Of course, interviewing with Google or Microsoft is an exception.

For example, if you’re applying for a Java position in a financial brokerage company and don’t know
what a short sale is, this may be a deal breaker. If you are a senior developer you should be able to
hit the ground running: Try to find out from your recruiter as many details as possible about the
business. Do your homework, and you’ll get the job! Recruiters are desperately looking for good
programmers and you can be one of them.



Technical Questions and Answers | 439

TO GET OR NOT TO GET CERTIFIED?

Any certification program is a business for the vendor that wants to sell training to award certifi-
cates. Oracle is no exception: you can find various certification programs to rate your Java skills.
The following website offers various certification programs in Java SE and EE technologies: http: //
education.oracle.com/pls/web_prod-plg-dad/db_pages.getpage?page_id=140#13.

Although most certification programs require you to pass a multiple-choice computer test, some of
them (such as those for Java EE architects) will give you a challenging task to design and program.

Overall I think it’s a good idea to prepare yourself and go through the certification process, because
it will definitely improve your understanding of the Java language or a specific enterprise technology
or framework. In some areas it may also improve the performance of your résumé. It’ll also help you
slip through computer screening tests that are used by job placement agencies. Just check job post-
ings from your potential employers to see if they insist on having certificates.

But I also want to caution you against overestimating the importance of getting Java certification.
When I see a résumé that starts with a list of certificates, it tells me that this candidate is good...

at passing multiple-choice tests. Having practical hands-on experience working on open-source or
enterprise projects is a lot more valuable than any certificate you might have earned. If you have
certificates — fine, but keep them somewhere at the end of your résumé rather than trying to present
them as a major achievement.

TECHNICAL QUESTIONS AND ANSWERS

Suggesting a list of technical questions for an interview is a risky business. Seasoned Java developers
have different views on what’s fair and what’s not fair to ask. But junior developers who just com-
pleted a Java tutorial can definitely benefit from some guidance in preparing for Java job interviews.

The following are suggested technical interview questions and expected brief answers on various
Java-related topics. The questions included in this section are those that I had to answer while work-
ing on various projects. In no way is this a complete list of possible questions, but it will definitely
give you an idea of what to expect at an interview. Most of the answers to these questions can be
found in this book, but some will require additional research.

Q:  What’s the difference between an interface and an abstract class?

A:  An abstract class may contain code in method bodies, which is not allowed in an interface.
With abstract classes you have to inherit your class from the abstract one because Java does
not allow multiple inheritance. On the other hand, you can implement multiple interfaces in
your class.

Q: How do you deploy a web application in the application server that you currently use?

A: In most Java EE application servers you create a web archive (war file) and copy it to the
assigned directory per the application server documentation. (You should be able to explain
the directory structure in a war file.)


http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=140#13
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=140#13

440 | LESSON 38 JAVA TECHNICAL INTERVIEWS

What’s the usage of the keyword static?

It’s used in declarations of methods and variables to make them available without creating
an instance of the class. For example, the main () method is a static one. If a variable is
static, its value is shared by all instances of the class.

How can you force garbage collection?

You can’t force garbage collection, but you can request it, because JVM does not guarantee
that it’ll be started immediately. Invoking System.gc () requests Java garbage collection.

Explain the usage of event adapters.

Some swing event listener interfaces declare multiple methods (for example,
WindowListener has seven methods) and a class must implement all of them. Adapters
already have all these methods predefined with empty bodies. So if a class needs to process
just one of the windowListener events, it has to override only the corresponding method of
WindowAdapter.

How do you decide if explicit casting is needed?

If you assign a superclass object to a variable of a subclass’s data type, you need to use
explicit casting. For example:

Object a;
Customer b;
b = (Customer) a;

Java generics eliminate the need for explicit casting. For subclass-to-superclass assign-
ments the casting is performed automatically. You can also cast to interfaces that a class
implements.

Can you perform casting between objects of different types?

No, you can’t. The objects can have a superclass-subclass relationship, or you can cast to
interfaces implemented by a class.

Can a Java class be inherited from two classes?

No, Java does not allow multiple inheritance, but a class can implement multiple interfaces,
which, to some extent, can be used as a workaround.

Both applets and Servlets are deployed on the server. What’s the difference between the run-
time environments of applets and Servlets?

Applets run in a JVM on the user’s machine under control of a web browser, and they have
security restrictions limiting access to a computer’s devices. Servlets run on the server side
under control of the Servlet container or Java EE Application Server.

What’s the difference between constructors and regular methods?

Constructors must have the same name as the class and cannot return a value. They are
invoked only once, while regular methods can be invoked many times.



Technical Questions and Answers | 441

> 0 > O

oo

What’s the difference between the HTML methods Get and pPost?

Get appends the parameters to the URL, and the resulting URL is bookmarkable. post
allows the sending of objects as well as text data, while Get works with text only.

What’s a cookie? Which Java components create them?

A cookie is an object that represents a name/value pair. Servlets, JSP, and JSF can create

and send cookies to a web browser that saves them on the user’s disk in a special directory.
Cookies help a Servlet identify a user. For example, a bank can store your account number in
a cookie file on your machine, so you do not need to enter it on a log-on screen.

Can a non-abstract class have both abstract and concrete methods?
No, but only abstract classes can have abstract methods.
Explain the use of Java packages.

Packages offer a way to organize multi-file projects. They also help in resolving naming con-
flicts when different packages have classes with the same names. Package access level also
enables you to protect data from being used by unauthorized classes, permitting only the
classes from the same package to see each other’s member variables.

Explain the usage of the keyword transient.

The transient keyword indicates that the value of this member variable does not have to
be serialized with the object. When the class gets de-serialized, transient variables will be
initialized with the default values of the variable data types (such as 0 for integers).

What do you know about thread synchronization? Explain the difference between

public void synchronized myMethod() { ... }

and

public void myMethod () {

synchronized (some_object) {... }

The keyword synchronized is used to prevent race conditions when more than one thread
tries to update some values. Synchronized blocks are preferable to synchronized methods
because they place locks for shorter periods. But before manually synchronizing blocks of
code you should see if you can use one of the collection classes from the package java
.util.concurrent as a better solution for dealing with race conditions.

What’s the difference between the methods sleep () and wait ()?

The code s1eep (1000) puts the thread aside for exactly one second. The code wait (1000)
makes the thread wait for up to one second. A thread can stop waiting earlier if it receives

the notify () or notifyall () call. The method wait () is defined in the class object, but

sleep () is defined in the class Thread.



442

LESSON 38 JAVA TECHNICAL INTERVIEWS

O r0Q

What do you know about the method invokeLater () ?

This method is defined in the class SwingUtilities and is used to ensure that Swing win-
dows will be updated through the event-dispatching thread. You can also do this with the
SwingWorker class.

What’s the difference between creating threads subclassing the class Thread and implement-
ing the Runnable interface?

Thread creation with the class Thread requires that your class be inherited from it. Then you
need to create an instance of your class and call its start () method. If a class implements
the Runnable interface the procedure is different — you have to create the instance of your
class, and the instance of the Thread object, passing the Runnable class to the latter. Using
Runnable enables you to create threads from classes that have to be inherited from classes
other than Thread classes.

How can you create a thread that can return a value from its method run()?
You need to implement callable interface.

What would you use to compare two String variables — the equals () method, or the
== operator?

I’d use equals () to compare the values of the strings, and the == operator to check if two
variables point at the same string object in memory.

What do you know about the MVC design pattern?

MVC stands for the model-view-controller design pattern, which is used to separate presenta-
tion modules from business logic and data ones. The model part represents the data and the
business logic of the application, the view is a visual representation (for example, a Ul), and
the controller accepts the data from the view and passes it to the model and vice versa. For
example, a JSP page is a view, a Servlet is a controller, and a Java bean represents a model.

How can you reduce the time spent by JVM on creating frequently used instances of some
objects?

I’d create my own or configure existing object pools (e.g., DataSource or EJB objects can be
configured to use object pools of a certain size).

Will the following statement create the file xyz . txt on disk?

File a = new File("xyz.txt");

No, it just creates an object pointing to this file.
How can a subclass invoke a method defined in a superclass?

Java has the keyword super. If a method has been overridden, but you’d like to invoke
its version defined in the superclass, use the following syntax: super .myMethod () ;. To
call a constructor of the superclass, just write super () ; in the first line of the subclass’s
constructor.



Technical Questions and Answers | 443

What access level do you need to specify to ensure that only classes from the same directory
can access the directory?

You do not need to specify any access level. In this case, Java will use the default package access
level, which will guarantee visibility only to the classes located in the same directory (package).

What’s the use of JNDI?

JNDI is a Java API for naming and directory servers. It is used for finding Java objects by
name in a distributed application. For example, you can use JNDI to get a reference to the
DataSource Or JMS objects.

Do you have to invoke a method that reads a file inside the try/catch block?

You have to either put it in the try/catch block or declare that the calling method may
throw an exception, for example:

void myMethod() throws IOException{...}

If you need to catch more than one exception (such as FileNotFoundException and
IOException), does the order of the catch statements matter?

Yes, it does. FileNotFoundException is inherited from TOException. The exception sub-
classes have to be caught first.

Explain in detail the data workflow between a web page and a Servlet called FindBooks after
the user presses Submit. (In this question interviewers can replace the web page and Servlet
with any other client-server components. The main point is to find out if the job applicant
understands the entire end-to-end data flow.)

The web browser connects to the server located at the specified URL, and if FindBooks has not
been started yet, the Servlet container will start it, invoking the servlet’s init () method fol-
lowed by the service () method, which in turn calls doGet () or doPost (), depending on the
method of HTTP request. The objects HTTPServletRequest and HTTPServletResponse are
used for the interaction between the client and FindBooks. The Servlet’s output can be sent back
to the user by means of one of the methods of HTTPServiletResponse, for example println().

Explain the process of getting the data from a database table in a Java SE program using
JDBC. Which classes and methods have to be used?

First you load the appropriate JDBC driver using Class. forName (). After that you get the
Connection object using DriverManager.getConnection (). Then you create a Statement
object and invoke one of its methods, like executeQuery () or executeUpdate (). Process
the Resultset, if any, and close the Connection, Statement, and ResultSet objects.

What are the differences among the Java keywords final, finalize, and finally?

Depending on its position, the keyword final means either that the variable can be initial-
ized only once, or that you cannot override a method, or that you cannot subclass a class.

The method finalize (), if defined in your class, is invoked by the garbage collector when
it’s ready to release a memory used by the instance of your class.



444 |

LESSON 38 JAVA TECHNICAL INTERVIEWS

>OPODPO

>

The keyword finally is used in a try/catch block to place code, such as code to close a
stream, that must be executed whether the code in the try block succeeds or fails.

Can you declare fields in an interface?

Yes you can, but they should be final and static.

Can an inner class, declared inside a method, access local variables of this method?
It’s possible only if the variables are final.

Give an example of an anonymous inner class.

An event listener class can be created on the fly as an anonymous inner class, for example:

addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
doSomething () ;}
}
)
What could be used to keep track of sessions in web applications?
You can use cookies, URL rewriting, and the HTTPSession object.
Will session management with cookies always work?

No, if a user disables cookies in the web browser, it won’t work. In such cases application
servers usually automatically switch to URL rewriting.

How can you stop a long-running thread?

The class Thread has a deprecated method called stop (), but this method does not guaran-
tee that the thread will be stopped. Depending on the process that is run by this thread, you
could try to close connections or open streams, if any, or use the method interrupt ().

When could a Java class be called a bean?

You call the class a bean if it has a nonargument constructor, implements the serializable
interface, and has public setter/getter methods for its private properties.

What are the advantages of using JSP rather than Servlets?

JSP enables you to separate presentation from business logic and the resulting web page can
be modified by people who do not know Java.

Give an example that shows the difference between the use of the operators && and .

In the following code snippet the second expression in the if statement will not even
be evaluated if variable a is nu11. If a single ampersand were used here we’d get a
NullPointerException.

String a=null;
if (a==null && a.length()>10) {...}

Name some predefined JSP variables.

request, response, out, session...



Technical Questions and Answers | 445

>

>0 P> O PO

oo

>0 P> O

How do you deploy a JSP?

You can place . isp files in a document root directory of the Servlet container or application
server, or create a war file.

Why is JSF preferable to JSP from the MVC design pattern perspective?

JSF enforces separation of the presentation and the processing logic, while JSP doesn’t.
What’s the default port number that web servers use for HTTP-based communications?
HTTP requests go through port 80, HTTPS ones through port 443.

What method of the Servlet class is an equivalent of a constructor in a regular Java class?

The Servlet’s method init () plays a similar role, but because all clients use the same
instance of the Servlet, you should initialize only those variables that are allowed to
have the same value for each user’s request, such as the name of the database server.

Which is faster, array or ArrayList?

Most likely array is faster. It can be used if you know in advance the number of elements

in the array. arrayList is an API on top of an array. You do not need to know its size in
advance — new elements can be added as needed. Arrays work faster because JVM allocates
memory only once for all elements. But to give you a better answer I’d have to write an
appropriate benchmark in context to find out.

What do you know about Java reflection?

Reflection is a way of finding information about a Java class during run time. For example,
you can find out the constructors and the method signatures of a particular class. The class
Class has such methods as getConstructor (), getFields (), getMethods (), and others.

What would you do if your Java program crashed during the run time with an “out of memory”
error?

I’d try to increase the size of the JVM’s dynamic memory (heap) on program start-up using
command-line parameters. For example, you can request the minimum heap size of 512 MB
and the maximum heap size of 1024 MB as follows:

java -Xms64 -Xmx512 MyProgram

How can you ensure that only one instance of some class can be created in your application?

You need to implement the singleton design pattern. Create a class with a private constructor
and provide a public et method that will return the only instance of this class, for example
MyClass.getInstance().

What’s the major difference between a Hashtable and a HashMap?
The Hashtable class is internally synchronized, while the HashMap is not.
Name some design patterns.

Singleton, MVC, data transfer object, facade...



446 | LESSON 38 JAVA TECHNICAL INTERVIEWS

Q:  The word stateless is used to describe a session EJB as well as HTTP protocol. What’s the
meaning of the word stateless in these two cases?

>

HTTP protocol is page-based, meaning that the web browser does not hold the connection
between requests, but in the case of an EJB, stateless means that the session bean cannot be
used to store the state of a particular client.

Are Java objects passed by value or by reference?

Objects are passed by reference, but their reference variables are passed by value.

How can a Java client access a message-driven bean?

> 0> 0

Java clients don’t access MDBs directly — they just place messages into a queue or publish
them to topics, and the MDB retrieves them from there.

EPILOGUE

The book is over. Even though it’s rather small in size for the number of the covered subjects, I

tried to touch on a wide spectrum of topics that most Java practitioners have to know. You may
still need to do additional research on certain subjects, depending on your project needs, but at
least now you know where to dig.

I really hope that you’ll keep this book handy as a quick reference or for a refresher when it’s time to
hit the job market. No matter what your motivation is, have fun reading — I certainly had fun writ-
ing it. You can send thank-you notes and suggestions via e-mail to yakovfain@gmail.com. Thank
you for reading my book!


mailto:yakovfain@gmail.com

APPENDIX

What’s on the DVD?

This appendix provides you with information on the contents of the DVD that accompanies
this book. For the most up-to-date information please refer to the ReadMe file located at the
root of the DVD. Here is what you will find in this appendix:

> Using the DVD
»  What’s on the DVD

> Troubleshooting

USING THE DVD ON A PC

To access the content from the DVD, follow these steps:

1. Insert the DVD into your computer’s DVD-ROM drive. The license agreement will
appear.

The interface won’t launch if you have autorun disabled. In that case click
Start v Run (For Windows Vista, Start &> All Programs > Accessories & Run).
In the dialog box that appears, type D: \Start.exe. (Replace D with the proper
letter if your DV D drive uses a different letter. If you don’t know the letter, see
how your CD drive is listed under My Computer.) Click OK.

2. Read through the license agreement, and click the Accept button if you want to use
the DVD.

3. The DVD interface appears. Simply select the lesson video you want to view.



448 | APPENDIX WHAT'S ON THE DVD?

USING THE DVD ON A MAC

To install the items from the DVD to your hard drive, follow these steps:

1.

o s WwN

Insert the DVD into your computer’s DVD-ROM drive.

The DVD icon will appear on your desktop; double-click to open.
Double-click the Start button.

Read the license agreement and click the Accept button to use the DVD.

The DVD interface will appear. Here you can install the programs and run the demos.

WHAT’S ON THE DVD?

Most lessons in the book have a corresponding screencast that illustrates examples in the lesson and
provides content beyond what is covered in print.

I recommend using the following steps when reading a lesson:

1.
2.
3.

Read the lesson’s text.
Watch the DVD and try to repeat all the instructor’s actions on your computer.

Read the step-by-step instructions in the lesson’s “Try It” section and complete the assign-
ment on your own.

You can also download all the solutions to the “Try It” sections at the book’s website. If you get
stuck and don’t know what to do next, visit the p2p forums (p2p.wrox.com), locate the forum for
the book, and leave a post.

TROUBLESHOOTING

If you have difficulty installing or using any of the materials on the companion DVD, try the follow-
ing solutions:

>

Turn off any antivirus software that you may have running: Installers sometimes mimic virus
activity and can make your computer incorrectly believe that it is being attacked by a virus.
(Be sure to turn the antivirus software back on later.)

Close all running programs: The more programs you’re running, the less memory is available
to other programs. Installers also typically update files and programs; if you keep other pro-
grams running, installation may not work properly.

Reference the ReadMe: Please refer to the ReadMe file located at the root of the CD-ROM
for the latest product information as of publication time.

Reboot if necessary: If all else fails, rebooting your machine can often clear any conflicts in
the system.



Customer Care | 449

CUSTOMER CARE

If you have trouble with the CD-ROM please call the Wiley Product Technical Support phone
number, (800) 762-2974. Outside the United States call 1 (317) 572-3994. You can also contact
Wiley Product Technical Support at http: //support.wiley.com. John Wiley & Sons will provide
technical support only for installation and other general quality-control issues. For technical sup-
port on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please call
(877) 762-2974.


http://support.wiley.com




INDEX

. (dot), dot notation, 33
& (ampersand), NullPointerException, 444
&& (ampersand-double), AND operation, 49
*/ (asterisk/slash), comments, 22
@ (at sign), metadata, 262
{} (curly brackets, if statements, 49-50
== (equal sign-double), string, 441
1 (exclamation mark)
boolean, 50
NOT operation, 50
|| (pipe sign-double), OR operation, 49
2 (question mark), conditional operator, 50
" (quotes-double), key/value pairs, 147
// (slash-double), comments, 18, 22
/* (slash/asterisk), comments, 22
/** (slash/asterisk-double), comments, 22
[] (square brackets), arrays, 41
<%--, JSP comments, 313
<%=, JSP expressions, 313
<> (angled brackets), JSP tags, 310
() parentheses
comparison expression, 50
constructors, 33
data types, 61
operation sequence, 70

about :plugins, 104
absolute layout, 86
abstract classes, 65-68
interfaces, 70-71, 439
Abstract Windowing Toolkit (AWT), 75

AbstractTableModel, 252
access levels, 5, 57, 95, 442
ActionEvent, 92
ActionListener, 89-91
actionPerformed(), 91-93, 230
actions, JSP, 313-314
activation, 176, 363
ActiveMQ, 336
adapters, 97-98, 440
add ()
ArrayList, 144-145
LinkedList, 151
addNewText (), 426
addObject (), 405
addPaneltoFrame (), 126
addQuestion.html, 407
addUserQuestion (), 407-408
Adobe Flex, 426
ancestors, 26
class instances, 60
interfaces, 70-71
AND operation, 49
Annotation Processing Tool (APT), 267
annotations, 261-272
PQOJO, 363
reflection, 267-270
run-time, 270-271
ANNOTATION_TYPE, 265
anonymous inner classes, 99-100
Ant, 297
Apache Commons, 205-206
Apache Taglibs, 320
Apache Tomcat, 287, 296
Apache Velocity, 206

451



ApacheDS - CalculatorEngine

ApacheDS, 357
API. See application program interface
appclient, 424
Applet, 71
<applet>, 105, 106
</applet>, 106
<applet-desc>, 430
applets, 103-109
certificates, 104-105
Eclipse, 105
HTML, 105-107
inheritance, 71
JavaFX, 424, 430
JVM, 103
main (), 107
plug-ins, 103-104
RMI, 279
servlets, 440
Swing, 75, 107-108, 111-122
unsigned, 104-105
appletviewer, 105, 108
application, 312, 317

application program interface (API), 46, 337-338.

See also specific APIs

JavaMail, 199

method overloads, 32
ApplicationContext, 400
APT. See Annotation Processing Tool
archive, 106
arguments, 31, 51-52, 92
ArithmeticException, 134
arrays, 41-42

collections, 143-144

data types, 60

JVM command-line arguments, 51

upcasting, 60
ArrayBlockingQueue, 229
ArrayIndexOutOfBoundsException, 144
ArrayList, 41, 144-145, 445

collections, 144-146

Collections, 149

main (), 201
@Asynchronous, 367
asynchronous communication, 335, 336

452

asynchronous method invocation, 362, 367-368
asynchronous servlets, 306-307
attribute, 312

authentication, 201

AUTO_ACKNOWLEDGE, 342

autoboxing, 21, 255

AWT. See Abstract Windowing Toolkit

Bean Validation, 382
bean-managed currency, 370
behaviors, 58

bind(), 277

birthday mailer, 200-204
BitSet, 151-152

Bloch, Josh, 436
BLOCKED, 219

blocking calls, 336
BlockingQueue, 229
<bodycontent>, 318
boolean, 20, 49-50, 215
BorderLayout, 81

bounded wild cards, 159-160
BoxLayout, 84

break, 26, 44

breakpoints, 47

browsers, 300-301

buffered streams, 165-166
BufferedInputStream, 165-166
BufferedOutputStream, 166
BufferedReader, 188
BufferReader, 166-167
byte, 20

byte[1, 182-183

byte arrays, 182-183

byte streams, 164-165
BytesMessage, 338

Calculator, 90-92, 94-96
CalculatorEngine, 90-91



call () — commit

call(),228

Callable, 210, 226, 441

CallableStatement, 243-244

callback methods, 107, 253-257, 399

CardLayout, 86

case, 26

case-sensitivity, 5, 378

casting, 60-62, 92, 440
generics, 156, 158-159
run-time errors, 70

catch, 135, 136, 138, 164

CATEGORY_, 218

CDB. See Clear Data Builder

CDI. See Context and Dependency Injection

cell editor, 257
cell renderers, 257-259
cellRenderer, 258
certificates, 104-105
certification programs, 439
char, 20
character streams, 166-170
CharsSet, 166
checked exceptions, 135
checkForWinner (), 115, 117
CLASS, 265
classes, §
behaviors, 58
compiler, 12
constants, 57
declarations
import, 56
properties, 22-23
fields, 17-18
final, 57
generics, 155-157
inheritance, 26-27, 60, 69, 440
inner, 98-100
instances, 18
ancestors, 60
interfaces, 61
static, 21
interfaces, 58-60
libraries, 58

main, 51

methods, 17, 23-24
declarations, 31-39, 58
instances, 100

multi-threading, 210-211

00, 17-18

outer, 99

packages, 56

properties, 18

Swing, 76, 97-98

variables, 18, 21, 33
serialization, 179
static, 37-38

versioning, 182

Class.forName (), 443
ClassNotFoundException, 179
Clear Data Builder (CDB), 267
CLIENT_ACKNOWLEDGE, 342
clients, RMI, 273, 277-278
cloning objects, 183

close(), 138, 164

closures, 100

code, 106

codebase, 106

Collection, 146

collections, 143-153

ArrayList, 144-146

arrays, 143-144

BitSet, 151-152

Enumeration, 149-150

generics, 156

interfaces, 146

Iterator, 149-150

LinkedList, 150-151

multi-threading, 230

Properties, 148-149

Vector, 144-146

Collections, 149

Collections.syncrhonizedList (), 144

@Column, 377

commandButton, 330, 332
command-line arguments, 51-52
comma-separated values (CSV), 191
comments, 18, 21-27, 313

commit (), 247, 342

453



Commons Logging API — databases

Commons Logging API, 402
Comparable, 219
compiler

classes, 12

errors, 6, 31

Eclipse, 15

Hello World, 6-7

multi-threading, 215
composition pages, 325
CONCUR_READ_ONLY, 246
concurrent execution, 223-233
ConcurrentHashMap, 230
ConcurrentSkipListMap, 230
ConcurrentSkipListSet, 230
CONCUR_UPDATABLE, 246
Condition, 225
conditional operator, 50
conditional statements, 25, 49, 131
config, 312
Configuration, 412
Connection, 337, 339, 443

start (), 338, 340
connection pools, 247-248
ConnectionFactory, 338, 353
connection.setClientID(), 343
constants, 57

declaration, 19

interfaces, 60

ping-pong, 127-128
CONSTRUCTOR, 265
constructors, 33

EJB, 370

JFrame, 76

ModelAndview, 405

overloads, this, 35

regular methods, 440

TableModelEvent, 257
container-managed concurrency, 370
containers

absolute layout, 86

EJB, 361-362

Java EE, 287-288

Spring Framework, 401
containsKey (), 147

454

containsvValue (), 147

contexts, 349, 399

Context and Dependency Injection (CDI), 288
context root, 296

continue, 44, 45

converters, 333

cookies, 302-303, 441, 444
CopyOnWriteArrayList, 230
CopyOnWriteArraySet, 230

core module, Spring Framework, 400

create, retrieve, update, and delete (CRUD), 375
createCalendarTimer (), 372
createDurableSubscriber (), 343
createIntervalTimer (), 372
createNewFile(), 171

createSession(), 342
createSingleActionTimer (), 372
createSubscriber (), 343

createTimer (), 372

Criteria API, 375, 380-381
CriteriaBuilder, 381

CRUD. See create, retrieve, update, and delete
CSV. See comma-separated values
currentButton.SetText (), 116

cursive, 45

custom cell renderers, 257

DAS. See Domain Administration Server
data access module, Spring Framework, 400
data streams, 171
Data Transfer Objects (DTOs), 241-242, 315
data types, 19-20, 61
arrays, 60
method signatures, 31
database management system (DBMS), 4
Derby, 236-238
Hibernate, 413-515
MOM, 337
streams, 163
databases
JDBC, 235-249
JPA, 376-378



DatalnputStream — ElementType

DataInputStream, 171
DataOutputStream, 171
DataSource, 247-248,355-357

DBMS. See database management system

debugging, 46-48
declarations
annotations, 265
arrays, 41
classes
import, 56
methods, 31-39, 58
properties, 22-23
constants, 19
event listeners, 89
interfaces, 58
JSP, 312-313
methods, classes, 31-39, 58
variables, 19, 20
deep copy, 183
DefaultTableCellRenderer, 258
DefaultTableModel, 252
DelayQueue, 229
DELETE, 388
delete(), 171
dependency injection, 289, 399
@deprecated, 264
Deque, 229
Derby, 236-238
descendent, 26
deserialization, 176
destroy (), 107-108, 301, 304-305
detail, 141
directives, 312
directory service, 279, 349
DispatcherServlet, 401, 407
distributed Java applications, 273
<div>, 327
divideByZero (), 134
DNS. See domain name system
document root, 296
@documented, 264
doFilter (), 304
doGet (), 299, 303

doInBackground (), 231-232

Domain Administration Server (DAS), 350

domain name system (DNS), 279, 349
doPost (), 299, 301

doSomething (), 160, 332
doStartTag (), 319

dot-notation, 33

double, 20

downcasting, 61

downloads, 189-191

DriverManager.getConnection (), 443

DTOs. See Data Transfer Objects
DUP_OK_ACKNOWLEDGE, 342
durable subscribers, 343
dynamic IP address, 185

<E>, 156, 157
eager initialization, 369
.ear, 370
Eclipse, 9-11
applets, 105
appletviewer, 108
compilation errors, 15
debugging, 46—48
GlassFish, 297
Hello World, 11-15
Hibernate, 412-413
IDEs, 9-15
stack trace, 134
JRE, 12
for loop, 158
servlets, 298-300
Spring Framework, 402-406
templates, 328
Eclipse Foundation, 75, 287
Effective Java (Bloch), 436
EJB. See Enterprise JavaBeans
@QEJB, 364
ejb-jar.xml, 363
EL. See Expression Language
ElementType, 265

455



else —filters

else, 25,49
if,49

e-mail, 199-207
authentication, 201
birthday mailer, 200-204
Java EE, 199-200
retrieval, 204-205

<embed>, 106

EMPNO, 237

EMS, 335

ENAME, 237

encapsulation, 56-57, 95

Enterprise Archive, 370

Enterprise JavaBeans (EJB), 284, 286, 361-374
asynchronous method invocation, 367-368

GlassFish, 366-367
JMS, 362
JNDI, 364
JSF, 324
MOM, 362
multi-threading, 362
passivation, 363
POJO, 361-362
servlets, 353
entities, 376
@Entity, 376
entity beans, 362
EntityManager, 376, 379-381
enum, 218-219
Enumeration, 149-150
EOFException, 136
equals (), 441
Error, 135
errors, 133-142
compiler, 6, 31
Eclipse, 15
1/0, 134-135
JSP, 314
JVM, 135
run-time, 70, 135
event dispatch threads, 230
event handling, 89-102
event listeners, 89-90
JDK, 96-97
methods, 98

456

servlets, 305-306

Swing, 440
EventQueue, 231
Exception, 135, 136
exception, 311
exceptions, 133-142

checked, 135

creating, 139-141

hierarchy, 135

1/0, 186

objects, throw, 139

throwing, 135
executeQuery (), 443
executeUpdate (), 443
executor framework, 225-229
Executors, 226
ExecutorService, 226
exists (), 172
Expert One-on-One J2EE Design and

Development (Johson), 399

explicit casting, 440
Expression Language (EL), 313
expressions, 313
extends, 160
Externalizable, 179-181

<f: validator>, 333
fantasy, 45
fat clients, 285
FIELD, 265
fields, 17-18
FIFO. See first-in-first-out
File, 171-172
FileDownload, 189-191
FileInputStream, 164-166
FileNotFoundException, 442
FileReader, 166-170
FileWriter, 166-170
fillRect (), 127
filters
destroy (), 304-305
init (), 304-305



final — GridBagLayout

messages, 344
servlets, 304-305
final, 57-58, 60, 443
finalize(), 443
finally, 136, 137-138, 225, 444
findThreeInARow (), 117-118
firewalls, 189
first-in-first-out (FIFO), 146, 150, 229, 337
Float, 255
float, 20, 255
FlowLayout, 77-79
flush(), 166
FocusListener, 96-97
for loop, 42, 69, 158
forEach, 320
for-each, 44, 144, 146
@FormParam, 390
forward (), 317
FROM, 378
functions, 5
hash, 147
method signatures, 31
Future, 226-227
get(),227,368
javax.ejb.AsyncResult, 367
FX.deferAction(), 426

GameConstants, 124, 127-128
garbage collector (GC), 21, 36, 440
GC. See garbage collector
@Generatedvalue, 376
GenerationType.IDENTITY, 377
generics, 155-162

casting, 156, 158-159

get (), 147

methods, 160-161

myData, 255

super, 160
geonames .org, 392
Get, 301, 441
get (), 145

Future, 227, 368

generics, 147

multi-threading, 228

@GET, 391
getBean (), 400
getColumnClass (), 257
getColumnCount (), 252
getColumnName (), 256
getConnection (), 356
getConstructors (), 269
getContent (), 205
getDisplayValue(), 95
getFields(), 269
getFrom(), 205
getinstance(), 370
getInterfaces (), 269
getJSON (), 396
getMessage (), 136
getParameter (), 301
getPreferredSize(), 127
getProperty (), 148
getRegistry (), 277
getResultList (), 380
getRowCount (), 253
getSession(), 303-304
getSingleResult (), 380
getSource(), 92
getState(), 219
getStore(), 204
getSubject (), 205
getTableCellRendererComponent (), 258
getter methods, 95, 242
getText (), 94
getvValueAt (), 252,253
GlassFish, 287, 344

Eclipse, 297

EJB, 366-367

JavaFX, 424

JNDI, 350-355, 424

naming service, 352-355
global variables, 148
Goetz, Brian, 224
Gosling, James, 1
graphic user interfaces (GUIs), 75-88, 115,

230-231

Graphics, 127
GridBagLayout, 84-85



GridLayout — inputText

GridLayout, 79-81

GROUP BY, 378

GroupLayout, 115

GUIs. See graphic user interfaces

hash code, 147-148
hash function, 147
HashMap, 41, 147-149, 445
HashsSet, 146
Hashtable, 147-149, 352, 445
hasMoreElements (), 149
<head>, 105, 392
height, 106
Heiss, Janice, 209
Hello World, 4-7
compile, 6-7
Eclipse, 11-15
Hibernate, 235, 411-419
DBMS, 413-515
Eclipse, 412-413
installation, 412-415
Java EE, 289
retrieving data, 415-417
Spring Framework, 401
Hibernate Query Language (HQL), 412
host name, 185, 200
host_name, 279
Hotspot JVM, 58
HQL. See Hibernate Query Language
.htm, 105
HTML, 105-107, 401-408
JavaFX, 429-432
JSP, 310-311, 323
wrappers, 114-115
.htm1, 105
HTTP. See Hypertext Transfer Protocol
http.proxyHost, 189
http.proxyPort, 189
HTTPRequest, 293
HttpRequestListener, 305-306
HTTPServlet, 295, 301

458

HTTPServletRequest, 301

cookies, 302-303

getParameter (), 301

request, 311
HTTPServletResponse, 294, 301, 311, 317
HTTPSession, 311, 444
HttpSessionListener, 305-306
HttpURLConnection, 189
Hypertext Transfer Protocol (HTTP), 293,

301-302, 445, 446
proxy servers, 189
stateless protocol, 302

erd, 376
IDEs. See Integrated Development Environments
if, 25,49-50,131
else, 49
null, 44, 45, 444
polymorphism, 69
if-else, 49
ij, 236-237
IllegalCastException, 145, 155
IMARP. See Internet Message Access Protocol
import, 56
include, 312, 313
include (), 317
index.html, 392
inheritance
applets, 71
classes, 26-27, 60, 69, 440
multi-threading, 212
@inherited, 264
init (), 107-108, 134
filters, 304-305
servlets, 301
initial context, 349
InitialContext, 353
inner classes, 98-100
input/output (I/0), 134-135, 163, 186
InputStream, 164-165
InputStreamReader, 188
inputText, 330



INSERT - Java Rich Internet Applications Deployment Advice

INSERT, 237
Insert, 247
instances
classes, 18
ancestors, 60
interfaces, 61
static, 21
JVM, 441
methods, 33
classes, 100
objects, 36
variables, 36-37
instanceof, 60
ArrayList, 145-146
casting, 92
generics, 158
polymorphism, 69
int, 20, 255
Integer, 255
Integrated Development Environments (IDEs)
debugging, 46
Eclipse, 9-15
stack trace, 134
NetBeans, 87
plug-ins, 297
interceptors, 289
interfaces, 58-60. See also specific interfaces
abstract classes, 70-71, 439
ancestor, 70-71
classes, 58-60
abstract, 70-71
instances, 61
collections, 146
declarations, 58
method signatures, 59
polymorphism, 69-70, 71
RMI, 274-276
Internet Message Access Protocol (IMAP), 199
Internet service provider (ISP), 185
interrupt (), 214, 215
inversion of control (IoC), 399
invoke (), 269
invokeLater (), 231, 426, 441

1/0. See input/output

IoC. See inversion of control
IOException, 135, 136, 137, 216, 442
IP address, 185-186, 193
isAlive(), 219
isAnnotationPresent (), 269

ISP. See Internet service provider
ItemListener, 96-97

Iterable, 146

Iterator, 149-151

.jar, 12
Java API for RESTful Web Services (JAX-RS),
288, 388
Java architect, 438
Java Collections, 149
Java Community Process (JCP), 284
Java Concurrency in Practice (Goetz), 224
Java Control Panel, 104
Java Development Kit (JDK), 1-4, 96-97
Java EE, 283-291
Eclipse, 10-11
e-mail, 199-200
Hibernate, 289
Java Enterprise Edition. See Java EE
Java Messaging Service (JMS), 284, 335-347, 350
API, 337-338
EJB, 362
queues, 335
Resources, 350
Java Naming and Directory Interface (JNDI),
349-359, 442
DataSource, 355-357
EJB, 364
GlassFish, 350-355, 424
LDAP, 357-358
Java Network Launch Protocol (JNLP), 104, 430
Java Persistence API (JPA), 287, 375-386
Java Persistence Query Language (JPQL), 375,
376, 378
Java Rich Internet Applications Deployment
Advice, 106

459



Java Runtime Environment (JRE) - JDBC

Java Runtime Environment (JRE), 3-4, 12
Java SE. See Standard Edition
Java Specification Request (JSR), 284-285
Java Transaction API (JTA), 287
Java Virtual Machine (JVM), 7

applets, 103

arrays, 51

CharsSet, 166

errors, 135

GC, 36

instances, 441

libraries, 12

multi-threading, 214

RMI, 273

serialization, 182
java.awt, 97, 103, 107
java.awt.EventQueue, 230
JavaBeans, 315-317
javac, 6-7
JavaDB. See Derby
javadoc, 22
JavaFX, 75, 285, 421-433

applets, 424, 430

GlassFish, 424

HTML, 429-432

JNLP, 430

Messages, 424

Open MQ, 424

reading code, 426-429

SDK, 426
JavaFXMessageHandler, 426
javafx-ui.jar, 430
java.io, 163
java.lang, 56,262
java.lang.annotation, 262
java.lang.Enum, 219
java.lang.reflect, 268
java.lang.RMISecurityManager, 278
java.lang.SecurityManager, 278
JavaMail, 199
java.net, 186
java.net.Proxy, 189
java.policy, 278
java.rmi.registry.Registry, 279

460

JavaScript Object Notation (JSON), 392
JavaServer Face (JSF), 285, 324-325

converters, 333

MVC, 445

templates, 326-331

UI, 323

validators, 333

Web applications, 323-334
JavaServer Pages (JSP), 284, 310-321

deploying, 445

HTML, 310-311, 323

JavaBeans, 316

navigation, 331-332

servlets, 317-318, 444

tags, 312-314, 318-320

variables, 311-312, 444
java.sql, 235
java.util, 41, 143, 146
java.util.concurrent, 143, 224-230
java.util.List, 157
java.util.logging, 46
javax.annotation, 262
javax.ejb.AsyncResult, 367
javax. faces, 325

javax.mail.internet.InternetAddress, 200

javax.mail .Message, 200
javax.mail.Session, 200
javax.mail.Transport, 200
javax.naming.InitialContext, 352
javax.servlet, 296
javax.servlet.Filter, 304
javax.servlet.http.HttpSession, 303
javax.sql, 235
javax.sql.DataSource, 356
javax.swing.SwingWorker, 231

javax.validation.constraints, 333, 382
JAX-RS. See Java API for RESTful Web Services

JBoss, 287
JButton, 76, 92, 230, 251
JComboBox, 170
JCP. See Java Community Process
JDBC, 241-248, 443
connection pools, 247-248
databases, 235-249



JDK - loosely coupled objects

ODBC, 236
sample program, 238-240
transactional updates, 247
JDK. See Java Development Kit
Jetty, 287
JFrame, 76-77
Jigloo GUI Builder plug-in, 88
JLabel, 126, 258
JList, 76
JMS. See Java Messaging Service
JMSListener, 424
JNDI. See Java Naming and Directory Interface
JNLP. See Java Network Launch Protocol
JOB_TITLE, 237
Johnson, Rod, 399
Join, 381
join(), 223-224
JOptionPane, 91
JPA. See Java Persistence API
JPanel, 76
JPQL. See Java Persistence Query Language
JQuery, 392
JRE. See Java Runtime Environment
JSE. See JavaServer Face
JSON. See JavaScript Object Notation
JSP. See JavaServer Pages
.jsp, 404
JSP Standard Tag Libraries (JSTL), 313, 320
<jsp:param>, 314
_jspService(), 313
JspWriter, 311
JSR. See Java Specification Request
JSTL. See JSP Standard Tag Libraries
JTA. See Java Transaction API
JTable, 76
callback methods, 253-257
MVC, 251-257
Swing, 251-260
JTextField, 94, 95
JVM. See Java Virtual Machine

KeyAdapter, 97-98
keyFrames, 429
KeyListener, 96-97, 130

key/value pairs, 146-148, 157, 302, 338
King, Gavin, 411
<K,V>, 157

Label, 429
LAN. See local area network
lastModified(), 172
late binding, 68
layout managers, 77-88
lazy loading, 412
LDAP. See Lightweight Directory Access Protocol
length(), 172
libraries, 2, 12, 58
lib/security, 278
life cycle, 2
Lightweight Directory Access Protocol (LDAP),

357-358
LIKE, 381
LinearGradient, 429
LinkedBlockingDeque, 229
LinkedBlockingQueue, 229
LinkedList, 41

collections, 150-151
List, 146

links, 2
List, 41, 146
list(), 172
listeners. See event listeners
ListIterator, 150, 151
LMaven, 296
load (), 148
loadFromXML (), 149
@Local, 364, 365
local area network (LAN), 185, 279
local beans, 364-366
@LocalBean, 363
LOCAL_VARIABLE, 265
@Lock, 370
locks, 216-217, 225
Logger, 46
long, 20
loops, 42-46, 69, 158
loosely coupled objects, 221

461



MAC OS X plug-ins — multi-threading

MAC OS X plug-ins, 104
Mailer, 201-204
main, 51
main (), 5-6,24-25, 134, 201
applets, 107
multi-threading, 211
main-class, 430
Main. fx, 430
MalformedURLException, 186
managed beans, 324-325, 333
@ManagedBean, 325
Map, 146, 147
MapMessage, 338
marker interfaces, 60, 176
Matisse plug-in, 87
@Max, 333
MAX_PRIORITY, 216
MDBs. See message-driven beans
member variables, 21
Message, 338
messages
filters, 344
publishing, 343
receiving, 340-342
sending, 338-341
subscribers, 343-344
message consumers, 337, 340
message producers, 337
@MessageDriven, 363
message-driven beans (MDBs), 286, 340, 362,
371, 446
MessageHandler, 424
MessageListener, 340
message-oriented middleware (MOM), 286,
335-347
asynchronous communication, 335
DBMS, 337
EJB, 362
queues, 336
MessageProducer, 338
Messages, 424
MessageSender, 353
messageService, 430

462

meta-annotations, 265
metadata, 181, 261-272, 296
META-INF, 296,299, 363
METHOD, 265
methods, 5-6, 57
arguments, 31
classes, 17, 23-24, 100
declarations, 31-39, 58
event listeners, 98
generics, 160-161
getter, 95
Hotspot JVM, 58
instances, 33
classes, 100
main, 51
objects, 69
overloads, 31-32
overrides, 27, 98
setter, 95
signatures, 5-6, 31, 59
static, 38
values, 36-37
Method.getParameterTypes (), 269
Microsoft Active Directory, 357
middleware, 236, 286, 335-347
MIME. See Multipurpose Internet Mail
Extensions
@Min, 333
MIN_PRIORITY, 216
mkDir (), 172
ModelAndview, 405
model-view-controller (MVC), 170, 251-257, 441
JSF, 324, 445
Spring Framework, 399-409
MOM. See message-oriented middleware
mouseClicked(), 116, 129
MouseEvent, 129
MouseListener, 96-97, 115, 129, 131
MouseMotionListener, 96-97, 129, 131
mouseMoved (), 129
Multipurpose Internet Mail Extensions (MIME),
199, 392
multi-threading, 209-222
call(),228
collections, 230



MVC - OUT

concurrent execution, 223-233
EJB, 362
executor framework, 225-229
get(),228
inheritance, 212
IOException, 216
join(),223-224
Object, 219-222
priorities, 216
queues, 229-230
race conditions, 216-219
runnable interfaces, 211-212
subclasses, 225
Swing, 230-233
synchronization, 216-219, 441
wait(),219-222
MVC. See model-view-controller
myData, 255
MyEclipse, 87
MyFrame, 253
MyMailAuthenticator, 201

name, 296
name_service_port, 279
namespaces, 327-328
naming service, 279, 349, 352-355
navigation, 331-332
NetBeans IDE, 87
networks, 185-198
HTTP proxy servers, 189
sockets, 193-197
stock quote program, 191-193
NEW, 219
newFixedThreadPool (), 226
newTextlabel, 429
next (), 150, 246
nextElement (), 149
non-durable subscribers, 343
NORM_PRIORITY, 216
NoSuchMethodException, 270
NOT operation, 49-50
notify(),219-222,225, 440
notifyall(),219-222,225, 440

notifyOnUpdates, 266
@NotNull, 333, 377

NULL, 243

null, 43, 44, 45, 147, 269, 444
NullPointerException, 135, 444

Object, 92
get (), 145
inheritance, 60
multi-threading, 219-222
<object>, 106
objects
cloning, 183
communication, 93-96
DTOs, 241-242
exceptions, 139
instances, variables, 36
loosely coupled, 221
marker interfaces, 60
methods, 69
00, 17-18
RMI, 279
object oriented (00), 2, 17-29
ObjectInputStream, 178-179
ObjectMessage, 338

ObjectOutputStream, 176178, 180

object-relational mapping (ORM), 235, 375, 411

ODBC, 236

oldTextlabel, 429
onClose, 429

one-to-many, 343

onMessage (), 340, 342, 371
0O. See object oriented
OpenDS, 357

OpenLDAP, 357

Open MQ, 336, 344-346, 424
operating system (OS), 3, 75
OR operation, 49

Oracle Directory Server, 357
ORDER BY, 378

ORM. See object-relational mapping
OS. See operating system

ouT, 243

463



out — Queue

out, 311 POP. See Post Office Protocol
out of memory error, 445 ports, 193,200

outer classes, 99 Post, 301, 441

output directory, 12 Post Office Protocol (POP), 199
OutputStream, 164-165, 301 @PostConstruct, 370
outputText, 330 @PostPersist, 382

overloads, 31-32, 35 @PostRemove, 382
@Override, 231, 263 PreparedStatement, 242-243
overrides, 27, 57, 98 presentation layer, 193, 300

presentation tier, 285
previous (), 150
primary keys, 376

P2P. See point-to-point primitive data types, 19-20
PACKAGE, 265 printIn(), 151
package, 14, 57 println(), 5-6
packages, 13-14, 55-56, 95, 441 printStackTrace(), 136
page, 312 PrintWriter, 300, 301
pageContext, 312 priority queues, 146
paint (), 107-108, 127 PriorityBlockingQueue, 229
paintComponent (), 127 private, 57,95, 131
<param>, 106 process (), 232
PARAMETER, 265 processData (), 158
passivation, 176, 363 profiles, 288
PATH, 236 projects, 10
persist (), 379 properties, 18,22-23
persistence units, 379-380 Properties, 148-149, 352
ping-pong, 123-132 protected, 57
PingPongGameEngine, 124, 128-130 proxy
PingPongGreenTable, 130 RMI, 273
plain old Java object (POJO), 286, 324, 361-363 servers, 189
PLAIN_MESSAGE, 91 pruning, 288
platform independence, 1, 3 public, 5, 57
plugin, 314 public API, 94-96
plug-ins. See also specific plug-ins public interface, 56
applets, 103-104 publish(), 232, 343
Eclipse, 9 publish/subscribe mode, 337
IDEs, 297 pushes, 307
Jigloo GUI Builder, 88 PUT, 388
MAC OS X, 104
Matisse, 87
point, 129
point-to-point (P2P), 337 Quartz Scheduler, 372
POJO. See plain old Java object @QueryParam, 390
polymorphism, 60, 68-71 Queue, 146, 337, 338, 340

464



queues — RUNTIME retention policy

queues

FIFO, 229

JMS, 335

MOM, 336

multi-threading, 229-230

priority, 146

unbound, 229
QueueConnection, 337
QueueConnectionFactory, 337, 340
QueueReceiver, 337, 340
QueueReceiver.receive (), 340
QueueSender, 337, 339
QueueSession, 337

race conditions, 216-219
RCP. See Rich Client Platform
RDBMS. See Relational Database
Management Systems
read(), 135,137,138
readExternal (), 180
readObject (), 178
READ_ONLY, 205
Read_WRITE, 205
receive (), 340
record fields, 235
Rectangle, 429
ReentrantLock, 225
reflection, 267-270, 445
registry, 273, 276277
regular methods, 440
Relational Database Management Systems
(RDBMS), 235
@Remote, 364
remote beans, 366
Remote Method Invocation (RMI), 273-281
applets, 279
clients, 273, 277-278
JVM, 273
proxy, 273
registry, 276-277
security, 278-279
remote procedure calls (RPC), 335
RemoteException, 141

remove (), 379
@Remove, 369
renameTo (), 172
renderers, 257-259
repaint (), 127, 130
representation state of transfer (REST), 388
request, 311, 313, 316, 317
RequestDispatcher, 317
request.getsSession(), 302
@RequestScoped, 325
reset (), 112
Resin, 287
@Resource, 355
resources, 388
response, 311, 313, 317
response.getWriter (), 305
response.sendRedirect (), 313
REST. See representation state of transfer
RESTFul Web services, 387-398
ResultSet, 26, 241-242, 443
ResultSetMetaData, 244-246
retention policy, 265, 267
reverse domain name, 13, 55
RIAs. See rich Internet applications
Rich Client Platform (RCP), 9
rich Internet applications (RIAs), 421
RMI. See Remote Method Invocation
rmiregistry, 277
rollback (), 247, 342
Root, 381
RowSet, 246-247
RPC. See remote procedure calls
rs, 241-242
run (), 131, 211, 215, 230, 441
RUNNABLE, 219
Runnable, 131, 210-212, 226, 441
Executors, 226
Thread, 222-441
RUNTIME, 265
run-time
annotations, 270-271
binding, 68
errors, 70, 135
logging, 46
RUNTIME retention policy, 267

465



Scene - sleep()

Scene, 429
scenes, 428
@Schedule, 372
ScheduledExecutorService, 226
scope, 20-21, 37
scriptlets, 313
SE. See Standard Edition
security, 278-279
security sandbox, 105
SELECT, 238, 378
selectors. See filters
send (), 205, 339
sendMessage (), 430
serial version unique ID, 182
Serializable, 60, 181, 444
enum, 219
JavaBeans, 315
ObjectMessage, 338
servlets, 303
writeObject (), 177
serialization, 175-184
byte arrays, 182-183
classes
variables, 179
versioning, 182
JVM, 182
marker interfaces, 176
ServerSocket, 193-197
service(), 301
service_name, 279
servlets, 285, 287, 293-307
applets, 440
asynchronous, 306-307
browsers, 301
cookies, 302-303
deploying, 296-297
destroy (), 301
Eclipse, 297-300
EJB, 353
event listeners, 305-306
filters, 304-305
init (), 301

466

JSP, 317-318, 444
MessageSender, 353
metadata, 296
presentation layer, 300
Serializable, 303
service(), 301
session tracking, 302
superclass, 301
thin client, 294-295
URL rewriting, 302
writing, 295
ServletConfig, 312
ServletContext, 312

ServletContextListener, 305-306

ServletDispatcher, 402
<servlet-name>, 404
Session, 338, 339, 340, 342
Configuration, 412
getStore (), 204
session, 311, 317
session EJB, 286
session tracking, 302
SessionFactory, 412
Set, 146
setContentType (), 301
setDisplayValue (), 95
setDoOutput (), 188
setNull (), 243
setPageContext (), 319
setPlayerName (), 112
setPriority(), 216

setPropsAndSendEmail (), 202

setter methods, 95, 242
setText (), 94
setValueAt (), 256-257
setXxXx (), 243

short, 20
showConfirmbialog (), 91

Simple Mail Transfer Protocol (SMTP), 199, 200

SimpleMail, 205
SimpleTag, 319

singleton session beans, 362, 369-370

size(), 147
sleep(), 131, 212-214, 441



SMTJPSendFailedException — Swing

SMTJPSendFailedException, 201
SMTP. See Simple Mail Transfer Protocol
SOAP Web services, 387
Socket, 193-197
sockets, 193-197
SortedSet, 146
source code, 2, 12
SOURCE retention policy, 267
SourceForge, 412
Spring BlaseDB, 401
Spring Faces, 401
Spring Framework, 289
bean wiring, 400
callback methods, 399
containers, 401
contexts, 399
dependency injection, 399
Eclipse, 402-406
Hibernate, 401
HTML, 401-408
HTML forms, 406-408
MVC, 399-409
workflows, 402-406
Spring JavaScript, 401
Spring Security, 401
Spring Web Flow, 401
springServletDispatcherservlet.xml, 404
SQL, 376, 411
sglStatement, 266
src, 12
stack trace, 133-134
stages, 428-429
Standard Edition (SE), 3, 200, 262, 295, 375, 426
start (), 107, 211, 338, 340
startNetworkServer, 237
@Startup, 369
@Stateful, 363, 369
stateful session beans, 362, 368-369
stateless protocol, 302
stateless session beans, 362, 363-368, 446
Statement, 242-243, 443
statements, 49-51
states.txt, 170
static, 5, 440
classes, 21, 37-38
variables, 57, 99

Step Over, 48
stock quote program, 191-193
stop (), 107-108, 214-216, 444
stopMe, 215
Store, 204-205
stored procedures, 235
storeToXML (), 149
StreamMessage, 338
streams, 163-173
buffered, 165-166
byte, 164-165
character, 166-170
data, 171
DBMS, 163
File, 171172
1/0, 163
network, 186
String, 51, 441
Stringl], S
stubs, 273, 279
subclasses, 26, 135, 139
abstract classes, 70
final classes, 58
multi-threading, 225
RemoteException, 141
superclasses, 440
upcasting, 60
subscribers, 343-344
super, 34, 160, 441
superclasses, 26
abstract classes, 70
servlets, 301
subclasses, 440
@SuppressWarning, 263-264
Swing, 75-88
adapters, 97-98
applets, 107-108, 111-122
classes, 76
event listeners, 440
GUIs, 87-88, 115, 230-231
JTable, 251-260
layout managers, 77-88
multi-threading, 230-233
Ul, 75, 230-231
widgets, 86-87, 89

467



SwingWorker — URLConnection

SwingWorker, 230-233 throw, 136, 138-139
switch, 26, 50-51, 69 Throwable, 135, 139, 311
SWT library, 75 throwing exceptions, 135
synchronization, 216-219, 441 throws, 136, 137
synchronized, 216-217, 225, 441 tic-tac-toe, 111-122
synchronizedList (), 230 TIMED_WAITING, 219
synchronous calls, 336 Timeline, 429
SynchronousQueue, 229 TimeService, 372
sysinfo, 236 <title>, 106

toArray (), 160-161

TODO, 14

Topic, 338
<T>, 157, 160-161 TopicPublisher, 337, 338

JTable, 251 TopicSubscriber, 338

TableCellRenderer, 258 toString(), 136
-tableChanged (), 252 transactional updates, 247
TableColumn, 258 transactionRequired, 266
TableModel, 251 transient, 178, 441

Transport.send (), 202
try/catch, 134, 135-136, 164, 442, 444

TableModelEvent, 257
TableModelListener, 252

taglib, 312 TYPE, 265

<@taglib>, 406 type erasure, 156

tags, 312-314, 318-320 TypedQuery, 381

@Target, 265 TYPE_FORWARD_ONLY, 246
targets, 264-265 TYPE_SCROLL_INSENSITIVE, 246
TCP/1P, 193 TYPE_SCROLL_SENSITIVE, 246

technical interviews, 435-446
templates, JSF, 326-331
TERMINATED, 219

TestGenericCollection, 158 UL See user interface

text editor, 4-5 <ui:define>, 329

TextMessage, 338 unbound queues, 229

Thawte, 105 unboxing, 21

thin client, 285, 294-295 unchecked errors, 135

thin drivers, 236 uniform resource identifier (URI), 388

this, 34-35, 129 uniform resource locator (URL), 185

this (), 35 rewriting, 302

Thread, 210, 219 unsigned applets, 104-105
join(),223-224 upcasting, 60-61
Runnable, 225, 441 updateData(), 266
setPriority (), 216 URI. See uniform resource identifier
sleep(), 212-214 URL. See uniform resource locator
stop (), 214-216, 444 URL, 186, 188

thread-safe, 229
Thread.sleep(), 131

468

UrlBasedViewResolver, 402
URLConnection, 186, 188—-189



urlPatterns — @XmlRootElement

urlPatterns, 295

US-ASCII, 166

UseCaches (), 188-189

user interface (UI), 76, 112-113, 124-127
event handling, 89-102
GUIs, 75-88, 115, 230-231
JSF, 323
0S, 75
RCP, 9
Swing, 75, 230-231

UTF-8, 166

UTF-16, 166

validators, 333
value, 266
values, 36-37
variables
access level, 57
classes, 18, 21
constructors, 33
initialization, 33
serialization, 179
static, 37-38
declarations, 19, 20
final, 57
global, 148
initialization, 19, 20
instances, 36-37
JSP, 311-312, 444
properties, 22
scope, 20-21, 37
static, 57
inner classes, 99
transient, 178
VBox, 429
Vector, 41, 144-146
VeriSign, 105
versions
class serialization, 182
JRE, 12
void, 5, 33
volatile, 215

wait (), 219-222,441

WAITING, 219

Web applications, 323-334, 439

web fragments, 289

web module, 400

web services, 285

Web Services Description Language (WSDL), 387

WEB-INF, 299, 402

WebLogic, 287

@WebServlet, 295

WebSphere, 287, 335

Welcome, 10

WHERE, 378

while, 44, 45, 46-47

widgets, 86-87, 89

width, 106

wild cards, 158-160

WindowAdapter, 98

WindowListener, 96-98

Windows installation, 3—4

workflows, 402-406

workspace, 10

World Wide Web (WWW), 185

wrappers, 21, 255
command-line arguments, 50-51
HTML, 114-115

write(), 166

writeByte(), 171

writeExternal (), 180

writeFloat (), 171

writeInt (), 171

writeObject (), 177, 180

WSDL. See Web Services Description Language

WWW. See World Wide Web

.xhtml, 323
XML, 149, 286, 392
@xmlRootElement, 388, 396

469



WILEY PUBLISHING, INC.
END-USER LICENSE AGREEMENT

READ THIS. You should carefully read these terms and condi-
tions before opening the software packet(s) included with this
book “Book”. This is a license agreement “Agreement” between
you and Wiley Publishing, Inc. “WPI”. By opening the accompa-
nying software packet(s), you acknowledge that you have read and
accept the following terms and conditions. If you do not agree and
do not want to be bound by such terms and conditions, promptly
return the Book and the unopened software packet(s) to the place
you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity)
a nonexclusive license to use one copy of the enclosed software
program(s) (collectively, the “Software”) solely for your own
personal or business purposes on a single computer (whether a
standard computer or a workstation component of a multi-user net-
work). The Software is in use on a computer when it is loaded into
temporary memory (RAM) or installed into permanent memory
(hard disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.

2. Ownership. WP is the owner of all right, title, and interest,
including copyright, in and to the compilation of the Software
recorded on the physical packet included with this Book “Software
Media”. Copyright to the individual programs recorded on the
Software Media is owned by the author or other authorized copy-
right owner of each program. Ownership of the Software and all
proprietary rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup
or archival purposes, or (ii) transfer the Software to a single hard
disk, provided that you keep the original for backup or archival
purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system
or through any computer subscriber system or bulletin-board sys-
tem, or (iii) modify, adapt, or create derivative works based on the
Software.

(b) You may not reverse engineer, decompile, or disassemble the
Software. You may transfer the Software and user documentation
on a permanent basis, provided that the transferee agrees to accept
the terms and conditions of this Agreement and you retain no cop-
ies. If the Software is an update or has been updated, any transfer
must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the
individual requirements and restrictions detailed for each individual
program in the “About the CD” appendix of this Book or on the
Software Media. These limitations are also contained in the indi-
vidual license agreements recorded on the Software Media. These
limitations may include a requirement that after using the program
for a specified period of time, the user must pay a registration fee
or discontinue use. By opening the Software packet(s), you agree to
abide by the licenses and restrictions for these individual programs
that are detailed in the “About the CD” appendix and/or on the
Software Media. None of the material on this Software Media or
listed in this Book may ever be redistributed, in original or modified
form, for commercial purposes.

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free
from defects in materials and workmanship under normal use for a

period of sixty (60) days from the date of purchase of this Book. If
WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software
Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN,
AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you
may have other rights that vary from jurisdiction to jurisdiction.
6. Remedies.

(a) WPP’s entire liability and your exclusive remedy for defects in
materials and workmanship shall be limited to replacement of the
Software Media, which may be returned to WPI with a copy of
your receipt at the following address: Software Media Fulfillment
Department, Attn.: Java Programming 24-Hour Trainer, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
or call 1-800-762-2974. Please allow four to six weeks for delivery.
This Limited Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any replacement
Software Media will be warranted for the remainder of the original
warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages
whatsoever (including without limitation damages for loss of busi-
ness profits, business interruption, loss of business information, or
any other pecuniary loss) arising from the use of or inability to use
the Book or the Software, even if WPI has been advised of the pos-
sibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limita-
tion of liability for consequential or incidental damages, the above
limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or dis-
closure of the Software for or on behalf of the United States of
America, its agencies and/or instrumentalities “U.S. Government”
is subject to restrictions as stated in paragraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause of DFARS
252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understand-
ing of the parties and revokes and supersedes all prior agree-
ments, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall
take precedence over any other documents that may be in con-
flict herewith. If any one or more provisions contained in this
Agreement are held by any court or tribunal to be invalid, illegal,
or otherwise unenforceable, each and every other provision shall
remain in full force and effect.



	Java Programming 24-Hour Trainer
	About the Author
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	How to Read This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com



	Chapter 1: Introducing Java
	Why Learn Java?
	Setting the Goals
	The Life Cycle of a Java Program
	JDK and JRE
	Java SE and EE
	Downloading and Installing JDK in Windows
	Your First Java Program: Hello World
	Compiling and Running Hello World

	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 2: Eclipse IDE 
	Introducing Eclipse IDE
	Downloading and Installing Eclipse
	Creating Hello Project in Eclipse
	Creating the HelloWorld Class in Eclipse
	Java Packages
	Completing Code Generation 
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 3: Object-Oriented Programming
	Classes and Objects
	Variables, Constants, and Data Types
	Declaring Variables
	Constants
	Primitive Data Types

	Variable Scope
	Wrappers, Autoboxing, and Unboxing
	Program Comments
	First Useful Program
	Conditional Statement if
	switch Statement
	Inheritance
	Method Overriding

	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 4: Class Methods
	Method Arguments
	Method Overloading
	Constructors
	The Keyword super
	The Keyword this
	Passing by Value or by Reference
	Variable Scopes
	The Keyword static  
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 5: Back to Java Basics 
	Arrays
	Loops
	Debugging Java Programs
	More about if and switch Statements
	The Flavors of if Statements
	The switch Statement

	Command-Line Arguments
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 6: Packages, Interfaces, and Encapsulation
	Java Packages
	Encapsulation
	Access Levels

	The Keyword final
	final Variables
	final Methods
	final Classes

	Interfaces
	Marker Interfaces

	Casting
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 7: Programming with Abstract Classes and Interfaces
	Abstract Classes
	Assignment
	Solution with an Abstract Class 

	Polymorphism
	Making the Interface Solution Polymorphic 

	Interfaces versus Abstract Classes
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 8: Introducing the Graphic User Interface 
	Swing Basics
	Layout Managers
	A Simple Calculator with FlowLayout
	A Brief Introduction to Layout Managers
	FlowLayout
	GridLayout
	BorderLayout
	Combining Layout Managers
	BoxLayout
	GridBagLayout
	CardLayout
	Containers with Absolute Layout
	More about Swing Widgets

	Swing GUI Builders
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 9: Event Handling in UI 
	Introduction to Event Listeners
	Teaching the Calculator to Calculate
	Registering Components with ActionListener
	Finding the Source of an Event
	How to Pass Data between Objects 

	More Swing Listeners 
	How to Use Adapters
	Inner Classes
	Anonymous Inner Classes
	Closures

	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 10: Introduction to Java Applets 
	An Unofficial History of Java Applets
	Restrictions of Java Applets
	Learning HTML on the Run
	Writing Applets Using Swing
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 11: Developing a Tic-Tac-Toe Applet 
	The Strategy
	Coding Tic-Tac-Toe
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 12: Developing a Ping-Pong Game
	The Strategy
	The Code
	 The User Interface
	The Constants
	The Engine

	Finishing the Ping-Pong Game
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 13: Error Handling 
	Stack Trace
	Java Exceptions
	Exception Hierarchy
	try/catch Blocks
	The throws Clause
	The finally Clause
	The throw Operator
	Creating Your Own Exceptions
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 14: Introduction to Collections 
	Arrays Revisited
	Classes ArrayList and Vector 
	Collection Interfaces from java.util
	Classes Hashtable and HashMap
	Class Properties

	Enumeration and Iterator
	Class LinkedList
	Class BitSet
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 15: Introduction to Generics 
	Generics with Classes 
	Defining Generics
	Wild Cards
	Bounded Wild Cards
	Generic Methods 
	What to Read Next
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 16: Working with Streams 
	Byte Streams
	Buffered Streams
	Character Streams
	Data Streams
	The Class File
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 17: Java Serialization
	The Class ObjectOutputStream
	The Class ObjectInputStream
	The Interface Externalizable
	Class Versioning
	Serializing into Byte Arrays
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 18: Network Programming 
	Reading Data from the Internet
	Connecting through HTTP Proxy Servers
	How to Download Files from the Internet
	The Stock Quote Program
	Socket Programming
	Why Use Sockets?
	The Stock Quote Server with Sockets

	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 19: Processing E-Mails with Java 
	Protocols and Servers
	Creating Birthday Mailer
	Required Supporting Classes
	Writing the Mail Sender

	How to Retrieve E-Mails
	Useful Open-Source Components 
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 20: Introduction to Multi-Threading 
	The Class Thread
	The Interface Runnable
	Sleeping Threads
	How to Kill a Thread
	Thread Priorities
	Thread Synchronization and Race Conditions
	Thread States
	Wait and Notify
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 21: Digging Deeper into Concurrent Execution 
	Joining Threads
	Goodies from java.util.concurrent
	ReentrantLock versus Synchronized
	Executor Framework
	A Brief Introduction to Concurrent Collections

	SwingWorker Thread
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 22: Working with Databases Using JDBC
	JDBC Driver Types
	Creating a Database with Derby
	Sample JDBC Program
	Processing Result Sets
	The PreparedStatement Class
	The CallableStatement Class
	The ResultSetMetaData Class
	Scrollable Result Sets and RowSet
	Transactional Updates
	Connection Pools and DataSources
	Try It
	Lesson Requirements
	Hint
	Step-by-Step


	Chapter 23: Swing with JTable
	JTable and the MVC Paradigm
	The Model
	Mandatory Callbacks of Table Models
	Optional Callbacks of Table Models

	Introduction to Renderers
	Summary
	Try It
	Lesson Requirements
	Hint
	Step-by-Step


	Chapter 24: Annotations and Reflection
	Java Annotations Basics
	@Override
	@Deprecated
	@Inherited
	@Documented

	Custom Annotations
	Reflection
	Run-Time Annotation Processing
	Summary 
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 25: Remote Method Invocation 
	Developing Applications with RMI
	Defining Remote Interfaces
	Implementing Remote Interfaces
	Registering Remote Objects
	Writing RMI Clients
	Security Considerations
	Finding Remote Objects

	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 26: Java EE 6 Overview 
	The Big Picture
	JCP, JSR, and Other Acronyms
	Tiers of Java EE Applications
	Containers versus Application Servers

	Profiles and Pruning
	Miscellaneous Concepts
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 27: Programming with Servlets 
	The Big Picture
	The Thin Client 
	How to Write a Servlet
	How to Deploy a Servlet
	Installing the GlassFish Plug-In for Eclipse 
	How to Create a Servlet with Eclipse
	Browser-Servlet Data Flow
	HTTP Get and Post Requests
	Session Tracking 
	Cookies
	URL Rewriting
	Server-Side HttpSession
	Filters

	Event Listeners
	Asynchronous Servlets
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 28: JavaServer Pages
	Embedding Java Code into HTML
	Implicit JSP Objects
	Overview of the JSP Tags
	Directives
	Declarations
	Expressions
	Scriptlets
	Comments
	Standard Actions

	Error Pages
	JavaBeans
	Using JavaBeans in JSP
	How Long Does a Bean Live?

	Loading JSP from Servlets
	Tag Libraries
	JSTL
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 29: Developing Web Applications with JSF
	The Big Picture
	Managed Beans
	 Creating a JSF Website
	Templating
	Page Navigation

	Converters and Validators
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 30: Introducing JMS and MOM
	Messaging Concepts and Terminology
	Two Modes of Message Delivery
	JMS API Overview 
	Types of Messages
	How to Send a Message
	How to Receive a Message
	How to Publish a Message
	How to Subscribe for a Topic
	Message Selectors
	Administering Objects in Open MQ
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 31: Introducing JNDI
	Java Naming and Directory Interface 
	Administering JNDI Objects in GlassFish
	Accessing the GlassFish Naming Service with JNDI
	Injection of JNDI Resources
	DataSource and JNDI 
	Lightweight Directory Access Protocol 
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 32: Introduction to Enterprise JavaBeans
	Who Needs EJB Containers?
	Types of EJBs
	Stateless Session Beans 
	The Bean
	The Client’s View
	The Server
	Asynchronous Methods

	Stateful Session Beans
	Singleton Beans
	Deploying EJB
	Message-Driven Beans
	Timer Service
	Summary
	Try It
	Lesson Requirements
	Hint
	Step-by-Step


	Chapter 33: Introduction to the Java Persistence API
	The Big Picture
	Mapping Objects to Database Tables
	JPQL
	EntityManager
	A Brief Introduction to the Criteria API 
	Bean Validation 
	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 34: Working with RESTful Web Services
	The SOAP Web Services
	The RESTful Web Services
	The RESTful Stock Server
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 35: Introduction to Spring MVC Framework
	Bean Wiring
	Overview of Spring MVC
	Processing HTML with Spring 
	Understanding the Spring Web MVC Workflow
	Processing HTML Forms

	Try It
	Lesson Requirements
	Step-by-Step


	Chapter 36: Introduction to Hibernate Framework
	The Big Picture 
	Installing and Configuring Hibernate
	Adding Hibernate Jars to an Eclipse Project
	Testing the Database Connection
	Configuring Hibernate with a DBMS 

	Retrieving Data with Hibernate
	Try It
	Lesson Requirements
	Hints
	Step-by-Step


	Chapter 37: Bringing JavaFX to the Mix
	Consuming Stock Quotes with JavaFX
	Code Walkthrough
	Reading JavaFX Code
	The HTML Client

	Try It
	Lesson Requirements
	Hint
	Step-by-Step


	Chapter 38: Java Technical Interviews
	Getting the Interview
	Doing Well at the Interview
	Considering the Offer
	Interviewing Enterprise Developers
	To Get or Not to Get Certified?
	Technical Questions and Answers
	Epilogue

	Appendix: What’s on the DVD?
	Using the DVD on a PC
	Using the DVD on a Mac
	What’s on the DVD?
	Troubleshooting
	Customer Care

	Index
	Wiley Publishing, Inc.End-User License Agreement




